ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

100 W Automotive Pre-Regulator, Non-Isolated, Synchronous Buck, NCV881930-Based Reference Design

ON Semiconductor®

www.onsemi.com

REFERENCE DESIGN

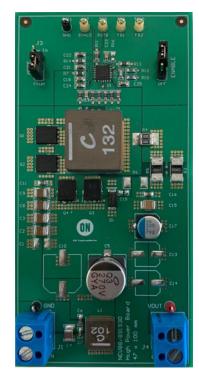


Figure 1. Reference Design Board Image

TND6290/D

Overview

This reference design describes the operation and the performance of a 100 W non-isolated synchronous buck automotive pre-regulator, based on the NCV881930 synchronous buck controller with four NVMFS5C460NL 40 V N-channel MOSFET. The reference design shows a complete design for an automotive pre-regulator for a broad range of applications, and highlights the capabilities of the NCV881930 controller.

It is intended for the power supply designer to adopt the circuit directly into a typical system design, making only minimal component changes based on the system requirements.

The design is meant to be a complete solution, but it also provides access to key features of the NCV881930. These include integrated compensation, low I_Q and continuous synchronous mode, wide input range, overcurrent protection, external synchronization, adaptive non–overlap drivers, integrated spread–spectrum, and under voltage lockout.

Key Features

- Complete Automotive Reference Design
- Synchronous Buck Converter with an Input Voltage Range between 6.0 to 16.0 V, Handles Peaks Up to 40 V
- 410 kHz Switching Frequency for Maximum Efficiency
- NCV881930 Low Quiescent Current Automotive Synchronous Buck Converter and Four NVMFS5C460NL 40 V N-channel MOSFET
- Small Form Factor PCB with Four Layers

Specifications

Table 1. SPECIFICATIONS TABLE					
Device	NCV881930				
Application	Automotive Pre-Regulator				
Input Voltage	6 V to 16 V DC, 40 V Peak				
Output Power	Up to 100 W				
Тороlоду	Synchronous Buck				
Isolation	Non-Isolated				
Output Voltage	5.0 V				
Nominal Current	15.0 A 20.0 A (Peak)				

Table 1. SPECIFICATIONS TABLE

SCHEMATICS

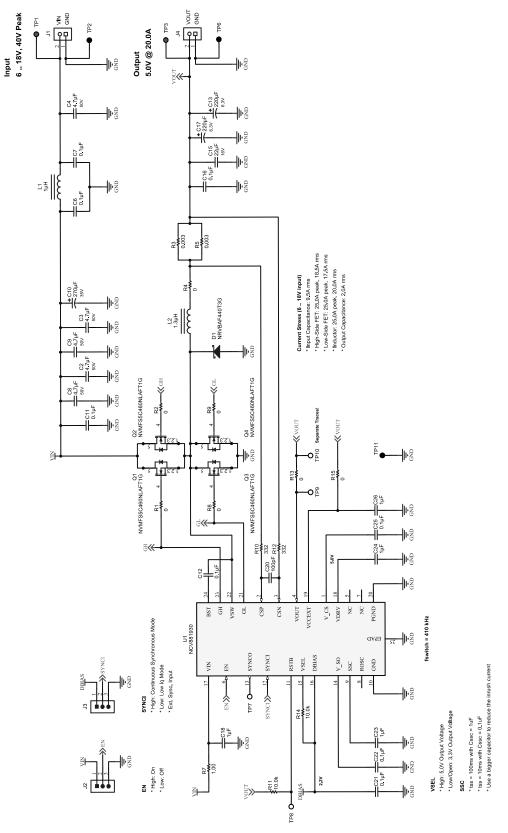


Figure 2. NCV881930 Synchronous Buck Schematic

BOARD LAYOUT

Figure 3, 4, 5 and 6 shows the top and bottom assembly and the four layers of the PCB. The PCB is 47 mm \times 100 mm

(length \times width) where the height of the PCB is approximately 12.5 mm.

