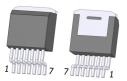
onsemi

Silicon Carbide (SiC) JFET – EliteSiC, Power N-Channel, D2PAK-7L, 1700 V, 400 mohm

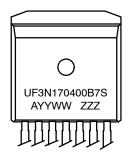
UF3N170400B7S

Description

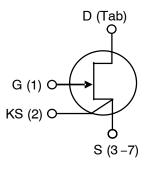

onsemi offers the High-Performance G3 SiC normally-On JFET transistors. This Series Exhibits Ultra-low on resistance ($R_{DS(ON)}$) and Gate charge (Q_G) allowing for Low Conduction and Switching loss. The device Normally-On Characteristics with low $R_{DS(ON)}$ at $V_{GS} = 0$ V is also ideal for current protection circuits without the need for active control, as well as for cascode operation.

Features

- Typical On-Resistance $R_{DS(on), typ}$ of 400 m Ω
- Voltage Controlled
- Maximum Operating Temperature of 175 °C
- Extremely Fast Switching not Dependent on Temperature
- Low Gate Charge
- Low Intrinsic Capacitance
- This Device is Pb-Free, Halogen Free and is RoHS Compliant


Typical Applications

- Over Current Protection Circuits
- DC-AC Inverters
- Switch Mode Power Supplies
- Power Factor Correction Modules
- Motor Drives
- Induction Heating


TO263-7 CASE 418BA

MARKING DIAGRAM

UF3N170400B7S A YY WW ZZZ	 Specific Device Code Assembly Location Year Work Week Lot ID
ZZZ	= Lot ID

PIN CONNECTIONS

ORDERING INFORMATION

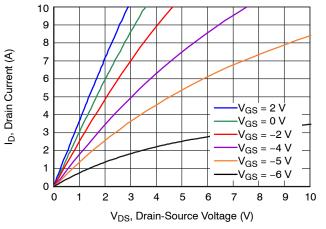
See detailed ordering and shipping information on page 7 of this data sheet.

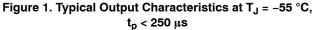
MAXIMUM RATINGS

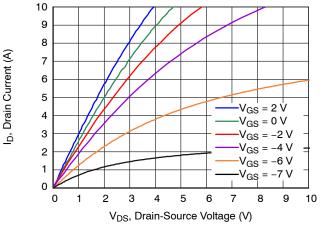
Parameter	Symbol	Test Conditions	Value	Unit
Drain-source Voltage	V _{DS}		1700	V
Gate-Source Voltage	V _{GS}	DC	-20 to +3	V
		AC (Note 1)	-30 to +20	
Continuous Drain Current (Note 2)	Ι _D	T _C = 25 °C	6.8	А
		T _C = 100 °C	5.1	А
Pulsed Drain Current (Note 3)	I _{DM}	T _C = 25 °C	16	А
Power Dissipation	P _{TOT}	T _C = 25 °C	68	W
Maximum Junction Temperature	T _{J,max}		175	°C
Operating and Storage Temperature	T _J , T _{STG}		–55 to 175	°C
Reflow Soldering Temperature	T _{solder}	Reflow MSL 1	260	°C

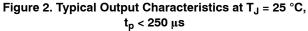
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. +20 V AC Rating Applies for Turn-on Pulses <200 ns applied with external $R_G > 1 \Omega$ 2. Limited by $T_{J,max}$ 3. Pulse width t_p limited by $T_{J,max}$

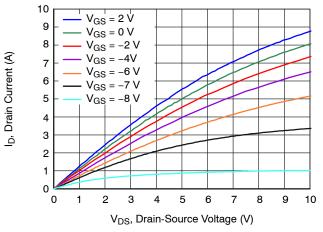
THERMAL CHARACTERISTICS

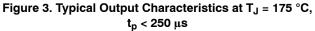

Parameter	Symbol	Test Conditions	Value			
			Min	Тур	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$		-	1.7	2.2	°C/W

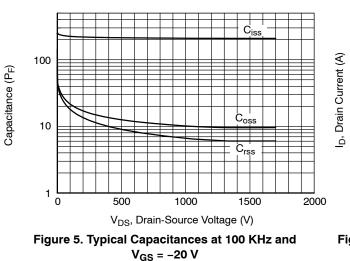

ELECTRICAL CHARACTERISTICS (T_J = +25 °C Unless otherwise specified)

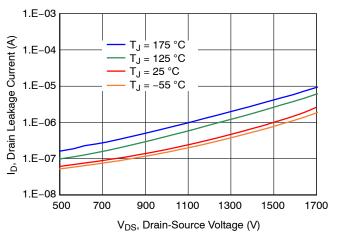
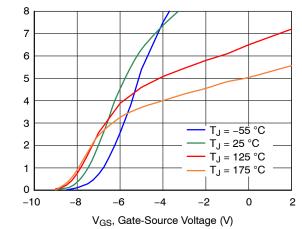
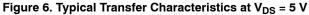
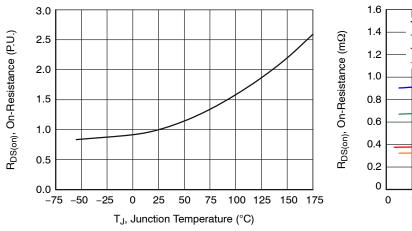

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
TYPICAL PERFORMANCE - STATIC						
Drain-Source Breakdown Voltage	BV _{DS}	V_{GS} = -20 V, I _D = 0.3 mA	1700	-	-	V
Total Drain Leakage Current	I _{DSS}	V_{DS} = 1700 V, V_{GS} = –20 V, T_{J} = 25 $^{\circ}\text{C}$	-	2.2	60	μΑ
		V_{DS} = 1700 V, V_{GS} = –20 V, $T_{\rm J}$ = 175 °C	-	9	-	1
Total Gate Leakage Current	I _{GSS}	V _{GS} = -20 V, T _J = 25 °C	-	0.15	6	μA
		V _{GS} = -20 V, T _J = 175 °C	-	0.8	-	μA
Drain-Source On-Resistance	R _{DS(on)}	V _{GS} = 2 V, I _D = 5 A, T _J = 25 °C	-	350	_	mΩ
		V _{GS} = 0 V, I _D = 5 A, T _J = 25 °C	-	400	500	
		V _{GS} = 2 V, I _D = 5 A, T _J = 175 °C	-	928	_	1
		V _{GS} = 0 V, I _D = 5 A, T _J = 175 °C	-	1040	-	1
Gate Threshold Voltage	V _{G(th)}	V _{DS} = 5 V, I _D = 4.5 mA	-11.3	-9	-6.7	V
Gate Resistance	R _G	f = 1 MHz, Open Drain	_	5	_	Ω
TYPICAL PERFORMANCE – DYNAMIC		· ·				
Input Capacitance	C _{iss}	V _{DS} = 100 V, V _{GS} = -20 V,	_	225	_	pF
Output Capacitance	C _{oss}	f = 100 kHz	-	22	-	
Reverse Transfer Capacitance	C _{rss}			18	_	
Effective Output Capacitance, Energy Related	C _{oss(er)}	$V_{DS} = 0 V$ to 1200 V, $V_{GS} = -20 V$	-	11.4	_	pF
C _{OSS} stored energy	E _{oss}	V _{DS} = 1200 V, V _{GS} = -20 V	-	8.2	_	μJ
Total Gate Charge	Q _G	V _{DS} = 1200 V, I _D = 5 A,	-	30	_	nC
Gate-Drain Charge	Q _{GD}	$V_{GS} = -18 V \text{ to } 0 V$	-	17	_	
Gate-Source Charge	Q _{GS}		_	5	_	
Turn-On Delay Time	t _{d(on)}	V _{DS} = 1200 V, I _D = 5 A,	-	5	-	ns
Rise Time	t _r	Gate Driver = -18 V to + 0 V, R _G = 1 Ω , Inductive Load,	-	19	-	1
Turn-Off Delay Time	t _{d(off)}	FWD: 2x UJ3D1210TS in series	-	9	-	
Fall Time	t _f	T _J = 25 °C	-	37	-	
Turn-On Energy	E _{ON}		-	125	-	μJ
Turn-Off Energy	E _{OFF}		-	38	-	
Total Switching Energy	E _{TOTAL}		-	163	-	
Turn-On Delay Time	t _{d(on)}	$V_{DS} = 1200 \text{ V}, \text{ I}_{D} = 5 \text{ A},$	-	5	-	ns
Rise Time	t _r	Gate Driver = -18 V to + 0 V, R _G = 1 Ω , Inductive Load,	-	16	-	
Turn-Off Delay Time	t _{d(off)}	FWD: 2x UJ3D1210TS in series T _{.1} = 150 °C	_	8	-]
Fall Time	t _f	- 150 O	-	34	-	
Turn-On Energy	E _{ON}		_	114	-	μJ
Turn-Off Energy	E _{OFF}]	-	31	-	
Total Switching Energy	E _{TOTAL}]	-	145	-]

