onsemi

Three Level NPC Q2Pack Module

NXH400N100L4Q2F2SG, NXH400N100L4Q2F2PG

The NXH400N100L4Q2 is a power module containing a I-type neutral point clamped three-level inverter. The integrated field stop trench IGBTs and FRDs provide lower conduction losses and switching losses, enabling designers to achieve high efficiency and superior reliability.

Features

- Neutral Point Clamped Three-level Inverter Module
- Extreme Efficient Trench with Field Stop Technology
- Low Inductive Layout
- Low Package Height
- Thermistor

Typical Applications

- Solar Inverters
- Energy Storage System
- Uninterruptable Power Supplies Systems

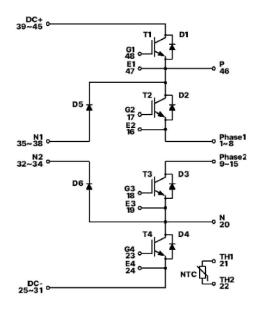
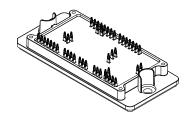
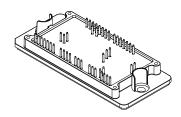
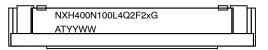
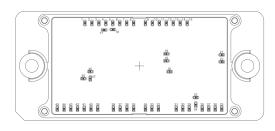




Figure 1. NXH400N100L4Q2F2 Schematic Diagram



Q2PACK PRESS FIT PINS PIM48, 93x47 CASE 180CR


Q2PACK SOLDER PINS PIM48, 93x47 CASE 180BL

MARKING DIAGRAM

NXH400N100L4Q2F2xG	= Specific Device Code
х	= P or S
G	= Pb-Free Package
AT	= Assembly & Test Site Code
YYWW	= Year and Work Week Code

PIN CONNECTIONS

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

Rating	Symbol	Value	Unit				
IGBT (T1, T2, T3, T4) V _{CES} 1000							
Collector-Emitter Voltage	V _{CES}	1000	V				
Gate-Emitter Voltage Positive Transient Gate-Emitter Voltage (T _{pulse} = 5 μs, D < 0.10)	V _{GE}	±20 30	V				
Continuous Collector Current @ T _C = 80°C	Ι _C	360	А				
Pulsed Peak Collector Current @ $T_C = 80^{\circ}C (T_J = 175^{\circ}C)$	I _{C(Pulse)}	1080	А				
Maximum Power Dissipation ($T_J = 175^{\circ}C$)	P _{tot}	980	W				
Minimum Operating Junction Temperature	T _{JMIN}	-40	°C				
Maximum Operating Junction Temperature (Note 2)	T _{JMAX}	175	°C				
GBT INVERSE DIODE (D1, D2, D3, D4)							
Peak Repetitive Reverse Voltage	V _{RRM}	1000	V				
Continuous Forward Current @ T _C = 80°C	۱ _F	276	А				
Repetitive Peak Forward Current ($T_J = 175^{\circ}C$)	I _{FRM}	828	А				
Maximum Power Dissipation ($T_J = 175^{\circ}C$)	P _{tot}	680	W				
Minimum Operating Junction Temperature	T _{JMIN}	-40	°C				
Maximum Operating Junction Temperature	T _{JMAX}	175	°C				
IEUTRAL POINT DIODE (D5, D6)							
Peak Repetitive Reverse Voltage	V _{RRM}	1000	V				
Continuous Forward Current @ T _C = 80°C	۱ _F	291	А				
Repetitive Peak Forward Current (T _J = 175°C)	I _{FRM}	873	А				
Maximum Power Dissipation ($T_J = 175^{\circ}C$)	P _{tot}	734	W				
Minimum Operating Junction Temperature	T _{JMIN}	-40	°C				
Maximum Operating Junction Temperature	T _{JMAX}	175	°C				

Table 1. ABSOLUTE MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise noted) (Note 1)

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 2. THERMAL AND INSULATION PROPERTIES ($T_J = 25^{\circ}C$ unless otherwise noted) (Note 1)

Rating	Symbol	Value	Unit
THERMAL PROPERTIES	· · ·		
Operating Temperature under Switching Condition	T _{VJOP}	-40 to 150	°C
Storage Temperature Range	T _{stg}	-40 to 125	°C
INSULATION PROPERTIES			
Isolation Test Voltage, t = 1 s, 50 Hz (Note 2)	V _{is}	4000	V _{RMS}
Creepage Distance		12.7	mm

 Comparative Tracking Index
 CTI
 >600

 Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
 If any of these limits are exceeded, device functionality

1. Refer to <u>ELECTRICAL CHARACTERISTICS</u>, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe Operating parameters.

2. 4000 VAC_{RMS} for 1 second duration is equivalent to 3333 VAC_{RMS} for 1 minute duration.

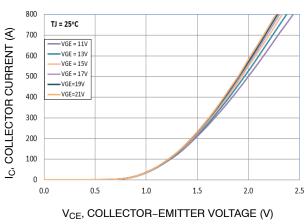
ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Test Conditions	Min	Тур	Мах	Unit
OUTER IGBT (T1, T4) CHARACTERISTI	cs					
Collector-Emitter Cutoff Current	I _{CES}	V _{GE} = 0 V, V _{CE} = 1000 V	-	-	25	μA
Collector-Emitter Saturation Voltage	V _{CE(sat)}	V_{GE} = 15 V, I _C = 400 A, T _J = 25°C	-	1.65	2.2	V
		V_{GE} = 15 V, I _C = 400 A, T _J = 150°C	-	2.1	-	
Gate-Emitter Threshold Voltage	V _{GE(TH)}	$V_{GE} = V_{CE}$, $I_C = 400 \text{ mA}$	3.6	4.9	6.2	V
Gate Leakage Current	I _{GES}	$V_{GE} = \pm 20 \text{ V}, \text{V}_{CE} = 0 \text{ V}$	-	-	±1.0	μA
Turn-on Delay Time	t _{d(on)}	$T_{\rm J} = 25^{\circ} {\rm C}$	-	170.46	-	ns
Rise Time	t _r	V _{CE} = 600 V, I _C = 200 A V _{GE} = –9 V, 15 V,	-	54.38	-	
Turn-off Delay Time	t _{d(off)}	$R_{Gon} = 9 \Omega, R_{Goff} = 19 \Omega$	-	696.63	-	
Fall Time	t _f		-	12.91	-	
Turn-on Switching Loss per Pulse	Eon	1	-	8.96	-	mJ
Turn-off Switching Loss per Pulse	E _{off}	1	-	6	-	
Turn-on Delay Time	t _{d(on)}	$T_J = 125^{\circ}C$	-	163.09	-	ns
Rise Time	t _r	V _{CE} = 600 V, I _C = 200 A V _{GE} = –9 V, 15 V,	-	61.38	-	mJ
Turn-off Delay Time	t _{d(off)}	$R_{Gon} = 9 \Omega$, $R_{Goff} = 19 \Omega$	-	771.31	-	
Fall Time	t _f		-	18.23	-	
Turn-on Switching Loss per Pulse	Eon		-	14.54	-	
Turn-off Switching Loss per Pulse	E _{off}		-	9.8	-	
Input Capacitance	Cies	V_{CE} = 20 V, V_{GE} = 0 V, f = 1 MHz	-	26060	-	pF
Output Capacitance	C _{oes}		-	1182	-	
Reverse Transfer Capacitance	C _{res}		-	146	-	
Total Gate Charge	Qg	V_{CE} = 600 V, I _C = 300 A, V _{GE} = -15 V~15 V	-	1410	_	nC
Thermal Resistance - Chip-to-Heatsink	R _{thJH}	Thermal grease,	-	0.17	-	K/W
Thermal Resistance - Chip-to-Case	R _{thJC}	Thickness = 100 μ m ±2% λ = 2.9 W/mK	-	0.0969	-	K/W
NEUTRAL POINT DIODE (D5, D6) CHAR	ACTERISTI	cs				
Diode Forward Voltage	V _F	I _F = 225 A, T _J = 25°C	_	2.1	2.7	V
		I _F = 225 A, T _J = 150°C	-	1.9	_	
Reverse Recovery Time	t _{rr}	T _J = 25°C	-	91.65	_	ns
Reverse Recovery Charge	Q _{rr}	V _{CE} = 600 V, I _C = 200 A V _{GE} = –9 V, 15 V, R _G = 9 Ω	-	5109	-	nC
Peak Reverse Recovery Current	I _{RRM}		-	117.19	-	Α
Peak Rate of Fall of Recovery Current	di/dt		-	3.02	-	A/ns
Reverse Recovery Energy	Err	1	-	1504	-	μJ
Reverse Recovery Time	t _{rr}	T _J = 125°C	-	168.8	-	ns
Reverse Recovery Charge	Q _{rr}	V _{CE} = 600 V, I _C = 200 A V _{GE} = –9 V, 15 V, R _G = 9 Ω	-	15979	-	nC
Peak Reverse Recovery Current	I _{RRM}		-	183.14	-	Α
Peak Rate of Fall of Recovery Current	di/dt		-	2.64	-	A/ns
Reverse Recovery Energy	E _{rr}	1	-	5463	-	μJ
Thermal Resistance – Chip-to-Heatsink	R _{thJH}	Thermal grease,	-	0.21	_	K/W
Thermal Resistance – Chip-to-Case	R _{thJC}	Thickness = 100 μ m ±2% λ = 2.9 W/mK	_	0.1295	_	K/W

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted) (continued)

Characteristic	Symbol	Test Conditions	Min	Тур	Мах	Unit
INNER IGBT (T2, T3) CHARACTERISTIC	s					
Collector-Emitter Cutoff Current	I _{CES}	V _{GE} = 0 V, V _{CE} = 1000 V	_	-	25	μA
Collector-Emitter Saturation Voltage	V _{CE(sat)}	V_{GE} = 15 V, I _C = 400 A, T _J = 25 °C	-	1.65	2.2	V
		V_{GE} = 15 V, I_C = 400 A, T_J = 150 $^\circ C$	-	1.9	-	
Gate-Emitter Threshold Voltage	V _{GE(TH)}	$V_{GE} = V_{CE}$, $I_C = 400$ mA	3.9	4.6	5.8	V
Gate Leakage Current	I _{GES}	V_{GE} = ±20 V, V_{CE} = 0 V	-	-	±1.0	μΑ
Turn-on Delay Time	t _{d(on)}	$T_{\rm J} = 25^{\circ} C$	-	171.27	-	ns
Rise Time	t _r	V _{CE} = 600 V, I _C = 200 A, V _{GE} = –9 V, 15 V,	_	52.54	-	
Turn-off Delay Time	t _{d(off)}	$R_{Gon} = 9 \Omega, R_{Goff} = 28 \Omega$	-	1153.7	-	
Fall Time	t _f		_	34.88	-	
Turn-on Switching Loss per Pulse	E _{on}		-	8.16	-	mJ
Turn off Switching Loss per Pulse	E _{off}		-	10.25	-	
Turn-on Delay Time	t _{d(on)}	T _J = 125°C V _{CE} = 600 V, I _C = 200 A,	-	160.21	-	ns
Rise Time	t _r	V _{GE} = –9 V, 15 V,	-	59.83	-	
Turn-off Delay Time	t _{d(off)}	$R_{Gon} = 9 \Omega, R_{Goff} = 28 \Omega$	-	1274.8	-	
Fall Time	t _f		-	26.46	-	
Turn-on Switching Loss per Pulse	Eon		-	12.37	-	mJ
Turn off Switching Loss per Pulse	E _{off}		-	13.42	-	
Input Capacitance	C _{ies}	V_{CE} = 20 V, V_{GE} = 0 V, f = 1 MHz	-	26060	-	pF
Output Capacitance	Coes		-	1182	-	4
Reverse Transfer Capacitance	C _{res}		-	146	-	
Total Gate Charge	Qg	$V_{CE} = 600 \text{ V}, I_C = 300 \text{ A}, V_{GE} = -15 \text{ V}$ ~15 V	_	1410	-	nC
Thermal Resistance - Chip-to-heatsink	R _{thJH}	Thermal grease,	-	0.17	-	K/W
Thermal Resistance - Chip-to-case	R _{thJC}	Thickness = 100 μ m ±2% λ = 2.9 W/mK	-	0.0969	-	K/W
IGBT INVERSE DIODE (D1, D2, D3, D4)	CHARACTE	RISTICS				
Diode Forward Voltage	V _F	I _F = 225 A, T _J = 25°C	-	2.1	2.7	V
		I _F = 225 A, T _J = 150°C	-	1.9	-	
Reverse Recovery Time	t _{rr}	$T_J = 25^{\circ}C$	-	90.31	-	ns
Reverse Recovery Charge	Q _{rr}	$V_{CE} = 600 \text{ V}, \text{ I}_{C} = 200 \text{ A}$ $V_{GE} = -9 \text{ V}, 15 \text{ V}, \text{ R}_{G} = 9 \Omega$	-	5653	_	nC
Peak Reverse Recovery Current	I _{RRM}		-	123.4	_	А
Peak Rate of Fall of Recovery Current	di/dt		_	3.178	-	A/ns
Reverse Recovery Energy	E _{rr}	1	-	1860	-	μJ
Reverse Recovery Time	t _{rr}	$T_J = 125^{\circ}C$	-	167.18	-	ns
Reverse Recovery Charge	Q _{rr}	V _{CE} = 600 V, I _C = 200 A V _{GE} = –9 V, 15 V, R _G = 9 Ω	-	16627	_	nC
Peak Reverse Recovery Current	I _{RRM}		-	182.8	-	А
Peak Rate of Fall of Recovery Current	di/dt			2.734	-	A/ns
Reverse Recovery Energy	E _{rr}		-	6512	-	μJ
Thermal Resistance - Chip-to-Heatsink	R _{thJH}	Thermal grease,	-	0.22	-	K/W
Thermal Resistance – Chip-to-Case	R _{thJC}	Thickness = 100 μ m ±2% λ = 2.9 W/mK	-	0.1397	-	K/W
THERMISTOR CHARACTERISTICS				•		
Nominal Resistance	R ₂₅	T = 25°C	_	5	-	kΩ
Nominal Resistance	R ₁₀₀	T = 100°C	_	490.6	_	Ω

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted) (continued)


Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
THERMISTOR CHARACTERISTICS						
Deviation of R25	$\Delta R/R$		-1	-	1	%
Power Dissipation	PD		-	5	-	mW
Power Dissipation Constant			-	1.3	-	mW/K
B-value		B (25/85), tolerance ±1%	-	3435	-	К

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

ORDERING INFORMATION

Part Number	Marking	Package	Shipping
NXH400N100L4Q2F2PG	NXH400N100L4Q2F2PG	Q2PACK PRESS FIT PINS PIM48, 93x47 (Pb-Free and Halide-Free)	12 Units / Blister Tray
NXH400N100L4Q2F2SG	NXH400N100L4Q2F2SG	Q2PACK SOLDER PIN PIM48, 93x47 (Pb-Free and Halide-Free)	12 Units / Blister Tray

TYPICAL CHARACTERISTICS – IGBT, INVERSE DIODE AND NEUTRAL POINT DIODE

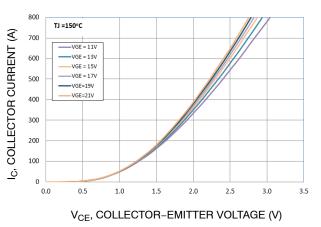


Figure 3. Typical Output Characteristics - IGBT

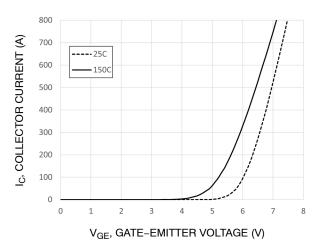


Figure 4. Transfer Characteristics – IGBT

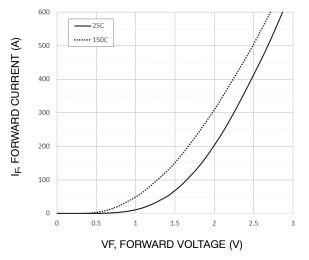


Figure 6. Inverse Diode Forward Characteristics

1000 VGE = 15V Ic, COLLECTOR CURRENT (A) 800 - 25 C ----150C 600 400 200 0 0.5 1.5 2 2.5 3.5 1 3 0

 V_{CE} , COLLECTOR-EMITTER VOLTAGE (V)