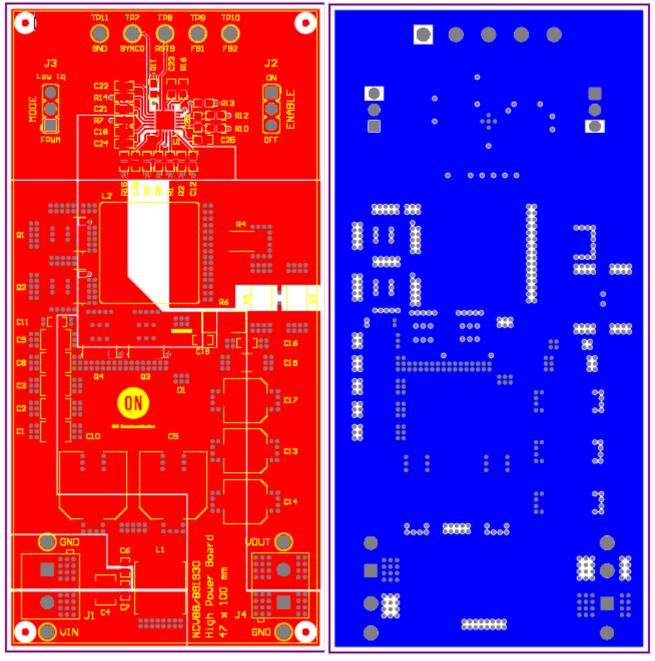


Figure 3. Top Layer and Assembly Drawing

Figure 4. Bottom Layer and Assembly Drawing

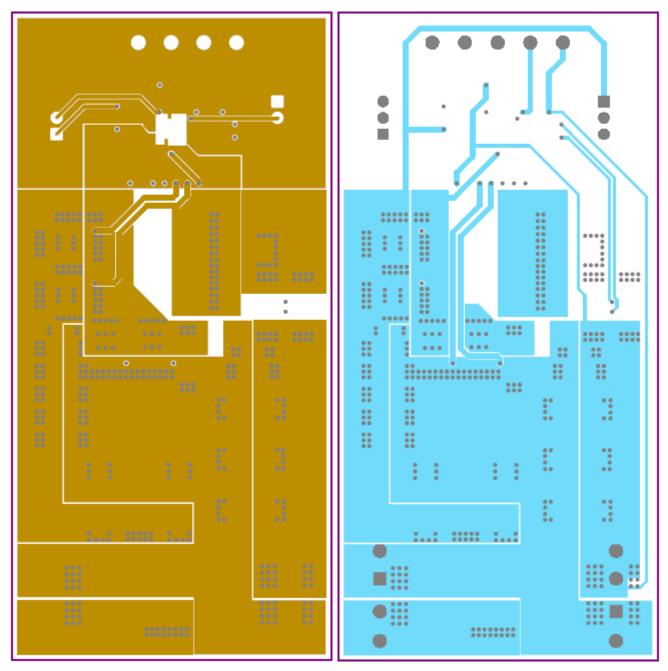


Figure 5. Inner Top Layer

Figure 6. Inner Bottom Layer

PERFORMANCE SUMMARY

Output Voltage

NCV881930 has two fixed output voltage options, 3.3 V and 5.0 V. By pulling VSEL pin to DBIAS using a 10 k Ω resistor, the output voltage is set to 5.0 V. Leaving VSEL floating or connecting it to GND, sets the output voltage to 3.3 V.

Depending on the output current, a modification of the power stage (inductor, shunt, and output capacitance) might

be necessary. Therefore please refer to Table 6 in the datasheet.

Efficiency

The efficiency for continuous synchronous mode is shown in Figure 7. This measurement does take into account the losses in the input filter (inductor L1).

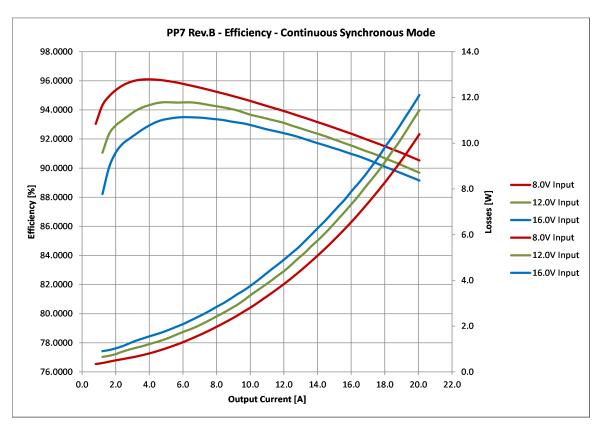


Figure 7. Efficiency for 8.0, 12.0 and 16.0 V Input Voltage

Thermal Image

The thermal images show the board at an ambient temperature of 21° C with an input voltage of 12.0 V, 10.0 A (Figure 8) and 15.0 A (Figure 9) load.

Component	VIN = 12.0 V @ 10.0 A	VIN = 12.0 V @ 15.0 A	
Controller	51.2°C	61.0°C	
Upper FETs	74.4°C	87.4°C	
Lower FETs	66.7°C	85.3°C	
Inductor	58.0°C	80.5°C	

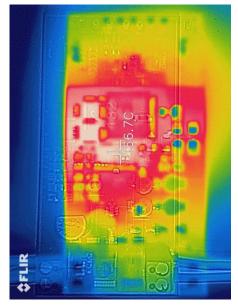


Figure 8. Thermal Image at 10.0 A Load

Figure 9. Thermal Image at 15.0 A Load

Transient Response

The response to a load step from 10.0 A to 20.0 A and vice versa at 12.0 V input voltage is shown in Figure 10.

Channel 1

- Output voltage, -147 mV (-2.94%) undershoot, +147 mV (+2.94%) overshoot
- $\bullet~100$ mV/div, 100 $\mu s/div,$ AC coupled

Channel 2

- Output current, load step 20.0 to 10.0 A and vice versa
- ◆ 10 A/div, 100 µs/div


Figure 10. Transient Response on 20.0 A to 10.0 A Load Step Down and 10.0 A to 20.0 A Load Step Up

Frequency Response

The frequency response at 12.0 V input voltage and 10.0 A and 20.0 A load is shown in Figure 11 and Figure 12.

FREQUENCY RESPONSE

Input Voltage	Output Current	Bandwidth	Phase Margin	Gain Margin
12.0 V	10.0 A	39.2 kHz	90.1°	–17.2 dB
12.0 V	20.0 A	38.1 kHz	92.8°	–15.3 dB

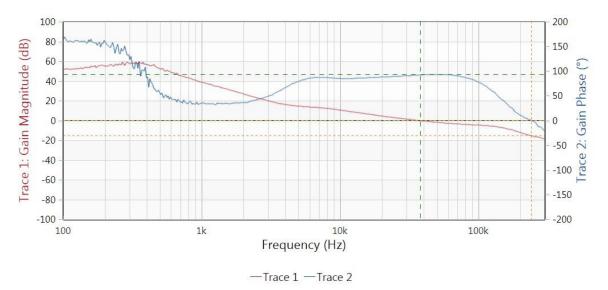


Figure 12. Frequency Response at 20.0 A Load

Impact of Output Capacitance Configuration on Performance

The datasheet of the NCV881930 gives detailed recommendations for the output filter configuration (inductance, shunt resistance, and output capacitance) dependent on the output voltage and current.

Table 2 shows the measurement results for various output capacitor configurations and their corresponding performance regarding ripple, transient response and phase margin.

Different sets of high capacitance ceramic and polymer capacitors were used for the measurements.

- 1x 100 nF, 50 V, 0603, X7R, always populated muRata GCJ188R71H104KA12D
- 22 μF ceramic, 16 V, 1210, X7R muRata GCM32ER71C226ME19L 18 μF @ 5.0 Vdc, 2 mΩ ESR @ 410 kHz
- 120 μF polymer Nichicon PCJ0J121MCL1GS 24 mΩ ESR @ 100 kHz
- 220 μF polymer Nichicon PCJ0J221MCL1GS 15 mΩ ESR @ 100 kHz

Polymer: 220 μF, 6.3 V	2	1	0	# of caps
Polymer: 120 μF, 6.3V	0	0	3	# of caps
Ceramic: 22 µF, 16 V	1	1	1	# of caps
Output Ripple, peak-peak	145	162	96	[mV]
Output Ripple, peak-peak	2.90	3.24	1.92	[%]
Transient Response, peak-peak	±147	-183 / +157	-153 / +137	[mV]
Transient Response, peak-peak	2.94	3.66 / 3.14	3.06 / 2.74	[%]
Bandwidth	38.1	66.6	34.5	[kHz]
Phase Margin	92.8	69.4	80.3	[°]

BILL OF MATERIALS (BOM)

Table 3. BILL OF MATERIALS

Designator	Qty.	Value	Part Number	Manufacturer	Description	Package
C2, C3, C4, C8, C9	5	4.7 μF	GCJ32ER71H475KA12	MuRata	CAP, CERM, 4.7 μF, 50 V, ±10%, X7R, 1210	1210
C6, C7, C11, C12, C16, C21, C22, C25	8	0.1 μF	GCJ188R71H104KA12	MuRata	CAP, CERM, 0.1 μF, 50 V, ±10%, X7R, AEC-Q200 Grade 1, 0603	0603
C10	1	270 μF	GYA1V271MCQ1GS	Nichicon	CAP, Conductive Polymer Hybrid Aluminum Electrolytic, 270 μF, 35 V, ±20%, 0.020 Ω, 10x10.3 SMD	10.3x10.3x10.3
C13, C17	2	220 μF	PCJ0J221MCL1GS	Nichicon	CAP, Conductive Polymer Aluminum Capacitor 220 μF, 6.3 V, ±20%, 0.015 Ω, AEC-Q200 Grade 2, SMD	D6.3xL6.Ω
C15	1	22 μF	GCM32ER71C226KE19L	MuRata	CAP, CERM, 22 μF, 16 V, ±10%, X7R, 1210	1210
C18, C23, C24, C26	4	1 μF	GCJ188R71E105KA01D	MuRata	CAP, CERM, 1 μF, 25 V, ±10%, X7R, AEC-Q200 Grade 1, 0603	0603
C20	1	100 pF	GRM1885C1H101JA01D	MuRata	CAP, CERM, 100 pF, 50 V, ±5%, C0G/NP0, 0603	0603
D1	1	40 V	NRVBAF440T3G	ON Semiconductor	Diode, Schottky, 40 V, 4 A, SMA–FL	SMA-FL
FID1, FID2, FID3, FID4	4		N/A	N/A	Fiducial mark. There is nothing to buy or mount.	N/A
J1, J4	2		ED120/2DS	On–Shore Technology	Terminal Block, 5.08 mm, 2x1, Brass, TH	2x1 5.08 mm Terminal Block
J2, J3	2		61300311121	Wurth Elektronik	Header, 2.54 mm, 3x1, Gold, TH	Header, 2.54 mm, 3x1, TH
L1	1	1.5 μH	XAL7030-102MEB	Coilcraft	Inductor, Shielded, Composite, 1 μH, 21.8 A, 0.00455 Ω, SMD	XAL7030
L2	1	1.3 μH	XAL1580-132MEB	Coilcraft	Inductor, Shielded, Composite, 1.3 μH, 46.7 A, 0.00115 Ω, SMD	15.2x8x16.2 mm
Q1, Q2, Q3, Q4	4	40	NVMFS5C460NLAFT1G	ON Semiconductor	MOSFET, N–CH, 40 V, 78 A, DFN5 5x6 mm	DFN5 5x6 mm
R1, R2, R8, R9, R13, R15	6	0	CRCW06030000Z0EA	Vishay-Dale	RES, 0, 5%, 0.1 W, 0603	0603
R3, R5	2	0.003	ERJ-M1WTF3M0U	Panasonic	RES, 0.003, 1%, 1 W, 2512	2512
R4	1	0	CRCW25120000Z0EG	Vishay-Dale	RES, 0, 5%, 1 W, AEC-Q200 Grade 0, 2512	2512
R7	1	1.00	CRCW06031R00FKEA	Vishay-Dale	RES, 1.00, 1%, 0.1 W, 0603	0603
R10, R12	2	332	CRCW0603332RFKEA	Vishay-Dale	RES, 332, 1%, 0.1 W, 0603	0603

Designator	Qty.	Value	Part Number	Manufacturer	Description	Package
R11, R14	2	10.0k	CRCW060310K0FKEA	Vishay-Dale	RES, 10.0 k, 1%, 0.1 W, 0603	0603
TP1, TP3	2		5000	Keystone	Test Point, Miniature, Red, TH	Red Miniature Testpoint
TP2, TP6, TP11	3		5001	Keystone	Test Point, Miniature, Black, TH	Black Miniature Testpoint
TP7, TP8, TP9, TP10	4		5002	Keystone	Test Point, Miniature, White, TH	White Miniature Testpoint
U1	1		NCV881930MW00R2G	ON Semiconductor	Low Quiescent Current 410 kHz Automotive Synchronous Buck Controller	QFNW-24

Table 3. BILL OF MATERIALS (continued)

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor hy such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative