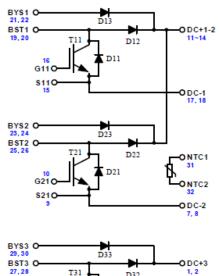
onsemi

<u>Si/SiC Hybrid Module</u> – EliteSiC™, 3-channel Boost, Q1 Package

NXH240B120H3Q1P1G, NXH240B120H3Q1S1G


The NXH240B120H3Q1 is a case power module containing a three channel BOOST stage. The integrated field stop trench IGBTs and SiC Diodes provide lower conduction losses and switching losses, enabling designers to achieve high efficiency and superior reliability.

Features

- 1200 V Ultra Field Stop IGBTs
- Low Reverse Recovery and Fast Switching SiC Diodes
- Low Inductive Layout
- Press-fit Pins / Solder Pins
- Thermistor

Typical Applications

- Solar Inverters
- ESS

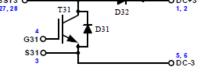
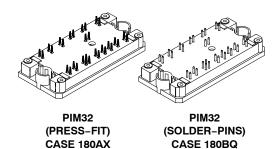
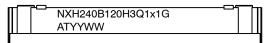
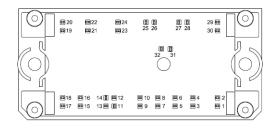




Figure 1. NXH240B120H3Q1 Schematic Diagram


MARKING DIAGRAM

NXH240B120H3Q1x1G = Specific Device Code x = P or S

- G = Pb-Free Package
- AT = Assembly & Test Site Code
- YYWW = Year and Work Week Code

PIN CONNECTIONS

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

Table 1. MAXIMUM RATINGS (Note 1)

Rating	Symbol	Value	Unit
GBT (T11, T21, T31)			
Collector-Emitter Voltage	V _{CES}	1200	V
Gate-Emitter Voltage	V _{GE}	±20	V
Continuous Collector Current @ $T_C = 80^{\circ}C (T_J = 150^{\circ}C)$	۱ _C	92	А
Pulsed Collector Current ($T_J = 150^{\circ}C$)	I _{Cpulse}	276	А
Maximum Power Dissipation (T _J = 150°C)	P _{tot}	266	W
Minimum Operating Junction Temperature	T _{JMIN}	-40	°C
Maximum Operating Junction Temperature	T _{JMAX}	150	°C
ROTECTION DIODE (D11, D21, D31)			
Peak Repetitive Reverse Voltage	V _{RRM}	1200	V
Continuous Forward Current @ T_C = 80°C (T_J = 150°C)	١ _F	41	А
Repetitive Peak Forward Current ($T_J = 150^{\circ}C$)	I _{FRM}	123	А
Maximum Power Dissipation (T _J = 150°C)	P _{tot}	54	W
Minimum Operating Junction Temperature	T _{JMIN}	-40	°C
Maximum Operating Junction Temperature	T _{JMAX}	150	°C
ILICON CARBIDE BOOST DIODE (D12, D22, D32)			
Peak Repetitive Reverse Voltage	V _{RRM}	1200	V
Continuous Forward Current @ $T_C = 80^{\circ}C (T_J = 175^{\circ}C)$	١ _F	37	А
Repetitive Peak Forward Current (T _J = 175°C)	I _{FRM}	111	А
Maximum Power Dissipation (T _J = 175°C)	P _{tot}	99	W
Minimum Operating Junction Temperature	T _{JMIN}	-40	°C
Maximum Operating Junction Temperature	T _{JMAX}	175	°C
YPASS DIODE (D13, D23, D33)			
Peak Repetitive Reverse Voltage	V _{RRM}	1200	V
Continuous Forward Current @ $T_C = 80^{\circ}C (T_J = 150^{\circ}C)$	١ _F	54	А
Repetitive Peak Forward Current ($T_J = 150^{\circ}C$)	I _{FRM}	162	А
Maximum Power Dissipation (T _J = 150°C)	P _{tot}	64	W
Minimum Operating Junction Temperature	T _{JMIN}	-40	°C
Maximum Operating Junction Temperature	T _{JMAX}	150	°C
HERMAL PROPERTIES			
Storage Temperature range	T _{stg}	-40 to 150	°C
SULATION PROPERTIES			
Isolation test voltage, t = 1 sec, 60 Hz	V _{is}	3000	V _{RMS}
Oreanan distance		107	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

12.7

mm

 should not be assumed, damage may occur and reliability may be affected.
Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe Operating parameters.