Figure 5. Saturation Voltage Characteristics

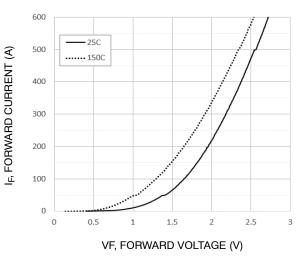


Figure 7. Buck Diode Forward Characteristics

TYPICAL CHARACTERISTICS - OUTER IGBT (T1, T4)

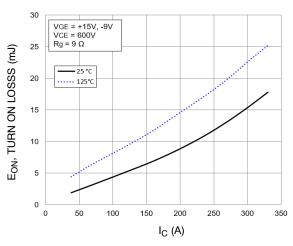


Figure 8. Typical Turn ON Loss vs. IC

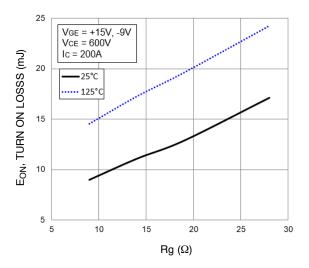
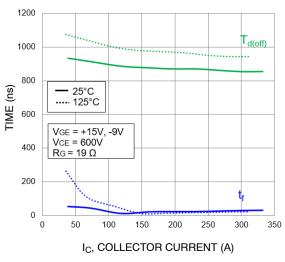
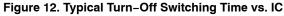




Figure 10. Typical Turn ON Loss vs. RG

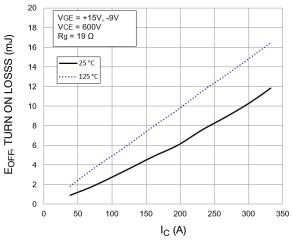


Figure 9. Typical Turn OFF Loss vs. IC

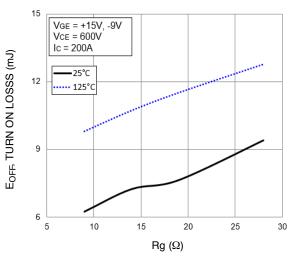


Figure 11. Typical Turn OFF Loss vs. RG



Figure 13. Typical Turn-On Switching Time vs. IC

TYPICAL CHARACTERISTICS - OUTER IGBT (T1,T4) (continued)

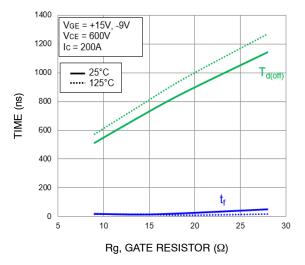


Figure 14. Typical Turn-Off Switching Time vs. RG

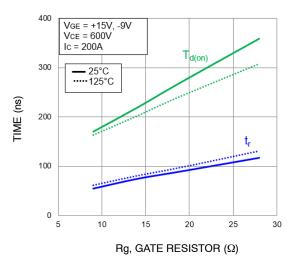
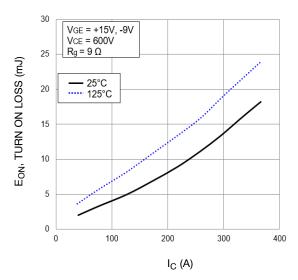



Figure 15. Typical Turn-On Switching Time vs. RG

TYPICAL CHARACTERISTICS - INNER IGBT (T2, T3)

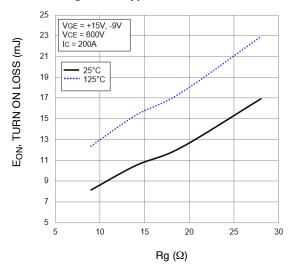
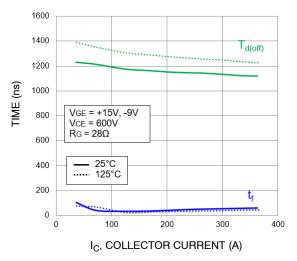



Figure 18. Typical Turn ON Loss vs. RG

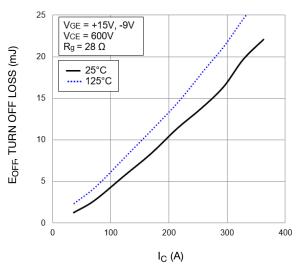


Figure 17. Typical Turn OFF Loss vs. IC

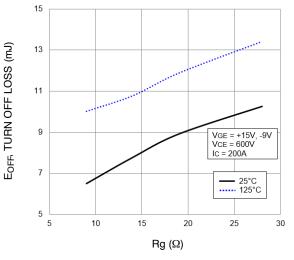


Figure 19. Typical Turn OFF Loss vs. RG

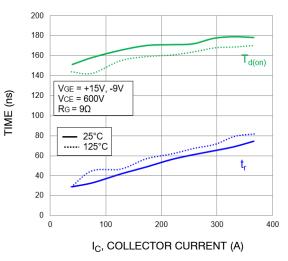


Figure 21. Typical Turn-On Switching Time vs. IC

TYPICAL CHARACTERISTICS - INNER IGBT (T2, T3) (continued)

Figure 22. Typical Turn-Off Switching Time vs. RG

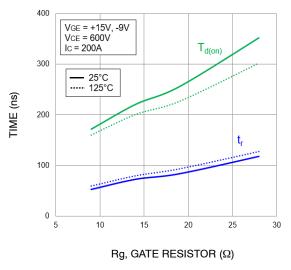
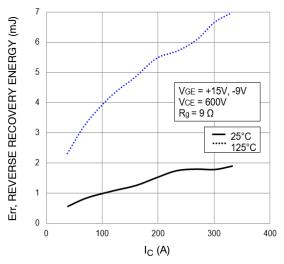
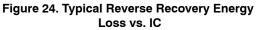




Figure 23. Typical Turn-On Switching Time vs. RG

TYPICAL SWITCHING CHARACTERISTICS – NEUTRAL POINT DIODE

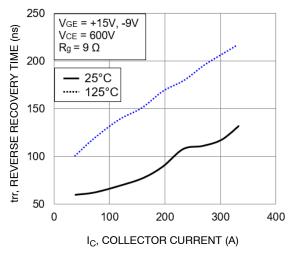


Figure 26. Typical Reverse Recovery Time vs. IC

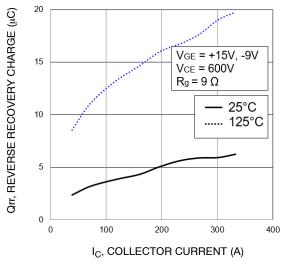


Figure 28. Typical Reverse Recovery Charge vs. IC

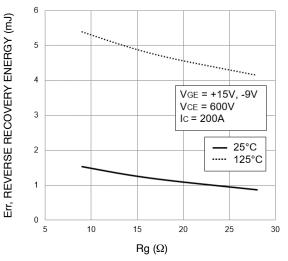


Figure 25. Typical Reverse Recovery Energy Loss vs. Rg

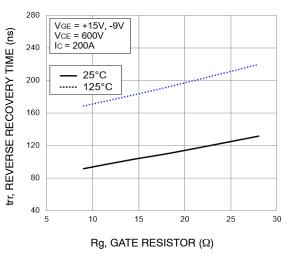


Figure 27. Typical Reverse Recovery Time vs. Rg

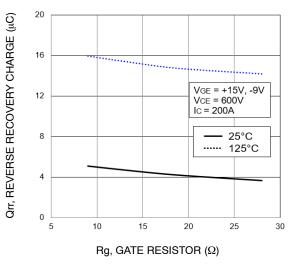


Figure 29. Typical Reverse Recovery Charge vs. Rg

TYPICAL SWITCHING CHARACTERISTICS - NEUTRAL POINT DIODE (continued)

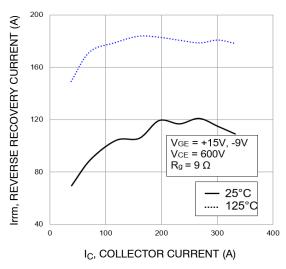


Figure 30. Typical Reverse Recovery Peak Current vs. IC

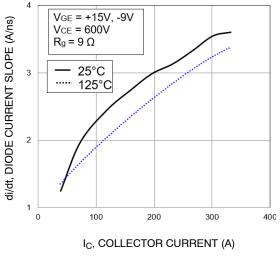


Figure 32. Typical di/dt vs. IC

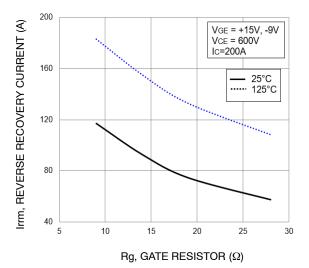


Figure 31. Typical Reverse Recovery Peak Current vs. Rg

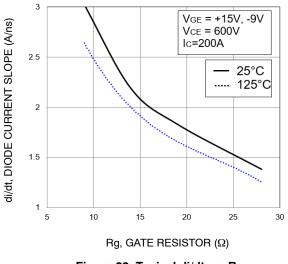


Figure 33. Typical di/dt vs. Rg

TYPICAL CHARACTERISTICS – INVERSE DIODE

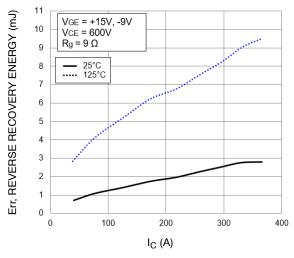


Figure 34. Typical Reverse Recovery Energy Loss vs. IC

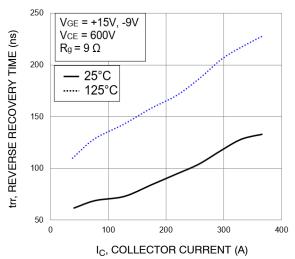
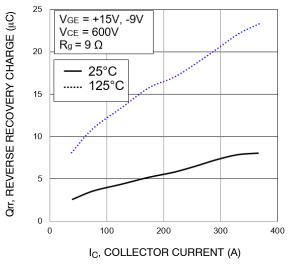



Figure 36. Typical Reverse Recovery Time vs. IC

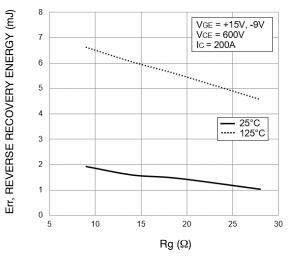


Figure 35. Typical Reverse Recovery Energy Loss vs. Rg

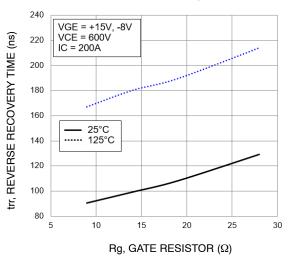


Figure 37. Typical Reverse Recovery Time vs. Rg

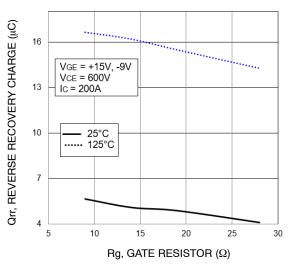


Figure 39. Typical Reverse Recovery Charge vs. Rg

TYPICAL CHARACTERISTICS - INVERSE DIODE (continued)

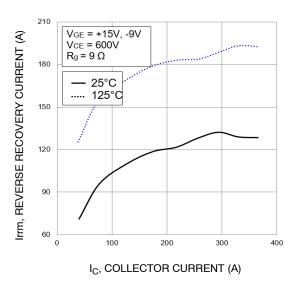
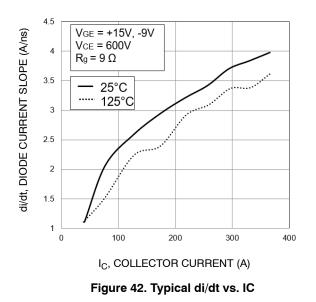



Figure 40. Typical Reverse Recovery Peak Current vs. IC

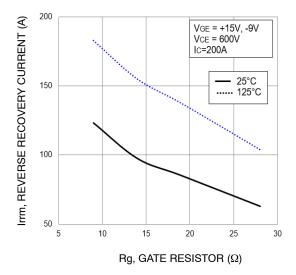


Figure 41. Typical Reverse Recovery Peak Current vs. Rg

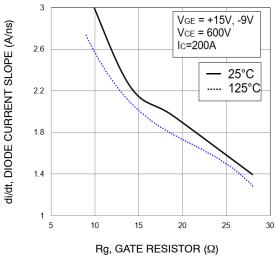
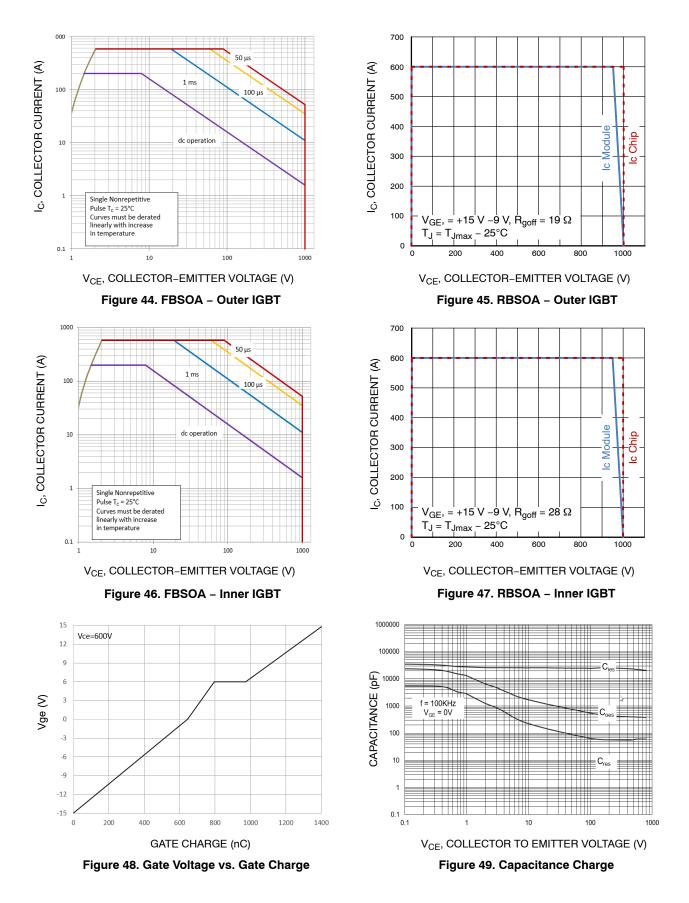



Figure 43. Typical di/dt vs. Rg

TYPICAL CHARACTERISTICS – IGBT, INVERSE DIODE AND NEUTRAL POINT DIODE

TYPICAL CHARACTERISTICS - IGBT, INVERSE DIODE AND NEUTRAL POINT DIODE (continued)

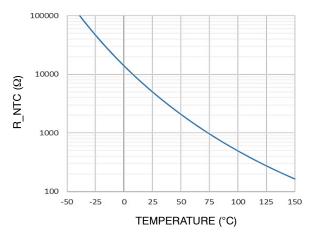


Figure 50. Thermistor Characteristics

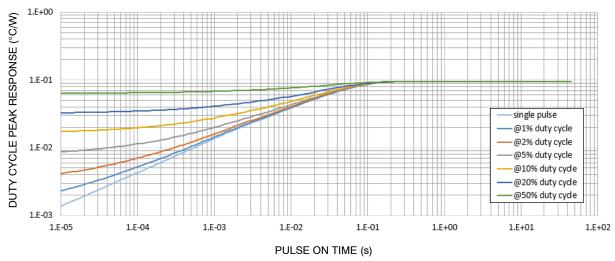
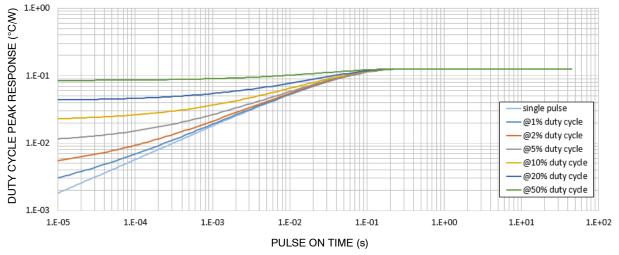
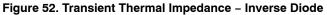
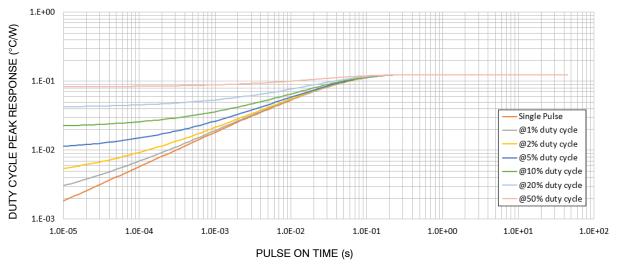
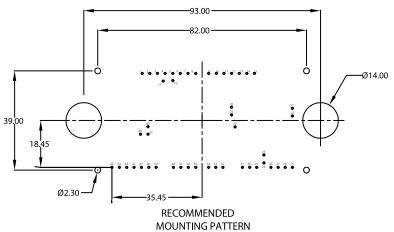
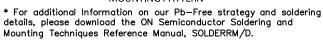




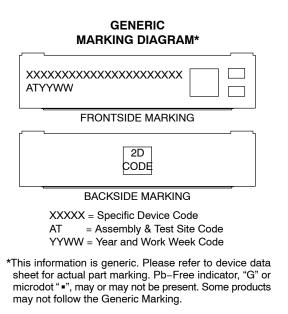
Figure 51. Transient Thermal Impedance – IGBT

TYPICAL CHARACTERISTICS - IGBT, INVERSE DIODE AND NEUTRAL POINT DIODE (continued)




Figure 53. Transient Thermal Impedance – Neutral Point Diode

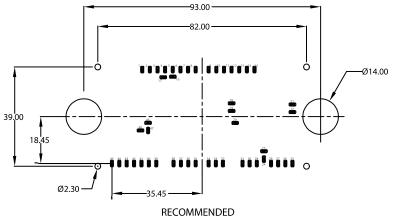

onsemi


Salina III		Ρ		93x47 (CASE	180B		IN)					
				ISSU	JEA					DATE	08 DE	C 2022
			urpage x0.3			—A3		NOTES: 1. DIMENSIONING 2. CONTROLLING 3. DIMENSIONS b ARE MEASUREI 4. PIN POSITION T 5. PACKAGE MAR OPPOSITE THE	Dimension : AND b1 APP D AT DIMENS OLERANCE I: KING IS LOC/	: MILLIMETE ILY TO THE F ION A1 S ± 0.4mm ATED AS SHO RIENTATION	RS PLATED TERI DWN ON TH	MINALS AND
	D2- 	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3			—ØP ØP1			A2 A3 A4 b D D1 D1 D2 D3 E E E1 E2	11.70 4.40 16.40 0.95 92.90 104.45 81.80 106.90 46.70 44.10 38.80	12.00 4.70 16.70 93.00 104.75 82.00 107.20 47.00 44.40 39.00	12.30 5.00 17.00 1.05 93.10 105.05 82.20 107.50 47.30 44.70 39.20
PACKAGE ORIENTATION FEATURE	D3- TOP VIE S F	W Pin positi	ion		-		LA	 ND VIEW	P P1 P2	5.40 10.60 1.80	5.50 10.70 2.00	5.60 10.80 2.20
	Pin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 9 20 21 22 23 24	P X 11.9 14.9 7.7.9 20.9 23.9 32.9 32.9 38 41 47 50 23.95 20.15 47 47 47 47 47 47 47 50 52.95 20.15 47 48.4 70.9 70.9 59.7	n table Y 36.9 23.65 20.65 20.65 20.25 20.2 20	Function Phase1 Phase1 Phase1 Phase1 Phase1 Phase1 Phase2 Phase2 Phase2 Phase2 Phase2 Phase2 Phase2 Phase2 Phase2 Phase2 Phase3 R Phase3 Phase3 Phase4 Phase4 Phase4 Phase4 Phase4 Phase4 Phase4 Phase5 Phase5 Phase5 Phase6 Phase6 Phase6 Phase6 Phase6 Phase6 Phase7 Phas6 Pha56 Ph	Pin 25 26 27 28 29 30 31 32 33 34 35 36 35 36 37 38 39 40 41 41 42 43 44 45 46 47 48	Pin X 70.9 68.1 65.3 62.5 56.9 54.1 51.3 43.6 40.8 38 43.6 40.8 38 32.9 30 27.1 24.2 17.4 14.5 11.6 8.7 14.5 11.6 8.7 2.9 0 14.2 11.2	table Y 0 0 0 0 0 0 0 0 0 0 0 0 0	Function DC- N2 N2 N2 DC- DC- DC- DC- DC+ DC+				
DOCUMENT NUMBER: DESCRIPTION:	98AON4773 PIM48, 93x4		.DER I	Printe				ed except when acc except when stampe		ÓLLED COF		
onsemi and ONSEMi. are trademat the right to make changes without furth purpose, nor does onsemi assume an special, consequential or incidental de	er notice to any produny liability arising out	cts herein. of the appli	onsemi n cation or i	nakes no w use of any	arranty, ı product	epresenta or circuit,	ation or gu and spec	uarantee regarding the ifically disclaims any	ne suitability	of its produ	cts for any	particular

PIM48, 93x47 (SOLDER PIN) CASE 180BL ISSUE A

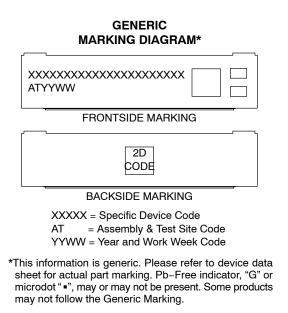
DATE 08 DEC 2022

DOCUMENT NUMBER:	98AON47737H	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	PIM48, 93x47 (SOLDER PIN)		PAGE 2 OF 2				
onsemi and OOSEMI are trademarks of Semiconductor Components Industries 11.C dha onsemi or its subsidiaries in the United States and/or other countries onsemi reserves							


the right to make charges without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products herein.

<u>Onsemi</u>

RANCING PE RANCING PE SIGN A1 SIG ± 0.4mm CATED AS SHORENTATION MIN. 16.90 13.97 11.70 4.40 16.40 1.6.11 0.75 92.90 104.45 81.80 106.90 46.70 44.10 38.80 5.40 10.60	ERS PLATED TE HOWN ON T	RMINALS AN HE SIDE S
MIN. 16.90 13.97 11.70 4.40 16.40 1.61 0.75 92.90 104.45 81.80 106.90 46.70 44.10 38.80 5.40	NOM. 17.30 14.18 12.00 4.70 16.70 16.6 0.80 93.00 104.75 82.00 107.20 47.00 44.40 39.00	MAX. 17.70 14.39 12.30 5.00 17.00 17.01 0.85 93.10 105.05 82.20 107.50 47.30 44.70 39.20
16.90 13.97 11.70 4.40 16.40 1.61 0.75 92.90 104.45 81.80 106.90 44.10 38.80 5.40	17.30 14.18 12.00 4.70 16.70 16.6 0.80 93.00 104.75 82.00 107.20 47.00 44.40 39.00	17.70 14.39 12.30 5.00 17.00 17.01 0.85 93.10 105.05 82.20 107.50 47.30 44.70 39.20
13.97 11.70 4.40 16.40 1.61 0.75 92.90 104.45 81.80 106.90 44.10 38.80 5.40	14.18 12.00 4.70 16.70 16.6 0.80 93.00 104.75 82.00 107.20 47.00 44.40 39.00	14.39 12.30 5.00 17.00 1.71 0.85 93.10 105.05 82.20 107.50 47.30 44.70 39.20
11.70 4.40 16.40 1.61 0.75 92.90 104.45 81.80 106.90 46.70 44.10 38.80 5.40	12.00 4.70 16.70 1.66 0.80 93.00 104.75 82.00 107.20 47.00 44.40 39.00	12.30 5.00 17.00 1.71 0.85 93.10 105.05 82.20 107.50 47.30 44.70 39.20
4.40 16.40 1.61 0.75 92.90 104.45 81.80 106.90 44.70 38.80 5.40	4.70 16.70 1.66 0.80 93.00 104.75 82.00 107.20 44.40 39.00	5.00 17.00 1.71 0.85 93.10 105.05 82.20 107.50 47.30 44.70 39.20
16.40 1.61 0.75 92.90 104.45 81.80 106.90 46.70 44.10 38.80 5.40	16.70 1.66 0.80 93.00 104.75 82.00 107.20 47.00 44.40 39.00	17.00 1.71 0.85 93.10 105.05 82.20 107.50 47.30 44.70 39.20
0.75 92.90 104.45 81.80 106.90 46.70 44.10 38.80 5.40	0.80 93.00 104.75 82.00 107.20 47.00 44.40 39.00	0.85 93.10 105.05 82.20 107.50 47.30 44.70 39.20
92.90 104.45 81.80 106.90 46.70 44.10 38.80 5.40	93.00 104.75 82.00 107.20 47.00 44.40 39.00	93.10 105.05 82.20 107.50 47.30 44.70 39.20
104.45 81.80 106.90 46.70 44.10 38.80 5.40	104.75 82.00 107.20 47.00 44.40 39.00	105.05 82.20 107.50 47.30 44.70 39.20
81.80 106.90 46.70 44.10 38.80 5.40	82.00 107.20 47.00 44.40 39.00	82.20 107.50 47.30 44.70 39.20
106.90 46.70 44.10 38.80 5.40	107.20 47.00 44.40 39.00	107.50 47.30 44.70 39.20
46.70 44.10 38.80 5.40	47.00 44.40 39.00	47.30 44.70 39.20
44.10 38.80 5.40	44.40 39.00	44.70 39.20
38.80 5.40	39.00	39.20
5.40	_	-
-	5.50	5.60
10.60		
	10.70	10.80
1.80	2.00	2.20
ł	her countri	tly from the Document OLLED COPY" in red. PAGE - ther countries. onsem y of its products for any billty, including withou


PIM48, 93x47 (PRESS-FIT PIN) CASE 180CR ISSUE A

DATE 08 DEC 2022

MOUNTING PATTERN

* For additional Information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON47745H	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	PIM48, 93x47 (PRESS-FIT	7 (PRESS-FIT PIN)					
onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation							

special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>