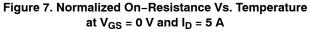

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


TYPICAL PERFORMANCE DIAGRAMS






Figure 4. Typical Drain-Source Leakage at V_{DS} = -20 V

TYPICAL PERFORMANCE DIAGRAMS (CONTINUED)

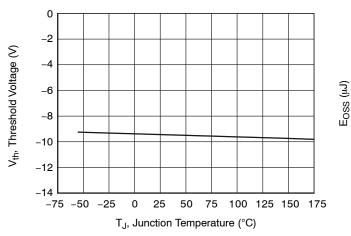
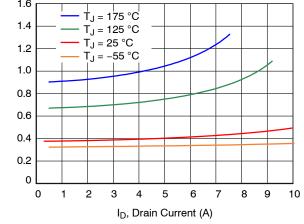
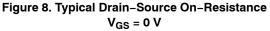




Figure 9. Threshold Voltage vs. Junction Temperature at V_{DS} = 5 V and I_{D} = 4.5 mA

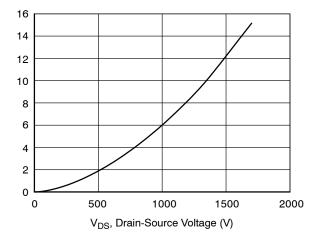


Figure 10. Typical Stored Energy in C_{OSS} at V_{GS} = -20 V

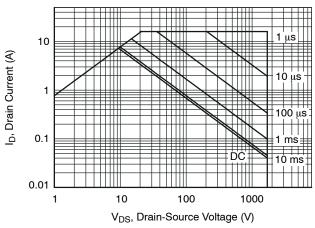
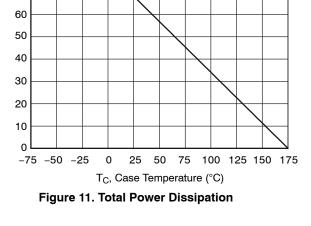
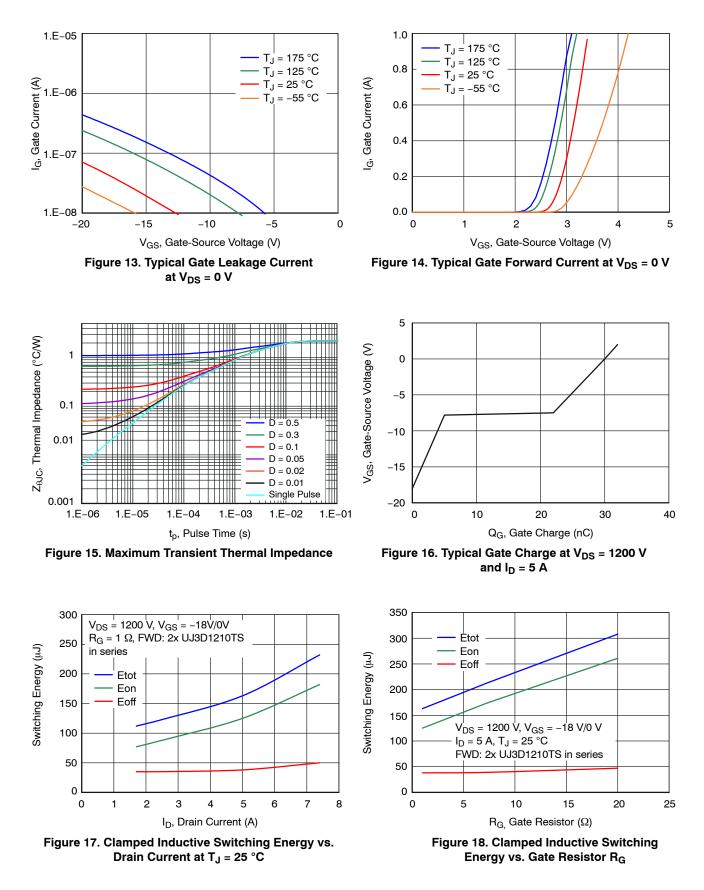



Figure 12. Safe Operation Area at $T_C = 25$ °C, Parameter t_p

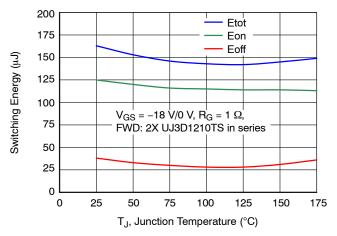

P_{TOT}, Power Dissipation (W)

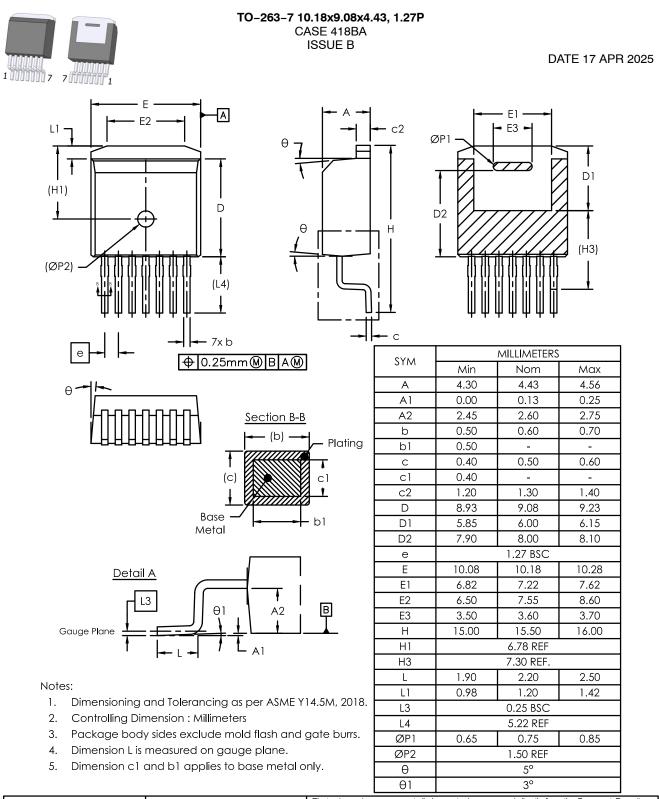
80

70

TYPICAL PERFORMANCE DIAGRAMS (CONTINUED)

TYPICAL PERFORMANCE DIAGRAMS (CONTINUED)



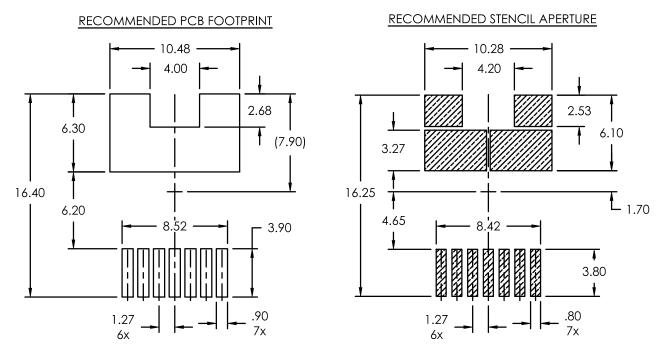

Figure 19. Clamped Inductive Switching Energy vs. Junction Temperature at V_{DS} = 1200 V and I_{D} = 5 A

ORDERING INFORMATION

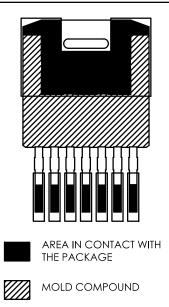
Part Number	Marking	Package	Shipping [†]
UF3N170400B7S	UF3N170400B7S	D ² PAK-7L (Pb–Free, Hlogen Free)	800 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D.</u>

onsemi



DOCUMENT NUMBER:	98AON13800G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-263-7 10.18x9.08x4.43	, 1.27P	PAGE 1 OF 2	


onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights of others.

TO-263-7 10.18x9.08x4.43, 1.27P CASE 418BA ISSUE B

DATE 17 APR 2025

NOTE: LAND PATTERN AND STENCIL APERTURE DIMENSIONS SERVE ONLY AS AN INITIAL GUIDE. END-USER PCB DESIGN RULES AND TOLERANCES SHOULD ALWAYS PREVAIL.

PCB FOOTPRINT with PACKAGE OVERLAY

DOCUMENT NUMBER:	98AON13800G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	DESCRIPTION: TO-263-7 10.18x9.08x4.43, 1.27P PAGE 2 O				
onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.					

© Semiconductor Components Industries, LLC, 2025

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>