Table 2. RECOMMENDED OPERATING RANGES

Creepage distance

Rating	Symbol	Min	Max	Unit
Module Operating Junction Temperature	ТJ	-40	150	°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

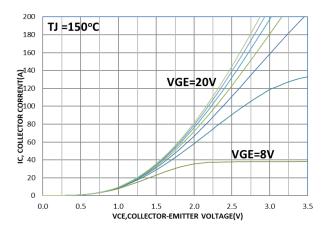
Table 3. ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise noted)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
IGBT (T11, T21, T31)						
Collector-Emitter Cutoff Current	$V_{GE} = 0 V, V_{CE} = 1200 V$	I _{CES}	-	-	150	μA
Collector-Emitter Saturation Voltage	V_{GE} = 15 V, I _C = 80 A, T _J = 25°C	V _{CE(sat)}	_	2	2.7	V
	V_{GE} = 15 V, I _C = 80 A, T _J = 150°C	1	-	2.05	-	
Gate-Emitter Threshold Voltage	$V_{GE} = V_{CE}$, $I_C = 80 \ \mu A$	$V_{GE(TH)}$	4.2	5.2	6	V
Gate Leakage Current	V_{GE} = 20 V, V_{CE} = 0 V	I _{GES}	-	-	450	nA
Turn-on Delay Time	$T_J = 25^{\circ}C$	t _{d(on)}	-	100.51	-	ns
Rise Time	V_{CE} = 800 V, I _C = 50 A V _{GE} = +15 V, -9 V, R _G = 6 Ω	tr	_	31.95	-	
Turn-off Delay Time	$v_{GE} = +15 v_{0} - 9 v_{0} n_{G} = 0.22$	t _{d(off)}	-	377.15	-	
Fall Time		t _f	-	38.27	-	
Turn-on Switching Loss per Pulse		Eon	-	1660	-	Lμ
Turn off Switching Loss per Pulse		E _{off}	_	2470	-	
Turn-on Delay Time	T _J = 125°C	t _{d(on)}	-	89.65	_	ns
Rise Time	V_{CE} = 800 V, I _C = 50 A V _{GE} = +15 V, -9 V, R _G = 6 Ω	t _r	-	32	_	
Turn-off Delay Time	$V_{GE} = +15 V, -9 V, H_G = 0.22$	t _{d(off)}	-	440.78	-	
Fall Time		t _f	-	169.39	-	
Turn-on Switching Loss per Pulse		E _{on}	-	1660	-	μJ
Turn off Switching Loss per Pulse		E _{off}	-	5220	-	
Input Capacitance	V _{CE} = 20 V, V _{GE} = 0 V, f = 10 kHz	C _{ies}	-	19082	-	pF
Output Capacitance		C _{oes}	-	541	-	
Reverse Transfer Capacitance		C _{res}	-	387	-	
Total Gate Charge	V_{CE} = 600 V, I_C = 25 A, V_{GE} = ±15 V	Qg	-	1320	-	nC
Thermal Resistance - chip-to-heatsink	Thermal grease,	R _{thJH}	-	0.464	-	°C/W
Thermal Resistance - chip-to-case	Thickness = 2 Mil \pm 2%, λ = 2.87 W/mK	R _{thJC}	-	0.263	-	°C/W
PROTECTION DIODE (D11, D21, D31)						
Diode Forward Voltage	$I_F = 30 \text{ A}, \text{ T}_J = 25^{\circ}\text{C}$	VF	0.8	1.0	1.3	V
	I _F = 30 A, T _J = 150°C	1	-	0.98	-	
Thermal Resistance - chip-to-heatsink	Thermal grease,	R _{thJH}	_	1.303	-	°C/W
Thermal Resistance - chip-to-case	Thickness = 2 Mil $\pm 2\%$, $\lambda = 2.87$ W/mK	R _{thJC}	_	0.968	-	°C/W
SILICON CARBIDE BOOST DIODE (D12, I	D22, D32)					
Diode Forward Voltage	I _F = 30 A, T _J = 25°C	V _F	_	1.46	1.7	V
	I _F = 30 A, T _J = 175°C		_	2.12	-	
Reverse Recovery Time	$T_J = 25^{\circ}C$	t _{rr}	_	21.5	-	ns
Reverse Recovery Charge	V_{CE} = 800 V, I _C = 50 A V _{GE} = +15 V, -9 V, R _G = 6 Ω	Q _{rr}	-	87.82	-	μC
Peak Reverse Recovery Current	$V_{GE} = +13$ V, -9 V, $\pi_{G} = 0.22$	I _{RRM}	_	7.21	_	А
Peak Rate of Fall of Recovery Current		di/dt	_	1282.75	_	A/μs
Reverse Recovery Energy]	E _{rr}	_	23.61	_	μJ
Reverse Recovery Time	$T_{\rm J} = 125^{\circ}{\rm C}$	t _{rr}	-	25.73	-	ns
Reverse Recovery Charge	V_{CE} = 800 V, I _C = 50 A V _{GE} = +15 V, -9 V, R _G = 6 Ω	Q _{rr}	-	108.23	—	μC
Peak Reverse Recovery Current	$v_{GE} = +10$ v, -9 v, $n_G = 0.52$	I _{RRM}	-	7.6	—	А
Peak Rate of Fall of Recovery Current		di/dt	-	1275.94	—	A/μs
Reverse Recovery Energy]	E _{rr}	_	30.68	_	μJ

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
SILICON CARBIDE BOOST DIODE (D12,	D22, D32)	•				
Thermal Resistance - chip-to-heatsink		R _{thJH}	-	0.958	-	°C/W
Thermal Resistance - chip-to-case	Thickness = 2 Mil \pm 2%, λ = 2.87 W/mK	R _{thJC}	-	0.682	-	°C/W
BYPASS DIODE (D13, D23, D33)						-
Diode Forward Voltage	$I_{F} = 50 \text{ A}, \text{ T}_{J} = 25^{\circ}\text{C}$	V _F	-	1.1	1.3	V
	$I_F = 50 \text{ A}, \text{T}_\text{J} = 150^\circ \text{C}$	1 1	-	0.95	-	
Thermal Resistance - chip-to-heatsink	Thermal grease,	R _{thJH}	-	1.095	-	°C/W
Thermal Resistance - chip-to-case	Thickness = 2 Mil $\pm 2\%$, $\lambda = 2.87$ W/mK	R _{thJC}	-	0.767	-	°C/W
THERMISTOR CHARACTERISTICS						
Nominal resistance	T = 25°C	R ₂₅	-	5	-	kΩ
Nominal resistance	T = 100°C	R ₁₀₀	-	490.6	-	Ω
Deviation of R25		$\Delta R/R$	-1	-	1	%
Power dissipation		PD	-	5	-	mW
Power dissipation constant			-	1.3	_	mW/ł
B-value	B(25/85), tolerance $\pm 1\%$		-	3435	-	K

Table 3. ELECTRICAL CHARACTERISTICS (T₁ = 25°C unless otherwise noted)

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


ORDERING INFORMATION

Orderable Part Number	Marking	Package	Shipping
NXH240B120H3Q1P1G	NXH240B120H3Q1P1G	Q1 BOOST, Case 180AX Press-fit Pins (Pb-Free)	21 Units / Blister Tray
NXH240B120H3Q1S1G	NXH240B120H3Q1S1G	Q1 BOOST, Case 180BQ Solder Pins (Pb-Free)	21 Units / Blister Tray

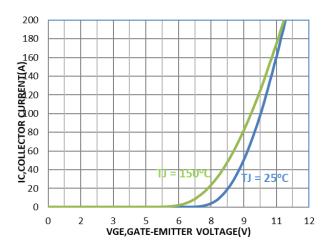

TYPICAL CHARACTERISTICS - IGBT (T1, T2, T3)

Figure 2. Typical Output Characteristics

Figure 3. Typical Output Characteristics

Figure 4. Typical Transfer Characteristics

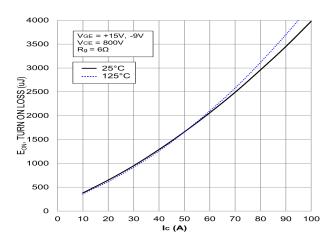
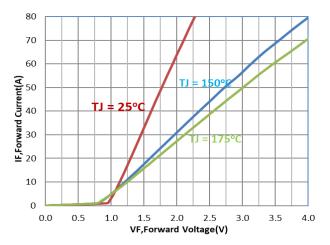



Figure 6. Typical Turn ON Loss vs. IC

Figure 5. Diode Forward Characteristics

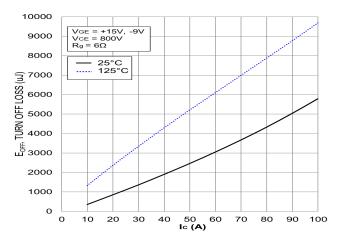
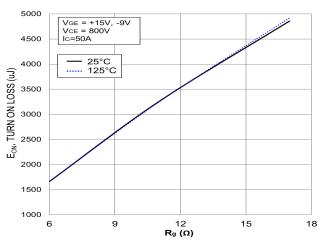



Figure 7. Typical Turn OFF Loss vs. I_C

TYPICAL CHARACTERISTICS – IGBT (T1, T2, T3) AND SILICON CARBIDE SCHOTTKY DIODE (D12, D22, D32)

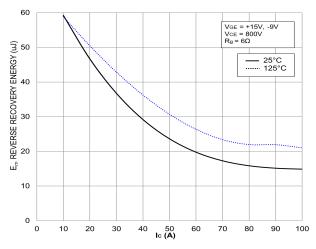
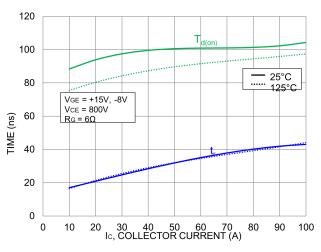



Figure 10. Typical Reverse Recovery Time vs. I_C

6000 5500 5000 TURN OFF LOSS (uJ) VGE = +15V, VCE = 800V IC = 50A -9V 4500 - 25°C - 125°C 4000 3500 Щ 3000 2500 2000 6 9 12 **R**g **(Ω)** 15 18

Figure 9. Typical Turn OFF Loss vs. R_G

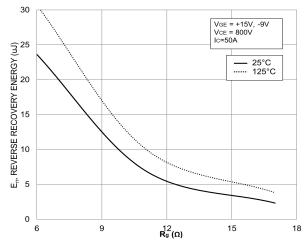
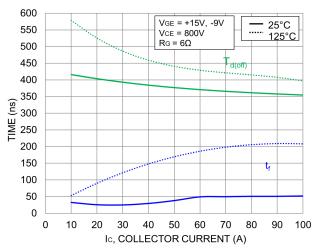
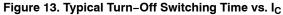




Figure 11. Typical Reverse Recovery Time vs. R_G

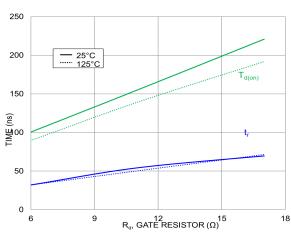


Figure 14. Typical Turn-On Switching Time vs. R_G

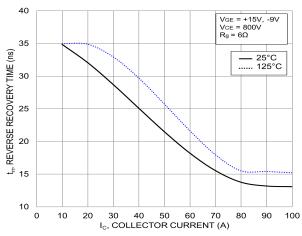
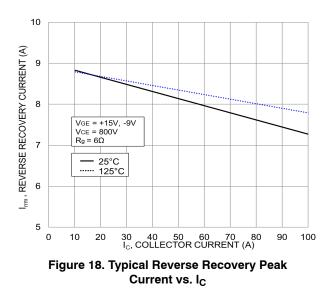



Figure 16. Typical Reverse Recovery Time vs. IC

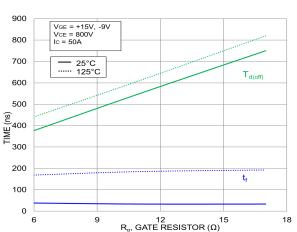


Figure 15. Typical Turn-Off Switching Time vs. R_G

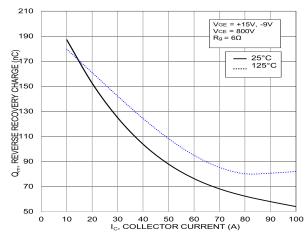
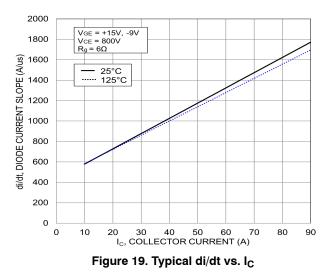



Figure 17. Typical Reverse Recovery Charge vs. IC

TYPICAL CHARACTERISTICS – IGBT (T1, T2, T3) AND SILICON CARBIDE SCHOTTKY DIODE (D12, D22, D32)

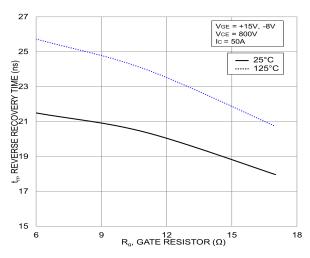


Figure 20. Typical Reverse Recovery Time vs. R_G

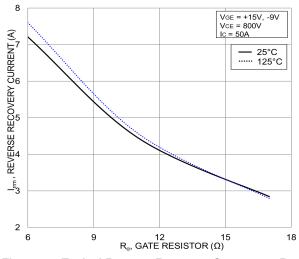
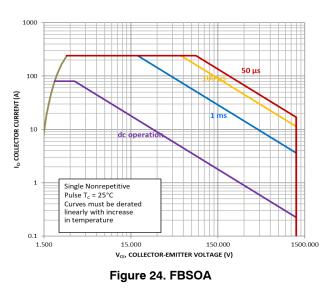



Figure 22. Typical Reverse Recovery Current vs. R_G

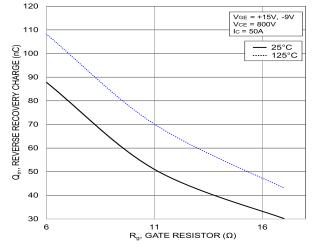
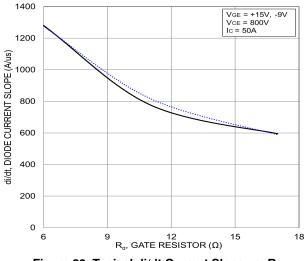
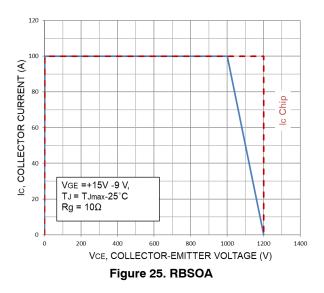




Figure 21. Typical Reverse Recovery Charge vs. ${\sf R}_{\sf G}$

TYPICAL CHARACTERISTICS – IGBT (T1, T2, T3) AND SILICON CARBIDE SCHOTTKY DIODE (D12, D22, D32)

TYPICAL CHARACTERISTICS – IGBT (T1, T2, T3) AND SILICON CARBIDE SCHOTTKY DIODE (D12, D22, D32)

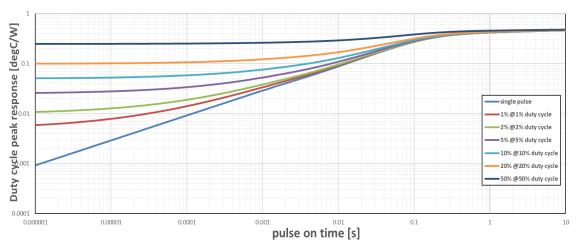


Figure 26. Transient Thermal Impedance (T1, T2, T3)

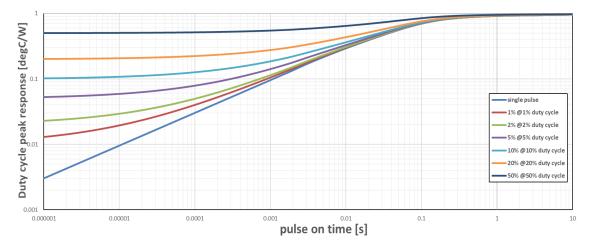
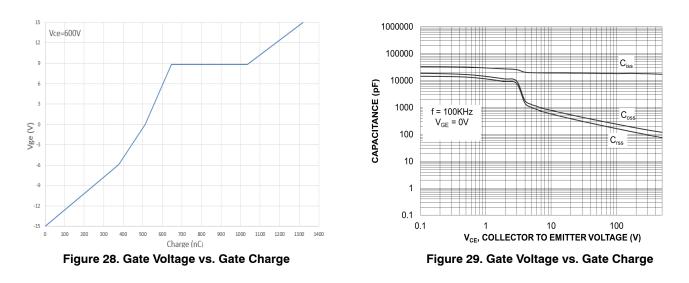



Figure 27. Transient Thermal Impedance (D12, D22, D32)

TYPICAL CHARACTERISTICS - DIODE (D13, D23, D33)

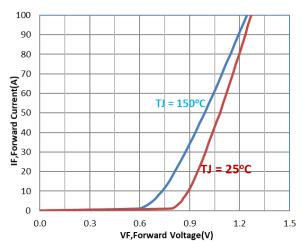


Figure 30. Diode Forward Characteristics

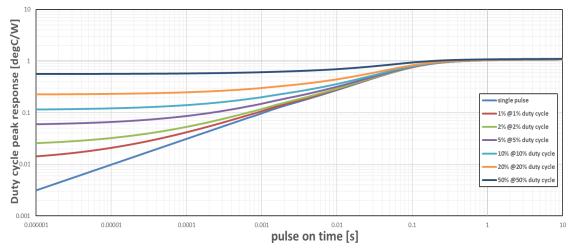


Figure 31. Transient Thermal Impedance

TYPICAL CHARACTERISTICS - DIODE (D11, D21, D31)

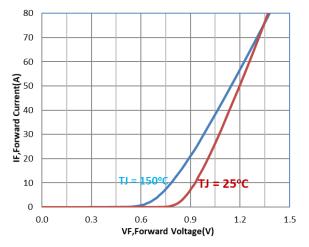


Figure 32. Diode Forward Characteristics

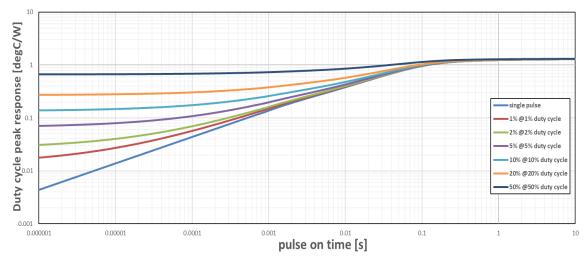
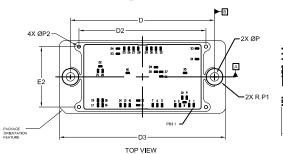
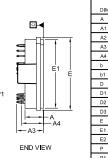



Figure 33. Transient Thermal Impedance

EliteSiC is a trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.


ISEMÍ.



PIM41, 93x47 (PRESS FIT) CASE 180AY

ISSUE O

DATE 19 MAR 2019

NOT	ES:

MILLIMETERS

11.60 12.00 12.40

4.40 4.70 5.00

16.30 16.70 17.10

13.97 14.18 14.39

1.61 1.66 1.71

0.75 0.80 0.85

92.90

104.45 104.75 105.05

81.80 82.00 82.20

46 70 47.00 47.30

44.10 44.40 44.70

38.80 39.00 39.20

5.40 5,50 5.60 5.55

2.00 2.20

DIN

А

A1

A2

A3 16.90 17.30 17 70

b

D

D3 106.90

E2

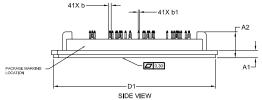
Ρ

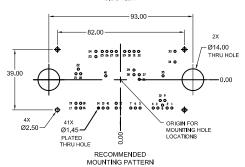
P1 5.15 5,35

Е

MIN. NOM. MAX.

93.00 93.10


107.50


1. DIMENSIONING AND TOLERANCING PER

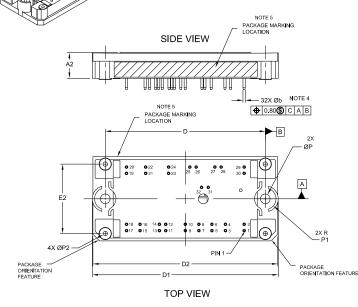
- ASME Y14,5M, 2009,
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. DIMENSIONS 6 AND 61 APPLY TO THE PLATED TERMINALS AND ARE MEASURED AT DIMENSION A4.
- 4. POSITION OF THE CENTER OF THE TERMINALS AND MOUNTING HOLES IS DETERMINED FROM DATUM B THE CENTER OF DIMENSION D, X DIRECTION, AND FROM DATUM A, Y DIRECTION. POSITIONAL TOLERANCE AS NOTED IN DRAWING, APPLIES TO BOTH TERMINALS AND MOUNTING HOLES IN BOTH DIRECTIONS.
- 5. PACKAGE MARKING IS LOCATED AS SHOWN ON THE SIDE OPPOSITE THE PACKAGE ORIENTATION FEATURES.

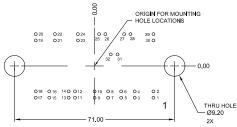
6 MOUNTING RECOMMENDATION IS SHOWN AS VIEWED FROM THE PCB TOP LAYER LOOKING DOWN TO SUBSEQUENT LAYERS.

♦ 0.80**⑤** C A B

	PIN PC	SITION		PIN PO	SITION
PIN	х	Y	PIN	Х	Y
1	33.15	-18.25	23	-15.85	14.90
2	30,15	-18.25	24	-15.85	18.25
3	24.15	-18.25	25	-11.75	18.25
4	21.15	-18.25	26	-8.75	18.25
5	12.65	-18.25	27	5.75	18.25
6	9.65	-18.25	28	-2.75	18.25
7	6.65	-18.25	29	2.75	18.25
8	27,15	-16.40	30	5.75	18,25
9	28.65	-13.40	31	8.75	18.25
10	25.65	-13.40	32 33	11.75	18.25
11	-2.75	-18.25		35.20	18.30
12	2.75	-15.25	34	35.20	11.4
13	-11.20	-18.25	35	27.50	2.50
14	-14.20	-18.25	36	12.10	0.25
15	n/a	n/a	37	12.10	3.25
16	-25.70	-18.25	38	8.70	3.25
17	-28.70	-18.25	39	8.70	6.25
18	-25.70	-15.25	40	-9.50	2.50
19	-28.70	-15.25	41	-8.20	-18.25
20	-25.70	3.85			
21	-28.70	3.85			
22	-27.20	6.85			

		GENERIC MARKING DIAGRAM* XXXXXXXXXXXXXXXXG ATYYWW
		XXXXX = Specific Device Code G = Pb-Free Package AT = Assembly & Test Site Code YYWW = Year and Work Week Code
		*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " •", may or may not be present. Some products may not follow the Generic Marking.
DOCUMENT NUMBER:	98AON03679H	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	PIM41, 93x47 (PRESS FIT)	PAGE 1 OF 1
onsemi and ONSEM), are tradema	rks of Semiconductor Components Industries,	LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves

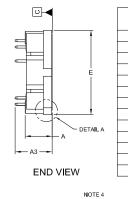

the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.


onsemi

PIM32, 71x37.4 (SOLDER PIN) CASE 180BQ

ISSUE A

DATE 23 JUL 2021


RECOMMENDED MOUNTING PATTERN* For additional information on our Pb-Free strategy and soldering details, please download the On Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
ſ		
	2D CODE	

BACKSIDE MARKING

- XXXXX = Specific Device Code G = Pb-Free Package AT = Assembly & Test Site Code
- YYWW = Year and Work Week Code

	MILLIMETERS						
DIM	MIN.	NOM.	MAX.				
А	11.70	12.00	12.30				
A2	10.90	11.40	11.90				
A3	15.90	16.40 16.9					
A5	0.00	-	0.45				
b	0.90	1.00	1.10				
D	70.50	71.00	71.50				
D1	82.00	82.50	83.00				
D2	81.50	82.00	82.50				
Е	36.90	37.40	37.90				
E2	30.30	30.80	31.30				
Ρ	4.30	4.40	4.50				
P1	4.55	4.75	4.95				
P2		2.00 REF					

		PIN POS	SITION	Π		PIN POS	SITION
	PIN	х	Y		PIN	х	Y
	1	26.10	-14.10		17	-26.10	-14.10
	2	26.10	-11.30		18	-26.10	-11.30
	3	17.80	-14.10		19	-26.10	11.30
	4	17.80	-11.30		20	-26.10	14.10
J	5	11.80	-14.10		21	-17.60	11.30
	6	11.80	-11.30		22	-17.60	14.10
- A5	7	6.00	-14.10		23	-7.40	11.30
-	8	6.00	-11.30		24	-7.40	14.10
	9	0.00	-14.10		25	2.00	14.10
	10	0.00	-11.30		26	4.80	14.10
	11	-8.70	-14.10		27	13.10	14.10
	12	-8.70	-11.30		28	15.90	14.10
	13	-11.50	-14.10		29	26.10	14.10
	14	-11.50	-11.30		30	26.10	11.30
	15	-20.10	-14.10		31	10.20	5.10
	16	-20.10	-11.30		32	7.20	5.10

NOTES

A3

DETAIL A

C-

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. DIMENSION 5 APPLIES TO THE PLATED TERMINALS AND IS MEASURED BETWEEN 1.00 AND 3.00 FROM THE TERMINAL TIP.
- 4. POSITION OF THE CENTER OF THE TERMINALS AND MOUNTING HOLES IS DETERMINED FROM DATUM B THE CENTER OF DIMENSION D, X DIRECTION, AND FROM DATUM A, Y DIRECTION. POSITIONAL TOLERANCE, AS NOTED IN DRAWING, APPLIES TO BOTH TERMINALS AND MOUNTING HOLES IN BOTH DIRECTIONS.
- 5. PACKAGE MARKING IS LOCATED, AS SHOWN, ON THE SIDE OPPOSITE THE PACKAGE ORIENTATION FEATURES.
- 6. MOUNTING RECOMMENDATION IS SHOWN AS VIEWED FROM THE PCB TOP LAYER LOOKING DOWN TO SUBSEQUENT LAYERS.
- *This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot " •", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON15094H	Electronic versions are uncontrolled except when accessed directly from the Document Repo Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	PIM32, 71x37.4 (SOLDER F	PIM32, 71x37.4 (SOLDER PIN)				

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>