MOSFET – Power, Dual, N-Channel, μCool, 2.0x2.0x0.55 mm, UDFN6 30 V, 7.3 A #### **Features** - UDFN Package with Exposed Drain Pads for Excellent Thermal Conduction - Low Profile UDFN 2.0 x 2.0 x 0.55 mm for Board Space Saving - Ultra Low R_{DS(on)} - AEC-Q101 Qualified and PPAP Capable - These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant # **Applications** - Power Load Switch - Wireless Charging - DC-DC Converters # MAXIMUM RATINGS (T_J = 25°C unless otherwise stated) | Parameter | | | Symbol | Value | Unit | |---|-----------------|--|--------------------------------------|---------------|------| | Drain-to-Source Voltage | | | V _{DSS} | 30 | V | | Gate-to-Source Vol | tage | | V _{GS} | ±12 | V | | Continuous Drain
Current (Note 1) | Steady
State | $T_A = 25^{\circ}C$
$T_A = 85^{\circ}C$ | O ID | 7.3
5.3 | A | | | t ≤ 5 s | T _A = 25°C | SV | 9.1 | | | Power Dissipa-
tion (Note 1) | Steady
State | T _A = 25°C | Po | 1.70 | W | | < | t≤5s | T _A = 25°C | | 2.63 | | | Continuous Drain | Steady
State | T _A = 25°C | I _D | 4.8 | Α | | Current (Note 2) | State | T _A = 85°C | | 3.4 | | | Power Dissipation (| Note 2) | T _A = 25°C | P _D | 0.72 | W | | Pulsed Drain Curre | nt | t _p = 10 μs | I _{DM} | 22 | Α | | MOSFET Operating Junction and Storage
Temperature | | | T _J ,
T _{STG} | -55 to
150 | °C | | Source Current (Body Diode) (Note 1) | | | Is | 3.0 | Α | | Lead Temperature for Soldering Purposes (1/8" from case for 10 s) | | | TL | 260 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. - Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces). - Surface-mounted on FR4 board using the minimum recommended pad size, 2 oz. Cu. # ON Semiconductor® #### www.onsemi.com ### **MOSFET** | V _{(BR)DSS} | R _{DS(on)} MAX | I _D MAX | |----------------------|-------------------------|--------------------| | | 21 mΩ @ 10 V | | | | 24 mΩ @ 4.5 V | 12 | | 30 V | 26 mΩ @ 3.7 V | 7.3 A | | 30 V | 28 mΩ @ 3.3 V | 7.3 A | | | 36 mΩ @ 2.5 V | | | | 65 mΩ @ 1.8 V | | **Dual N-Channel MOSFET** #### MARKING DIAGRAM UDFN6 CASE 517BF μCOOL™ AC = Specific Device Code M = Date Code • = Pb-Free Package (Note: Microdot may be in either location) #### **ORDERING INFORMATION** See detailed ordering and shipping information on page 3 of this data sheet. #### THERMAL RESISTANCE RATINGS | Parameter | Symbol | Max | Unit | |---|-----------------|-------|------| | Junction-to-Ambient – Steady State (Note 3) | $R_{\theta JA}$ | 73.6 | | | Junction-to-Ambient – t ≤ 5 s (Note 3) | | 47.6 | °C/W | | Junction-to-Ambient – Steady State min Pad (Note 4) | $R_{\theta JA}$ | 174.4 | | - 3. Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces). 4. Surface-mounted on FR4 board using the minimum recommended pad size, 2 oz. Cu. # **ELECTRICAL CHARACTERISTICS** (T_J = 25°C unless otherwise specified) | Parameter | Symbol | Test Co | ondition | Min | Typ | Max | Units | |--|--------------------------------------|--|--|--------|------|---------------------------------------|-------| | | Зушьог | lesi CC | /IGIUOII | IVIIII | Тур | IVIAX | Units | | OFF CHARACTERISTICS | 1 | | | r | 1 | · · · · · · · · · · · · · · · · · · · | | | Drain-to-Source Breakdown Voltage | V _{(BR)DSS} | $V_{GS} = 0 V$, | I _D = 250 μA | 30 | | | V | | Drain-to-Source Breakdown Voltage
Temperature Coefficient | V _{(BR)DSS} /T _J | I _D = 250 μA | , ref to 25°C | | 7 | | mV/°C | | Zero Gate Voltage Drain Current | I _{DSS} | V _{GS} = 0 V,
V _{DS} = 24 V | $T_{J} = 25^{\circ}C$ $T_{J} = 125^{\circ}C$ | | | 1G
50 | μΑ | | Gate-to-Source Leakage Current | I _{GSS} | V _{DS} = 0 V, \ | V _{GS} = ±12 V | | 101 | ±100 | nA | | ON CHARACTERISTICS (Note 5) | | | . 1 | | 11 | | | | Gate Threshold Voltage | V _{GS(TH)} | V _{GS} = V _{DS} , | I _D = 250 μA | 0.6 | | 1.1 | V | | Negative Threshold Temp. Coefficient | V _{GS(TH)} /T _J | | OK | in | 2.8 | | mV/°C | | Drain-to-Source On Resistance | R _{DS(on)} | V _{GS} = 10 \ | /, I _D = 6.0 A | 6// | 17,5 | 21 | mΩ | | | · · | V _{GS} = 4.5 \ | V, I _D = 5.0 A | 12. | 20 | 24 | | | | | $V_{GS} = 3.7$ | V, I _D = 3.0 A | Mi | 21 | 26 | | | | | V _{GS} = 3.3 V | V, I _D = 3.0 A | | 22 | 28 | | | | | V _{GS} = 2.5 V | V, I _D = 2.0 A | | 25 | 36 | | | | | V _{GS} = 1.8 \ | V, I _D = 1.0 A | | 40 | 65 | | | Forward Transconductance | 9 _{FS} | V _{DS} = 1.5 | V, I _D = 5.0 A | | 23 | | S | | CHARGES, CAPACITANCES & GATE | RESISTANCE | 0,1/1/8 | | | | | | | Input Capacitance | C _{ISS} | | | | 460 | | pF | | Output Capacitance | Coss | $V_{GS} = 0 \text{ V, f} = 1 \text{ MHz,} $ $V_{DS} = 15 \text{ V}$ | | | 225 | | | | Reverse Transfer Capacitance | C _{RSS} | - 03 | | | 27 | | | | Total Gate Charge | Q _{G(TOT)} | | V _{DS} = 10 V;
5.0 A | | 5.0 | 8.0 | nC | | Total Gate Charge | Q _{G(TOT)} | | | | 5.5 | 9.0 | nC | | Threshold Gate Charge | Q _{G(TH)} | $V_{GS} = 4.5 V_{c}$ | V _{DS} = 15 V; | | 0.55 | | | | Gate-to-Source Charge | Q_{GS} | $V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V};$ $I_D = 5.0 \text{ A}$ | | | 2.5 | | | | Gate-to-Drain Charge | Q_{GD} | | | | 1.1 | | | | SWITCHING CHARACTERISTICS, V_G | s = 4.5 V (Note 6) | | | | | | | | Turn-On Delay Time | t _{d(ON)} | V_{GS} = 4.5 V, V_{DD} = 15 V, I_{D} = 5.0 A, R_{G} = 1 Ω | | | 5 | | ns | | Rise Time | t _r | | | | 15 | | | | Turn-Off Delay Time | t _{d(OFF)} | | | | 13 | | | | Fall Time | t _f | | | | 1.7 | | | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. - 5. Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%. - 6. Switching characteristics are independent of operating junction temperatures. # **ELECTRICAL CHARACTERISTICS** (T_J = 25°C unless otherwise specified) | Parameter | Symbol | Test Condition | | Min | Тур | Max | Units | |------------------------------------|-----------------|--|------------------------|-----|------|-----|-------| | DRAIN-SOURCE DIODE CHARACTERISTICS | | | | | | | | | Forward Diode Voltage | V _{SD} | V _{GS} = 0 V, | T _J = 25°C | | 0.7 | 1.0 | V | | | | $V_{GS} = 0 V,$ $I_{S} = 2.0 A$ | T _J = 125°C | | 0.6 | | | | Reverse Recovery Time | t _{RR} | V_{GS} = 0 V, dls/dt = 100 A/ μ s, I_{S} = 2.0 A | | | 18.5 | | ns | | Charge Time | t _a | | | | 9.3 | | | | Discharge Time | t _b | | | | 9.1 | | | | Reverse Recovery Charge | Q _{RR} | 7 | | | 7.8 | | nC | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. - 5. Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%. - 6. Switching characteristics are independent of operating junction temperatures. #### **DEVICE ORDERING INFORMATION** | Device | Package | Shipping [†] C | |---------------|--------------------|-------------------------| | NVLUD4C26NTAG | UDFN6
(Pb-Free) | 3000 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. #### **TYPICAL CHARACTERISTICS** vs. Voltage **Temperature** #### **TYPICAL CHARACTERISTICS** www.onsemi.com Safe Operating Area # **TYPICAL CHARACTERISTICS** Figure 13. Single Pulse Maximum Power Dissipation #### UDFN6 2x2, 0.65P CASE 517BF **ISSUE B** **DATE 20 AUG 2012** ⊕ 0.10 C A B 0.10 C A CA В NOTE 3 С 0.05 0.10 Ф D2 D₂ е **BOTTOM VIEW** DETAIL A - 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. - DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN - 0.15 AND 0.30 mm FROM THE TERMINAL TIP. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. | | MILLIMETERS | | | | |-----|-------------|------|--|--| | DIM | MIN MAX | | | | | Α | 0.45 | 0.55 | | | | A1 | 0.00 | 0.05 | | | | A3 | 0.13 | REF | | | | b | 0.25 0.35 | | | | | D | 2.00 BSC | | | | | D2 | 0.57 0.77 | | | | | E | 2.00 BSC | | | | | E2 | 0.90 1.10 | | | | | е | 0.65 BSC | | | | | F | 0.15 BSC | | | | | K | 0.25 REF | | | | | L | 0.20 0.30 | | | | | L1 | 0.10 | | | | #### **GENERIC** MARKING DIAGRAM* XX = Specific Device Code = Date Code М (Note: Microdot may be in either location) *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking. # RECOMMENDED **MOUNTING FOOTPRINT*** *For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. | DOCUMENT NUMBER: | 98AON48159E Electronic versions are uncontrolled except when accessed directly from the Document Rep
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|---|--|-------------| | DESCRIPTION: | UDFN6 2x2, 0.65P | | PAGE 1 OF 1 | onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase #### ADDITIONAL INFORMATION **TECHNICAL PUBLICATIONS:** $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales