

Silicon Carbide (SiC) Module – EliteSiC, 7 mohm, 1200 V, SiC M3S MOSFET, Full Bridge, F2 Package

Product Preview

NXH007F120M3F2PTHG

The NXH007F120M3F2PTHG is a power module containing 7 m Ω / 1200 V SiC MOSFET full-bridge and a thermistor with HPS DBC in an F2 package.

Features

- 7 mΩ / 1200 V M3S SiC MOSFET Full–Bridge
- HPS DBC
- Thermistor
- Options with Pre-Applied Thermal Interface Material (TIM) and without Pre-Applied TIM
- Press-Fit Pins
- These Devices are Pb-Free, Halide Free and are RoHS Compliant

Typical Applications

- Solar Inverter
- Uninterruptible Power Supplies
- Electric Vehicle Charging Stations
- Industrial Power

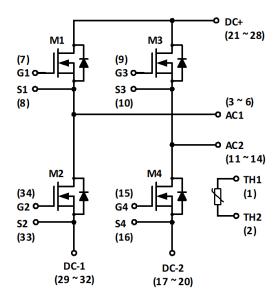
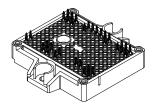



Figure 1. NXH007F120M3F2PTHG Schematic Diagram

This document contains information on a product under development. **onsemi** reserves the right to change or discontinue this product without notice.

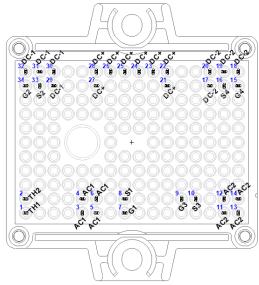
1

PIM34 56.7x42.5 (PRESS FIT) CASE 180HU

MARKING DIAGRAM

NXH007F120M3F2PTHG ATYYWW

 $NXH007F120M3F2PTHG = Specific\ Device\ Code$


AT = Assembly & Test Site

Code

YWW = Year and Work Week

Code

PIN CONNECTIONS

See Pin Function Description for pin names

ORDERING INFORMATION

See detailed ordering and shipping information on page 4 of this data sheet.

PIN FUNCTION DESCRIPTION

Pin	Name	Description
1	TH1	Thermistor Connection 1
2	TH2	Thermistor Connection 2
3	AC1	Center point of full bridge 1
4	AC1	Center point of full bridge 1
5	AC1	Center point of full bridge 1
6	AC1	Center point of full bridge 1
7	G1	M1 Gate (High side switch)
8	S1	M1 Kelvin Emitter (High side switch)
9	G3	M3 Gate (High side switch)
10	S3	M3 Kelvin Emitter (High side switch)
11	AC2	Center point of full bridge 2
12	AC2	Center point of full bridge 2
13	AC2	Center point of full bridge 2
14	AC2	Center point of full bridge 2
15	G4	M4 Gate (Low side switch)
16	S4	M4 Kelvin Emitter (Low side switch)
17	DC-2	DC Negative Bus connection
18	DC-2	DC Negative Bus connection
19	DC-2	DC Negative Bus connection
20	DC-2	DC Negative Bus connection
21	DC+	DC Positive Bus connection
22	DC+	DC Positive Bus connection
23	DC+	DC Positive Bus connection
24	DC+	DC Positive Bus connection
25	DC+	DC Positive Bus connection
26	DC+	DC Positive Bus connection
27	DC+	DC Positive Bus connection
28	DC+	DC Positive Bus connection
29	DC-1	DC Negative Bus connection
30	DC-1	DC Negative Bus connection
31	DC-1	DC Negative Bus connection
32	DC-1	DC Negative Bus connection
33	S2	M2 Kelvin Emitter (Low side switch)
34	G2	M2 Gate (Low side switch)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
SIC MOSFET			•
Drain-Source Voltage	V _{DSS}	1200	V
Gate-Source Voltage	V _{GS}	+22/-10	V
Continuous Drain Current @ T _C = 80°C (T _J = 175°C)	I _D	149	А
Pulsed Drain Current (T _J = 175°C) (Note 2)	I _{Dpulse}	447	А
Maximum Power Dissipation (T _J = 175°C)	P _{tot}	353	W
Minimum Operating Junction Temperature	T _{JMIN}	-40	°C
Maximum Operating Junction Temperature	T _{JMAX}	175	°C
THERMAL PROPERTIES			
Storage Temperature Range	T _{stg}	-40 to 150	°C
INSULATION PROPERTIES			
Isolation Test Voltage, t = 1 s, 60 Hz	V _{is}	4800	V_{RMS}
Creepage Distance		12.7	mm
СТІ		600	
Substrate Ceramic Material		HPS	
Substrate Ceramic Material Thickness		0.38	mm

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe

RECOMMENDED OPERATING RANGES

Rating	Symbol	Min	Max	Unit
Module Operating Junction Temperature	T_J	-40	150	°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

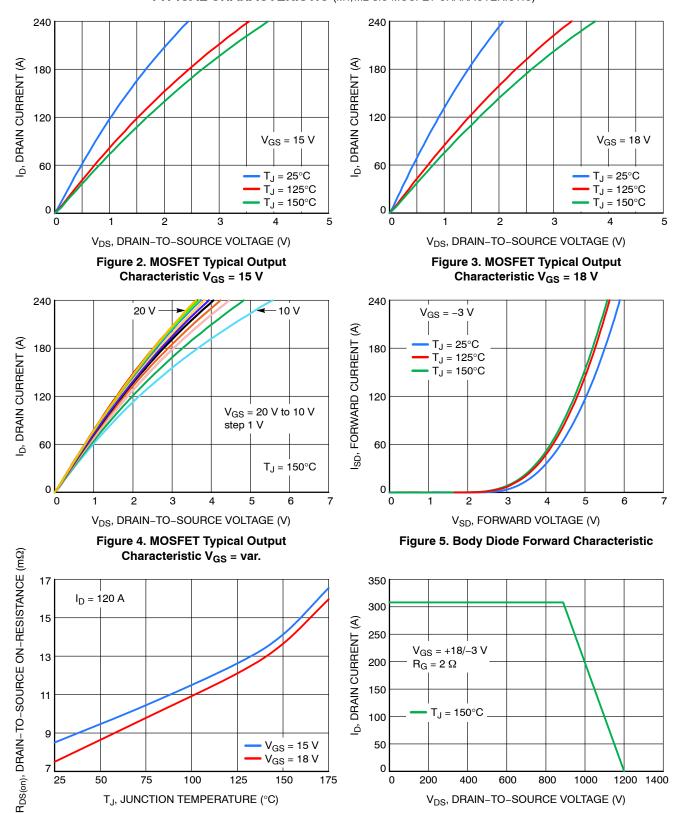
ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
SIC MOSFET CHARACTERISTICS						
Zero Gate Voltage Drain Current	$V_{GS} = 0 \text{ V, } V_{DS} = 1200 \text{ V, } T_{J} = 25^{\circ}\text{C}$	I _{DSS}	-	_	300	μΑ
Drain-Source On Resistance	V _{GS} = 18 V, I _D = 120 A, T _J = 25°C	R _{DS(ON)}	-	7.5	10	mΩ
	V _{GS} = 18 V, I _D = 120 A, T _J = 125°C		-	12.1	-	
	V _{GS} = 18 V, I _D = 120 A, T _J = 150°C		-	13.6	_	
	V _{GS} = 18 V, I _D = 120 A, T _J = 175°C		-	15.9	_	
Gate-Source Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 60 \text{ mA}$	V _{GS(TH)}	2.04	2.72	4.4	V
Recommended Gate Voltage		V_{GOP}	-3	-	+18	V
Gate Leakage Current	$V_{GS} = -10 \text{ V} / 22 \text{ V}, V_{DS} = 0 \text{ V}$	I _{GSS}	=	-	±3	μΑ
Input Capacitance	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 800 V	C _{ISS}	=	9090	=	pF
Reverse Transfer Capacitance	\exists	C _{RSS}	-	37	-	
Output Capacitance	\exists	C _{OSS}	_	484	_	

Operating parameters.

^{2.} Height difference between horizontal plane and substrate copper bottom.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted) (continued)


Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
SIC MOSFET CHARACTERISTICS		<u>'</u>		•		
Total Gate Charge	$V_{GS} = -3/18 \text{ V}, V_{DS} = 800 \text{ V}, I_D = 40 \text{ A}$	$Q_{G(TOTAL)}$	-	407	-	nC
Gate-Source Charge		Q _{GS}	=	42	=	1
Gate-Drain Charge		Q _{GD}	=	93	-	
Internal Gate Resistance	f = 1 MHz	R _{GINT}	-	0.5	-	Ω
Turn-on Delay Time	T _J = 25°C	t _{d(on)}	=	37.2	_	ns
Rise Time	V_{DS} = 800 V, I_{D} = 120 A V_{GS} = -3/18 V, R_{G} = 2 Ω	t _r	=	12	=	1
Turn-off Delay Time		t _{d(off)}	=	121.6	=	1
Fall Time		t _f	=	13.2	=	1
Turn-on Switching Loss per Pulse		E _{ON}	-	1.69	=	mJ
Turn-off Switching Loss per Pulse		E _{OFF}	-	0.5	=	1
Turn-on Delay Time	T _J = 150°C	t _{d(on)}	=	34.8	=	ns
Rise Time	V_{DS} = 800 V, I_{D} = 120 A V_{GS} = -3/18 V, R_{G} = 2 Ω	t _r	=	14	=	1
Turn-off Delay Time	30	t _{d(off)}	=	131.6	=	1
Fall Time		t _f	=	14	_	1
Turn-on Switching Loss per Pulse		E _{ON}	-	2.23	_	mJ
Turn off Switching Loss per Pulse		E _{OFF}	-	0.6	-	1
Diode Forward Voltage	I _{SD} = 120 A, T _J = 25°C, V _{GS} = -3 V	V _{SD}	-	5.03	6	V
	I _{SD} = 120 A, T _J = 125°C, V _{GS} = -3 V	1	-	4.81	=	1
	I _{SD} = 120 A, T _J = 150°C, V _{GS} = -3 V	1	-	4.73	_	1
Thermal Resistance - Chip-to-Case	M1, M2, M3, M4	R _{thJC}	-	0.269	=	°C/W
Thermal Resistance – Chip-to-Heatsink	Thermal grease, Thickness = 2 Mil ±2%, A = 2.8 W/mK	R _{thJH}	-	0.462	-	°C/W
THERMISTOR CHARACTERISTICS						
Nominal Resistance	T = 25°C	R ₂₅	=	5	_	kΩ
	T = 100°C	R ₁₀₀	=	457	=	Ω
	T = 150°C	R ₁₅₀	=	159.5	_	Ω
Deviation of R ₁₀₀	T = 100°C	ΔR/R	-5	-	5	%
Power Dissipation - Recommended Limit	0.15 mA, Non-self-heating Effect	P _D	-	0.1	-	mW
Power Dissipation – Absolute Maximum	5 mA	P _D	_	34.2	-	mW
Power Dissipation Constant			=	1.4	-	mW/K
B-value	B(25/50), tolerance ±2%		=	3375	-	K
B-value	B(25/100), tolerance ±2%		=	3436	_	K

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

ORDERING INFORMATION

Orderable Part Number	Marking	Package	Shipping
NXH007F120M3F2PTHG	NXH007F120M3F2PTHG	F2FULLBR: Case 180HU Press-fit Pins with pre-applied thermal interface material (TIM) (Pb-Free / Halide Free)	20 Units / Blister Tray

TYPICAL CHARACTERISTIC (M1/M2 SiC MOSFET CHARACTERISTIC)

www.onsemi.com

Figure 7. Reverse Bias Safe Operating Area

(RBSOA)

Figure 6. RDS(ON) Drain-to-Source ON

Resistance vs. Junction Temperature

TYPICAL CHARACTERISTIC (M1/M2 SiC MOSFET CHARACTERISTIC)

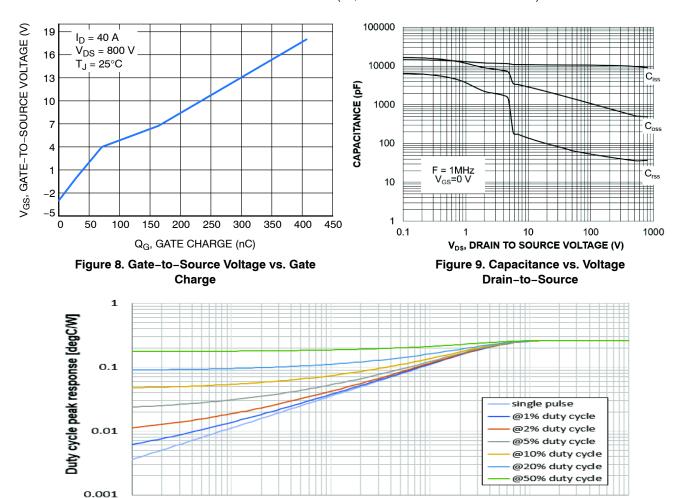


Figure 10. Duty Cycle Response vs. Pulse On Time

pulse on time [s]

0.01

0.1

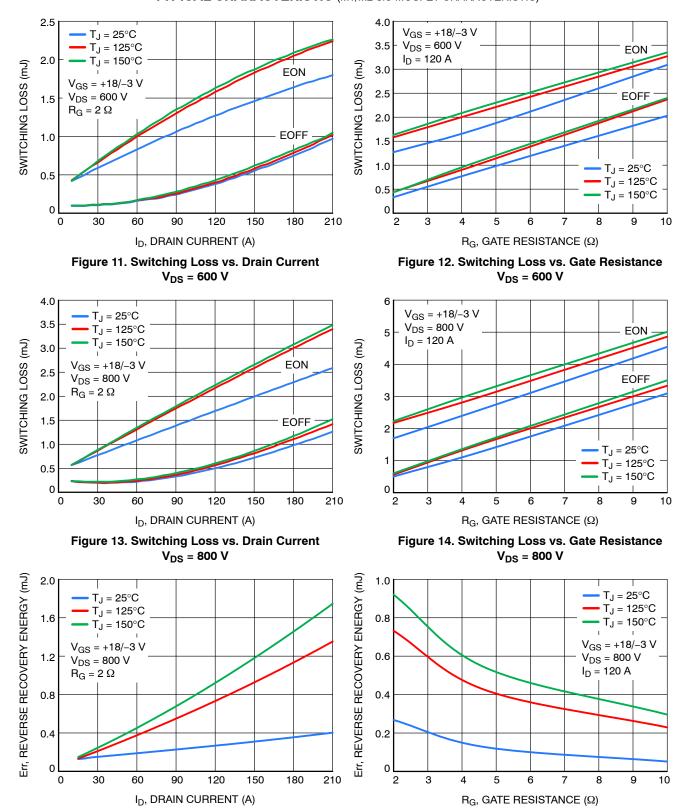
1

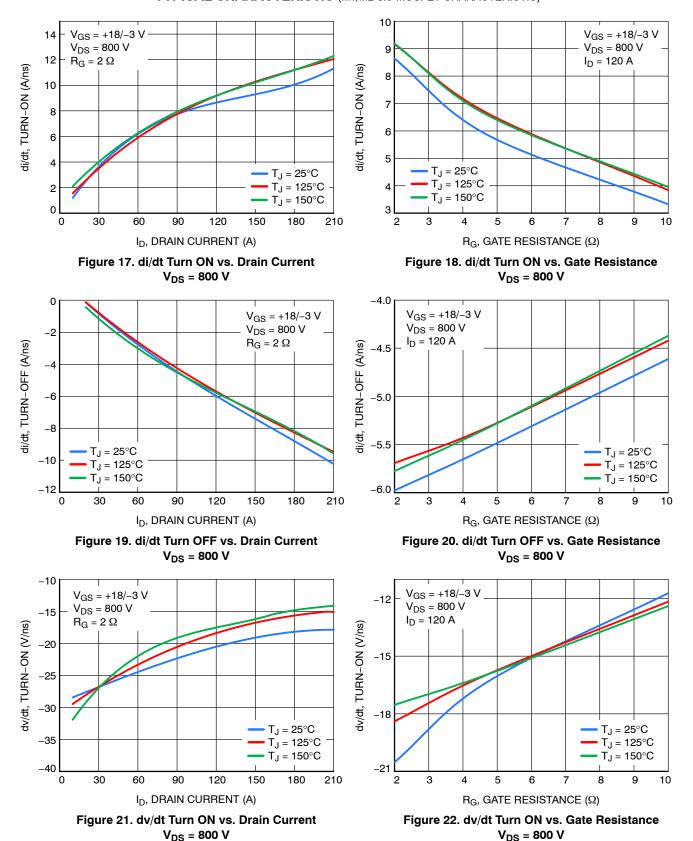
0.001

0.00001

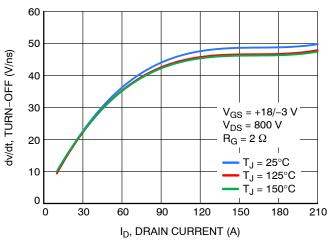
0.0001

TYPICAL CHARACTERISTIC (M1/M2 SiC MOSFET CHARACTERISTIC)




Figure 16. Reverse Recovery Energy vs. Gate

Resistance V_{DS} = 800 V


Figure 15. Reverse Recovery Energy vs. Drain

Current V_{DS} = 800 V

TYPICAL CHARACTERISTIC (M1/M2 SiC MOSFET CHARACTERISTIC)

TYPICAL CHARACTERISTIC (M1/M2 SiC MOSFET CHARACTERISTIC)

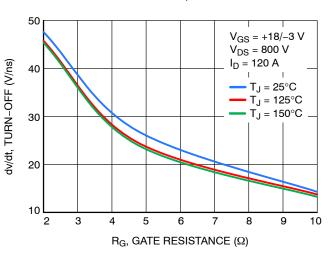


Figure 23. dv/dt Turn OFF vs. Drain Current V_{DS} = 800 V

Figure 24. dv/dt Turn OFF vs. Gate Resistance V_{DS} = 800 V

Table 1. CAUER NETWORKS

Cauer Element #	Rth (K/W)	Cth (Ws/K)
1	0.0197	0.0062
2	0.0360	0.0335
3	0.0915	0.0468
4	0.1151	0.1685
5	0.0162	0.1198

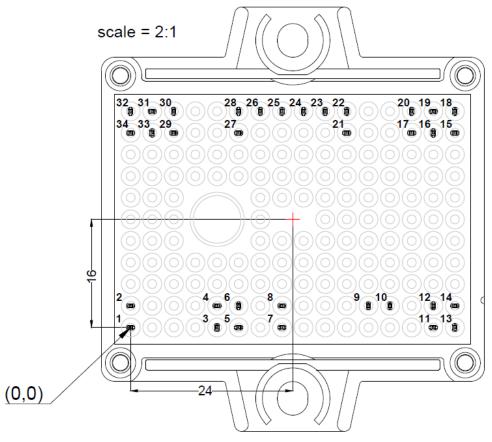


Figure 25.

Pin position

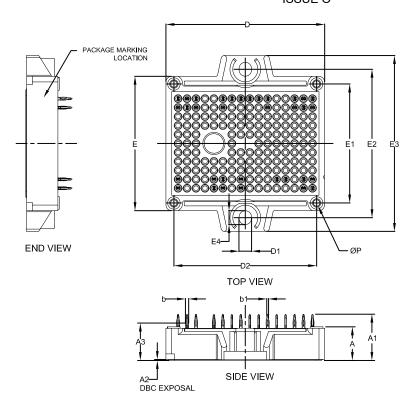

Pin#	Х	Υ	Function	Pin#	Х	Υ	Function
1	0	0	TH1	18	48	32	DC-2
2	0	3.2	TH2	19	44.8	32	DC-2
3	12.8	0	AC1	20	41.6	32	DC-2
4	12.8	3.2	AC1	21	32	28.8	DC+
5	16	0	AC1	22	32	32	DC+
6	16	3.2	AC1	23	28.8	32	DC+
7	22.4	0	G1	24	25.6	32	DC+
8	22.4	3.2	S1	25	22.4	32	DC+
9	35.2	3.2	G3	26	19.2	32	DC+
10	38.4	3.2	S3	27	16	28.8	DC+
11	44.8	0	AC2	28	16	32	DC+
12	44.8	3.2	AC2	29	6.4	28.8	DC-1
13	48	0	AC2	30	6.4	32	DC-1
14	48	3.2	AC2	31	3.2	32	DC-1
15	48	28.8	G4	32	0	32	DC-1
16	44.8	28.8	S4	33	3.2	28.8	S2
17	41.6	28.8	DC-2	34	0	28.8	G2

Figure 26.

PACKAGE DIMENSIONS

PIM34 56.70x42.50x11.50

CASE 180HU ISSUE O

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETERS
- 2. PIN POSITION TOLERANCE IS ± 0.4mm
- 3. PRESS FIT PIN

	MILLIMETERS				
DIM	MIN.	NOM.	MAX.		
Α	11.65	12.00	12.35		
A1	16.00	16.50	17.00		
A2	0.00	0.35	0.60		
А3	12.85	13.35	13.85		
b	1.15	1.20	1.25		
b1	0.59	0.64	0.69		
D	56.40	56.70	57.00		
D1	4.40	4.50	4.60		
D2	50.85	51.00	51.15		
Е	47.70	48.00	48.30		
E1	42.35	42.50	42.65		
E2	52.90	53.00	53.10		
E3	62.30	62.80	63.30		
E4	4.90	5.00	5.10		
Р	2.20	2.30	2.40		

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized tor use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Sho

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales