

Automotive 1200 V, 450 A Dual Side Cooling Half-Bridge Power Module VE-Trac™ Dual NVG450A120L5DSC

Product Description

The NVG450A120L5DSC is a member of the VE-Trac Dual power module family with dual side cooling and compact footprints for Hybrid (HEV) and Electric Vehicle (EV) traction inverter application.

The module consists of two latest 1200 V Ultra Field Stop (UFS) IGBTs in a half-bridge configuration. The chipset utilizes the proven Trench Ultra Field Stop IGBT technology in providing high current density while offering robust short circuit protection and increased blocking voltage. Additionally, UFS IGBT and copacked soft diode deliver a low power loss operation and soft switching simultaneously, which helps to improve overall system efficiency in HEV/EV traction applications.

Features

- Dual-Side Cooling
- Integrated Chip Level Temperature & Current Sensor
- $T_{vj max} = 175^{\circ}C$
- Low Stray Inductance
- Low Conduction and Switching Losses
- Automotive Grade
- 4.2 kV Isolated DBC Substrate
- This is a Pb-Free Device

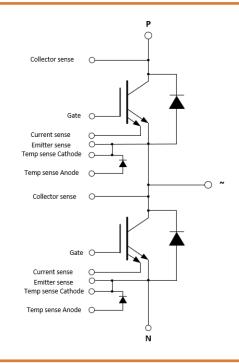
Typical Applications

- Hybrid and Electric Vehicle Traction Inverter
- High Power DC-DC Converter

AHPM15-CEA CASE 100DD

MARKING DIAGRAM

ZZZ = Assembly Lot Code


AT = Assembly & Test Site Code

Y = Year

WW = Work Week

XXXX = Specific Device Code

NNN = Serial Number

ORDERING INFORMATION

See detailed ordering and shipping information on page 9 of this data sheet.

PIN DESCRIPTION

Pin No.	Pin	Description	Pin Arrangement
1	N	Low Side Emitter	2
2	Р	High Side Collector	l Y
3	H/S COLLECTOR SENSE	High Side Collector Sense	3 0
4	H/S CURRENT SENSE	High Side Current Sense	l
5	H/S EMITTER SENSE	High Side Emitter Sense	6 0
6	H/S GATE	High Side Gate	4 0
7	H/S TEMP SENSE (CATHODE)	High Side Temp sense Diode Cathode	7 0 4
8	H/S TEMP SENSE (ANODE)	High Side Temp sense Diode Anode	8 O 9
9	~	Phase Output	15 O
10	L/S CURRENT SENSE	Low Side Current Sense	l
11	L/S EMITTER SENSE	Low Side Emitter Sense	12 0
12	L/S GATE	Low Side Gate	10 0
13	L/S TEMP SENSE (CATHODE)	Low Side Temp sense Diode Cathode	11 0
14	L/S TEMP SENSE (ANODE)	Low Side Temp sense Diode Anode	14 0
15	L/S COLLECTOR SENSE	Low Side Collector Sense	0 1

DBC Substrate

Al₂O₃ isolated substrate, basic isolation, and copper on both sides

Lead frame

Copper, with tin electro-plating

Flammability Information

All Power Module packaging materials meet UL flammability rating class 94V-0

MODULE CHARACTERISTICS

Symbol	Parameter	Rating	Unit		
T _{vj}	Continuous Operating Junction Temperature Range		-40 to 150	°C	
T _{vj.op}	Continuous Operating Junction Temperature Under Switching Cond	ditions		-40 to 175	°C
T _{STG}	Storage Temperature Range			-40 to 125	°C
V _{ISO}	Isolation Voltage, AC, f = 50 Hz, t = 1 s			4200	V
Creepage	Terminal to Heatsink Terminal to Terminal				mm
Clearance	Clearance Terminal to Heatsink Terminal to Terminal				
CTI	Comparative Tracking Index			>600	
		Min.	Тур.	Max.	
L _{sCE}	Stray Inductance	-	-	8	nΗ
R _{CC'+EE'}	Module Lead Resistance, Terminals - Chip	-	-	0.15	m $Ω$
G	Module Weight	-	-	72	g
М	M4 Screws for Module Terminals	-	-	2.2	Nm

ABSOLUTE MAXIMUM RATINGS (T_{vi} = 25°C, unless otherwise specified)

Symbol	Parameter	Rating	Unit
GBT			
V _{CES}	Collector to Emitter Voltage	1200	V
V_{GES}	Gate to Emitter Voltage	-15/+20	V
V _{GES transient}	Gate to Emitter Voltage, Limits under switching conditions	±20	V
I _{CN}	Implemented Collector Current	450	А
I _{C nom}	Continuous DC Collector Current, Tvjmax = 175°C, T _F = 65°C, Ref. Heatsink	410 (Note 1)	А
I _{CRM}	Pulsed Collector Current @ VGE = 15 V, tp = 1 ms	900	А
DIODE			
V_{RRM}	Repetitive Peak Reverse Voltage	1200	V
I _{FN}	Implemented Forward Current	450	А
I _F	Continuous Forward Current, Tvjmax = 175°C, T _F = 65°C, Ref. Heatsink	360 (Note 1)	А
I _{FRM}	Repetitive Peak Forward Current, t _p = 1 ms	900	А
l ² t value	$V_R = 0 \text{ V}, t_p = 10 \text{ ms}, Tv_J = 150^{\circ}\text{C}$ $T_{VJ} = 175^{\circ}\text{C}$	14400 12960	A ² s

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS (Verified by characterization, not test)

Symbol	Parameter	Min.	Тур.	Max.	Unit
IGBT.R _{th,J-C}	Effective Rth, Junction to Case (Note 2)	-	0.06	0.08	°C/W
IGBT.R _{th,J-F}	Effective Rth, Junction to Fluid, λ_{TIM} = 6 W/m–K, F = 660 N 10 L/min, 65°C, 50/50 EGW, Ref. Heatsink	ı	0.15	ı	°C/W
Diode.R _{th,J-C}	Effective Rth, Junction to Case (Note 2)	-	0.08	0.10	°C/W
Diode.R _{th,J-F}	Effective Rth, Junction to Fluid, λ_{TIM} = 6 W/m–K, F = 660 N 10 L/min, 65°C, 50/50 EGW, Ref. Heatsink	-	0.21	-	°C/W

^{2.} For the measurement point of case temperature (Tc), DBC discoloration, picker circle print is allowed, please refer to the VE-Trac Dual assembly guide for additional details about acceptable DBC surface finish.

^{1.} Verified by characterization, not test.

CHARACTERISTICS OF IGBT (Tvj = 25°C, unless otherwise specified)

Parameters		Conditions		Min	Тур	Max	unit
V _{CESAT}	Collector to Emitter Saturation Voltage (Terminal)	$V_{GE} = 15 \text{ V}, I_{C} = 300 \text{ A},$	$T_{vj} = 25^{\circ}C$ $T_{vj} = 150^{\circ}C$ $T_{vj} = 175^{\circ}C$	- - -	1.38 1.50 1.53	1.6 - -	V
		V _{GE} = 15 V, I _C = 450 A,	T_{vj} = 25°C T_{vj} = 150°C T_{vj} = 175°C	- - -	1.59 1.82 1.87	- - -	
I _{CES}	Collector to Emitter Leakage Current	V _{GE} = 0 V, V _{CE} = 1200 V	$T_{vj} = 25$ °C $T_{vj} = 175$ °C	- -	- 7	1 –	mA
I _{GES}	Gate – Emitter Leakage Current	$V_{CE} = 0 \text{ V}, V_{GE} = +20 \text{ V}/-1$	15 V	-	_	±400	nA
V _{th}	Threshold Voltage	$V_{CE} = V_{GE}$, $I_C = 500$ mA		5.8	6.8	7.6	V
Q_{G}	Total Gate Charge	$V_{GE} = -8 \text{ to } 15 \text{ V}, V_{CE} = 60$	00 V	-	1.45	_	μC
R _{Gint}	Internal Gate Resistance			-	0	-	Ω
C _{ies}	Input Capacitance	V _{CE} = 30 V, V _{GE} = 0 V, f =	1 MHz	-	61	_	nF
C _{oes}	Output Capacitance	V _{CE} = 30 V, V _{GE} = 0 V, f =	1 MHz	-	1.5	-	nF
C _{res}	Reverse Transfer Capacitance	V _{CE} = 30 V, V _{GE} = 0 V, f =	1 MHz	-	0.7	-	nF
T _{d.on}	Turn On Delay, Inductive Load	I_C = 300 A, V_{CE} = 600 V V_{GE} = +15/-8 V Rg.on = 3 Ω	$T_{vj} = 25^{\circ}C$ $T_{vj} = 150^{\circ}C$ $T_{vj} = 175^{\circ}C$	- - -	128 121 118	- - -	ns
T _r	Rise Time, Inductive Load	I_C = 300 A, V_{CE} =600 V V_{GE} = +15/-8 V Rg.on = 3 Ω	$T_{vj} = 25^{\circ}C$ $T_{vj} = 150^{\circ}C$ $T_{vj} = 175^{\circ}C$	- - -	59 66 68	- - -	ns
T _{d.off}	Turn Off Delay, Inductive Load	$I_C = 300 \text{ A}, V_{CE} = 600 \text{ V}$ $V_{GE} = +15/-8 \text{ V}$ $Rg.off = 5 \Omega$	$T_{vj} = 25^{\circ}C$ $T_{vj} = 150^{\circ}C$ $T_{vj} = 175^{\circ}C$	- - -	1070 1132 1157	- - -	ns
T _f	Fall Time, Inductive Load	I_{C} = 300 A, V_{CE} =600 V V_{GE} = +15/-8 V Rg.off = 5 Ω	$T_{vj} = 25^{\circ}C$ $T_{vj} = 150^{\circ}C$ $T_{vj} = 175^{\circ}C$	- - -	103 250 281	- - -	ns
E _{ON}	Turn-On Switching Loss (Including Diode Reverse Recovery Loss)	$\begin{array}{l} I_{C} = 300 \text{ A, V}_{CE} = 600 \text{ V} \\ V_{GE} = +15/-8 \text{ V} \\ Rg.on = 3 \Omega \\ Ls = 25 \text{ nH} \\ di/dt \left(T_{vj} = 25^{\circ}\text{C}\right) = 4.06 \text{ A/n} \\ di/dt \left(T_{vj} = 175^{\circ}\text{C}\right) = 3.95 \text{ A/n} \end{array}$		- - -	18 28 30	- - -	mJ
E _{OFF}	Turn-Off Switching Loss	I_C =300A, V_{CE} =600 V V_{GE} =+15/-8 V Rg.off=5 Ω Ls=25 nH dv/dt (T_{vj} =25°C) = 4.15 V/r dv/dt (T_{vj} =175°C) = 3.21 V	$T_{vj} = 25^{\circ}C$ $T_{vj} = 150^{\circ}C$ $T_{vj} = 175^{\circ}C$ as	- - -	19 34 37	- - -	mJ
Esc	Minimum Short Circuit Energy Withstand	$V_{GE} = 15 \text{ V}, V_{CC} = 600 \text{ V}$ $T_{vj} = 25^{\circ}\text{C}$ $T_{vj} = 175^{\circ}\text{C}$		16 8.8	- -	- -	J

CHARACTERISTICS OF INVERSE DIODE (Tvj = 25°C, unless otherwise specified)

	Parameters	Conditions		Min	Тур	Max	unit
V _F	Diode Forward Voltage (Terminal)	$V_{GE} = 0 \text{ V, } I_{C} = 300 \text{ A,}$	$T_{vj} = 25^{\circ}C$ $T_{vj} = 150^{\circ}C$ $T_{vj} = 175^{\circ}C$	- - -	1.58 1.56 1.54	1.82 - -	V
		$V_{GE} = 0 \text{ V, } I_{C} = 450 \text{ A,}$	$T_{vj} = 25^{\circ}C$ $T_{vj} = 150^{\circ}C$ $T_{vj} = 175^{\circ}C$	1 1	1.80 1.81 1.78	1 1	
E _{rr}	Reverse Recovery Energy	$\begin{aligned} &V_{R} = 600 \text{ V, I}_{F} = 300 \text{ A,} \\ &R_{GON} = 3 \Omega, \\ &-\text{di/dt} = 3.95 \text{ A/ns (175°C)} \\ &V_{GE} = -8 \text{ V} \end{aligned}$	$T_{vj} = 25^{\circ}C$ $T_{vj} = 150^{\circ}C$ $T_{vj} = 175^{\circ}C$	1 1 1	10 22 24	1 1 1	mJ
Q _{RR}	Recovered Charge	$\begin{aligned} &V_{R} = 600 \text{ V, } I_{F} = 300 \text{ A,} \\ &R_{GON} = 3 \Omega, \\ &-\text{di/dt} = 3.95 \text{ A/ns (175°C)} \\ &V_{GE} = -8 \text{ V} \end{aligned}$	$T_{vj} = 25^{\circ}C$ $T_{vj} = 150^{\circ}C$ $T_{vj} = 175^{\circ}C$	- - -	25 53 59		μC
Irr	Peak Reverse Recovery Current	$\begin{aligned} &V_{R} = 600 \text{ V, } I_{F} = 300 \text{ A,} \\ &R_{GON} = 3 \Omega, \\ &-\text{di/dt} = 3.95 \text{ A/ns (175°C)} \\ &V_{GE} = -8 \text{ V} \end{aligned}$	$T_{vj} = 25^{\circ}C$ $T_{vj} = 150^{\circ}C$ $T_{vj} = 175^{\circ}C$	- - -	250 332 343	- - -	А

SENSOR CHARACTERISTICS (Tvj = 25°C, unless otherwise specified)

	Parameters	Conditions		Min	Тур	Max	unit
T _{sense}	Temperature Sense	I _F = 250 μA,	$T_{vj} = -40^{\circ}C$ $T_{vj} = 25^{\circ}C$ $T_{vj} = 150^{\circ}C$ $T_{vj} = 175^{\circ}C$	- 2.95 (Note 3) - -	3.40 3.01 2.27 2.08	- 3.086 (Note 3) - -	٧
I _{sense}	Current Sense	R_{shunt} = 10 Ω, R_{shunt} = 20 Ω,	I _C = 600 A I _C = 300 A I _C = 200 A I _C = 600 A I _C = 300 A	- - -	392 254 209 566 377	- - -	mV
			$I_C = 200 \text{ A}$	_	314	-	

^{3.} Measured at final test.

TYPICAL CHARACTERISTICS

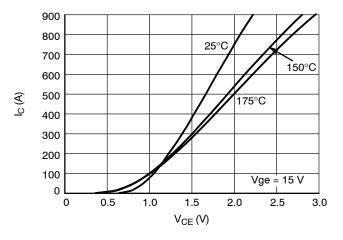


Figure 1. IGBT Output Characteristic

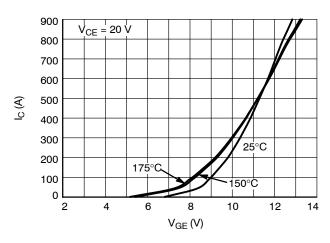


Figure 2. IGBT Transfer Characteristic

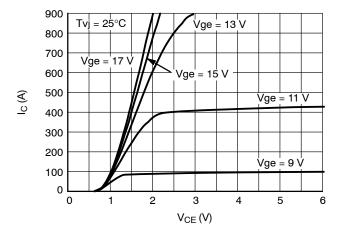


Figure 3. IGBT Output Characteristic

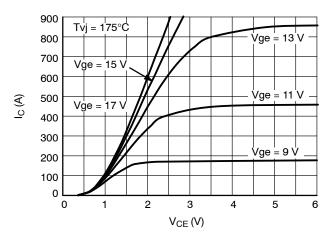


Figure 4. IGBT Output Characteristic

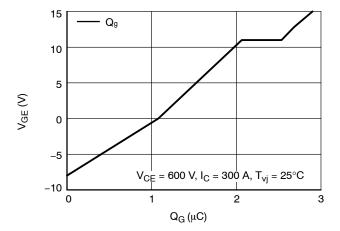


Figure 5. Gate Charge Characteristic

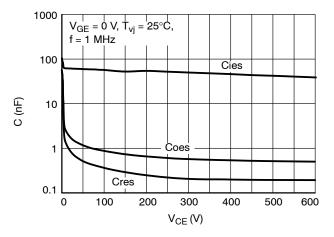


Figure 6. Capacitance Characteristic

TYPICAL CHARACTERISTICS

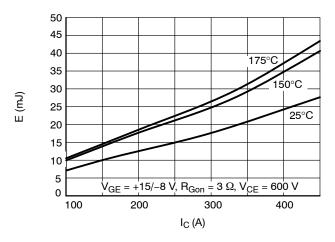


Figure 7. IGBT Turn-on Losses vs. I_C

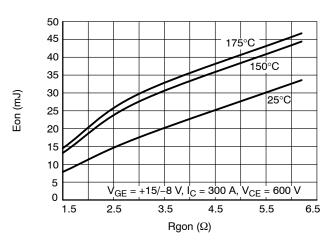


Figure 8. IGBT Turn-on Losses vs. Rgon

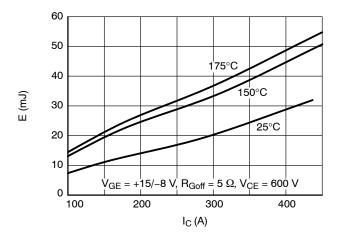


Figure 9. IGBT Turn-off Losses vs. I_C

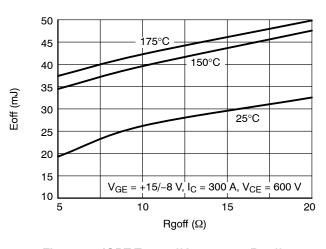


Figure 10. IGBT Turn-off Losses vs. Rgoff

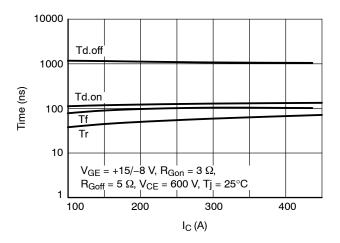


Figure 11. IGBT Switching Times vs. I_C , $T_{vj} = 25^{\circ}C$

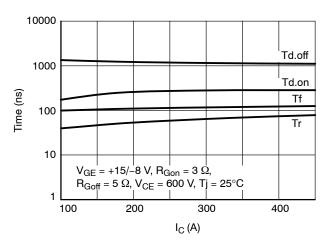


Figure 12. IGBT Switching Times vs. I_C, T_{vj} = 175°C

TYPICAL CHARACTERISTICS

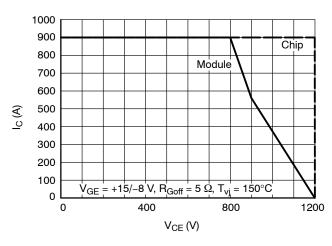


Figure 13. Reverse Bias Safe Operating Area

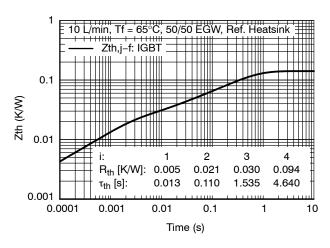


Figure 14. IGBT Transient Thermal Impedance

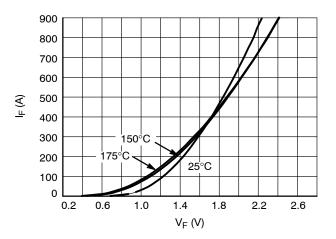


Figure 15. Diode Forward Characteristics

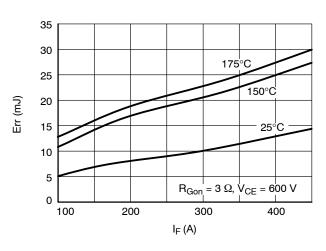


Figure 16. Diode Switching Losses vs. IF

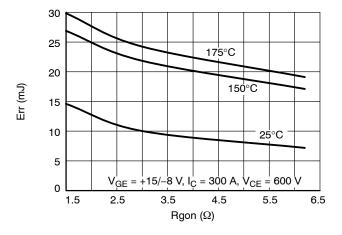


Figure 17. Diode Reverse Recovery Losses vs. Rgon

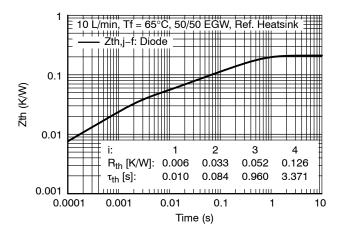


Figure 18. Diode Transient Thermal Impedance

TYPICAL CHARACTERISTICS

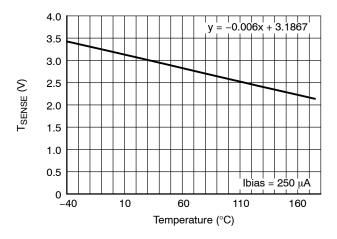


Figure 19. Temperature Sensor Characteristics

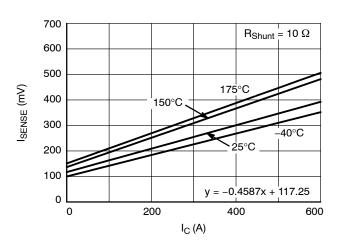


Figure 20. Current Sensor Characteristics

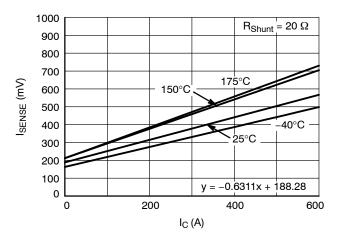
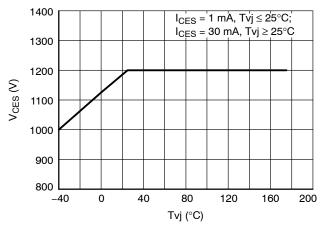



Figure 21. Current Sensor Characteristics

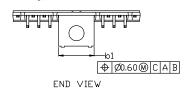
Verified by characterization/design,not by test.

Figure 22. Maximum Allowed Vce

ORDERING INFORMATION

Device	Device Marking	Package	Shipping
NVG450A120L5DSC	N412DSC	AHPM15-CEA (Pb-Free)	6 Unit / Tube

VE-Trac is a trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

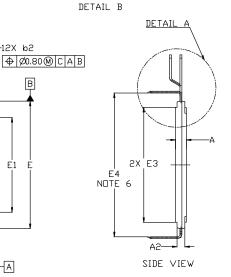

12X b2

É1

A

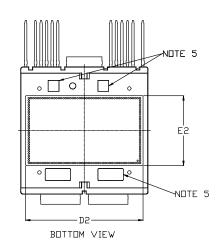
В

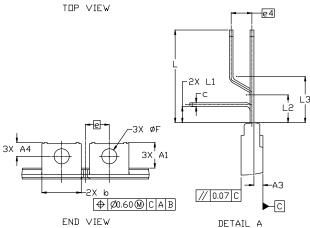
DATE 28 SEP 2022



DETAIL B

r-e1





NOTES:

- DIMENSIONING AND TOLERANCING PER. ASME Y14.5M, 2009. CONTROLLING DIMENSION: MILLIMETERS
- DIMENSIONS D & E DO NOT INCLUDE MOLD
- PROTRUSIONS
 DIMENSIONS b,b1,b2 DO NOT INCLUDE
- DAMBAR REMAIN.
 MARKING AREA.
 E4 IS FROM INNER LEAD TIP TO INNER LEAD TIP DISTANCE.

	MILLIMETERS				
DIM	MIN.	N□M.	MAX.		
Α	4.65	4.70	4.75		
A1	10.75	11.05	11.35		
A2	3.20	3,40	3.60		
A3	1.60	1.95	2.30		
Α4	5.70	6.00	6.30		
b	16.90	17.00	17.10		
b1	15.20	15.30	15.40		
b2	0.90	1.00	1.10		
b3		0.50 REF	•		
C	0.70	0.80	0.90		
D	54.80	55.00	55,20		
D1	46.20	46.50	46.80		
D2	50.70	51.00	51.30		

	MILLIMETERS				
DIM	MIN.	N□M.	MAX.		
E	54.80	55.00	55.20		
E1	40.50	40.80	41.10		
E2	29.80	30.10	30.40		
E3	49.40	49.60	49.80		
E4	61.75	62.00	62.25		
е	10.30 BSC				
e1	11.45 BSC				
e2	i	2.40 BSC	;		
e3		4,20 BSC	;		
e4		4.50 BSC			
F	6,45	6.50	6,55		
L	19.60	20.00	20.40		
L1	3.10	3.50	3.90		
L2	5.70	6.00	6.30		
L3	9.70	10.00	10.30		
М	10° REF				

GENERIC MARKING DIAGRAM*

XXXXXXX NNNNNNN ZZZ = Assembly Lot Code

ΑT = Assembly & Test Site Code

= Year

WW = Work Week

XXXX = Specific Device Code NNN = Serial Number

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON86580G	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	AHPM15-CEA		PAGE 1 OF 1		

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves brisefin and of 160 m are trademarked so defined values of services and of the confined values and of the values of the confined values and of the values of the confined values and of the values of the special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales