

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor and is officers, employees, uniotificated use, even if such claim any manner.

January 2014

KSC5502 NPN Planar Silicon Transistor

Features

- High-Voltage Power Switch Mode Application
- Small Variance in Storage Time
- Wide Safe Operating Area
- Suitable for Electronic Ballast Application

1.Base 2.Collector 3.Emitter

Ordering Information

Part Number	Marking	Package	Packing Method
KSC5502TU	J5502	TO-220	Tube

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_A = 25^{\circ}$ C unless otherwise noted.

Symbol	Parameter	Value	Unit
V _{CBO}	Collector-Base Voltage	1200	V
V _{CEO}	Collector-Emitter Voltage	600	V
V _{EBO}	Emitter-Base Voltage	12	V
۱ _C	Collector Current (DC)	2	Α
I _{CP}	Collector Current (Pulse) ⁽¹⁾	4	A
Ι _Β	Base Current (DC)	1	A
I _{BP} Base Current (Pulse) ⁽¹⁾		2	A
T _J Junction Temperature		150	°C
T _{STG} Storage Junction Temperature Range		-65 to +150	°C
EAS	Avalanche Energy (T _J = 25°C)	2.5	mJ

Notes:

1. Pulse test: pulse width = 5 ms, duty cycle $\leq 10\%$

Thermal Characteristics

Values are at $T_A = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Max.	Unit
P _C	Collector Dissipation ($T_C = 25^{\circ}C$)	50	W
$R_{\theta JC}^{(2)}$	Thermal Resistance, Junction to Case	2.5	°C/W
$R_{\theta JA}^{(3)}$	Thermal Resistance, Junction to Ambient	85	°C/W

Notes:

2. $R_{\theta JC}$ test fixture under infinite cooling condition.

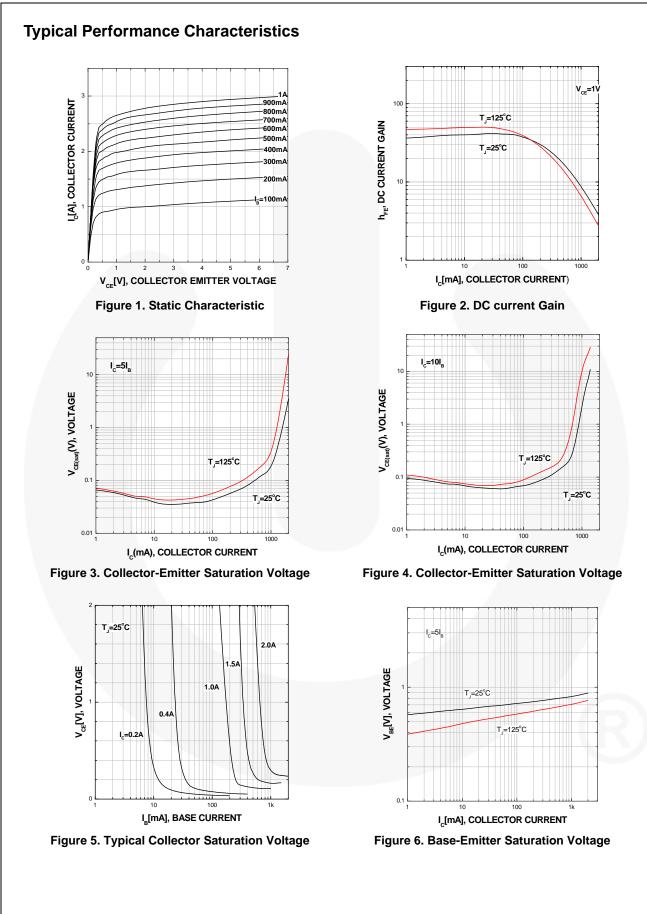
3. $R_{\theta JA}$ test board and fixture under natural convection, JESD51-10 recommended thermal test board.

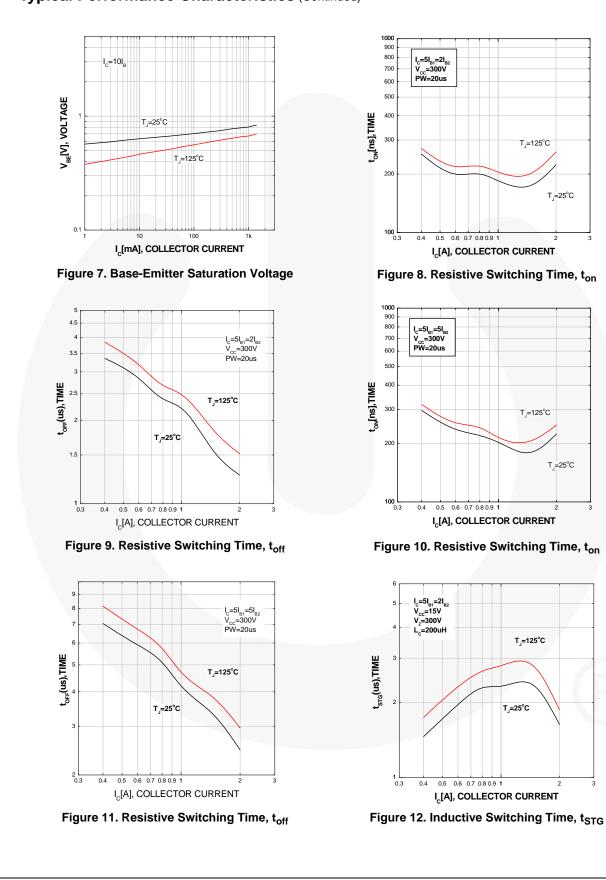
Electrical Characteristics⁽⁴⁾

Values are at $T_C = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Conditions		Min.	Тур.	Max.	Unit
BV _{CBO}	Collector-Base Breakdown Voltage	$I_{\rm C} = 1 {\rm mA}, I_{\rm E} = 0$		1200	1350		V
BV _{CEO}	Collector-Emitter Breakdown Voltage	$I_{\rm C} = 5 \text{ mA}, I_{\rm B} = 0$	I _C = 5 mA, I _B = 0		750		V
ΒV _{EBO}	Emitter-Base Breakdown Voltage	I _E = 500 μA, I _C =0		12.0	13.2		V
	Collector Cut-Off Current	$V_{CES} = 1200 \text{ V}, V_{BE} = 0$	$T_C = 25^{\circ}C$			100	
ICES	Collector Cut-On Current	$v_{CES} = 1200 v, v_{BE} = 0$	T _C = 125°C			500	μA
	Collector Cut-Off Current	V _{CE} = 600 V, I _B = 0	$T_C = 25^{\circ}C$			100	
I _{CEO}	Collector Cut-On Current	$v_{CE} = 600 v, I_B = 0$	T _C = 125°C			500	μA
I _{EBO}	Emitter Cut-Off Current	$V_{EB} = 12 \text{ V}, \text{ I}_{C} = 0$	T _C = 25°C			10	μΑ
	DC Current Gain	V 4VI 024	$T_C = 25^{\circ}C$	15	28	40	
		$V_{CE} = 1 V, I_{C} = 0.2 A$	T _C = 125°C	8	27		
h			$T_C = 25^{\circ}C$	4.0	8.7		
h _{FE}		$V_{CE} = 1 V, I_{C} = 1 A$	T _C = 125°C	3.0	6.6		
		V _{CE} = 2.5 V, I _C = 0.5 A	$T_C = 25^{\circ}C$	12	20	30	
			T _C = 125°C	6	16		
V _{CE} (sat)	Collector-Emitter Saturation Voltage	$I_{\rm C} = 0.2 \text{ A}, I_{\rm B} = 0.02 \text{ A}$	$T_C = 25^{\circ}C$		0.09	0.80	
			T _C = 125°C		0.13	1.10	
		$I_{\rm C} = 0.4$ A, $I_{\rm B} = 0.08$ A	$T_C = 25^{\circ}C$		0.08	0.60	V
			T _C = 125°C		0.12	1.00	V
		I _C = 1 A, I _B = 0.2 A	$T_C = 25^{\circ}C$		0.19	1.50	
			T _C = 125°C		0.35	3.00	
V _{BE} (sat)	Base-Emitter Saturation Voltage	I _C = 0.4 A, I _B = 0.08 A	T _C = 25°C		0.77	1.00	
			T _C = 125°C		0.65	0.90	
		$l_{0} = 1 A l_{0} = 0.2 A$	T _C = 25°C		0.83	1.20	V
			T _C = 125°C		0.70	1.00	
C _{ib}	Input Capacitance	$V_{EB} = 8 V, I_{C} = 0, f = 1$	I MHz		410	500	pF
C _{ob}	Output Capacitance	V _{CB} = 10 V, I _E = 0, f =	1 MHz		20	100	pF

Note:


4. Pulse test : pulse width = 5 ms, duty cycle \leq 10%


Electrical Characteristics (Continued)

Values are at $T_C = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter Conditions		s	Min	Тур.	Max.	Unit
		$I_{\rm C} = 0.4 \text{ A}, I_{\rm B1} = 80 \text{ mA},$	at 1µs		11		
		$V_{CC} = 300 \text{ V}$	at 3µs		8		- V
V _{CE} (DSAT)	Dynamic Saturation Voltage	I _C = 1 A, I _{B1} = 200 mA,	at 1µs		23		
		$V_{CC} = 300$ V	at 3µs		13		
Resistive L	oad Switching (D.C <u><</u> 10%, Pulse	Width = 20 s)					
+	Turn-On Time	I _C = 0.4 A,	$T_C = 25^{\circ}C$		250	350	- ns
t _{ON}		$I_{B1} = 80 \text{ mA},$ - $I_{B2} = 0.2 \text{ A},$	T _C = 125°C		260		
t	Turn-Off Time	$V_{B2} = 0.2 \text{ A},$ $V_{CC} = 300 \text{ V},$	$T_C = 25^{\circ}C$		3.3	4.0	μs
t _{OFF}		$R_L = 750 \Omega$	T _C = 125°C		3.8		
+	Turn On Time	$I_{\rm C} = 1 \rm A,$	$T_C = 25^{\circ}C$		220	450	ns
t _{ON}	Turn-On Time	$I_{B1} = 160 \text{ mA},$	T _C = 125°C		250		
	Turn Of Time	$I_{B2} = 160 \text{ mA},$ V _{CC} = 300 V, R _L = 300 Ω	$T_C = 25^{\circ}C$		4.3	5.0	μs
tOFF	Turn-Off Time		$T_{C} = 125^{\circ}C$		5.0		
Inductive L	oad Switching (V _{CC} = 15 V)						
t _{STG}	Storage Time	I _C = 0.4 A,	$T_C = 25^{\circ}C$		1.4	2.0	μs
			$T_{C} = 125^{\circ}C$		1.7		
t _F	Fall Time	$I_{B1} = 80 \text{ mA},$	$T_C = 25^{\circ}C$		130	200	- ns
		$I_{B2} = 0.2 \text{ A},$ $V_7 = 300 \text{ V},$	$T_{C} = 125^{\circ}C$		80		
t _C	Orange Orang Times	$L_{\rm C} = 200 \mu{\rm H}$	$T_C = 25^{\circ}C$		210	350	ns
	Cross-Over Time		$T_{C} = 125^{\circ}C$		130		
	Storogo Time		$T_C = 25^{\circ}C$		4.9	5.5	μs
t _{STG}	Storage Time	I _C = 0.8 A,	$T_{C} = 125^{\circ}C$		5.3		
t _F Fall Time		$I_{B1} = 160 \text{ mA},$	$T_C = 25^{\circ}C$		170	250	- ns
		$I_{B2} = 160 \text{ mA},$ $V_{CC} = 300 \text{ V},$	$T_{C} = 125^{\circ}C$		340		
	Cross Over Time	$L_{\rm C} = 200 \mu{\rm H}$	$T_C = 25^{\circ}C$		300	600	ns
t _C	Cross-Over Time		T _C = 125°C		810		

KSC5502 — NPN Planar Silicon Transistor

Typical Performance Characteristics (Continued)

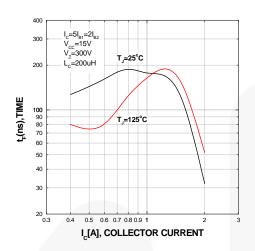


Figure 13. Inductive Switching Time, t_F

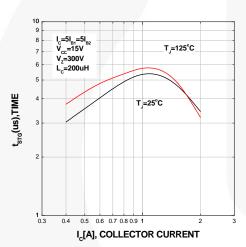
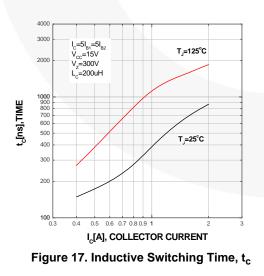



Figure 15. Inductive Switching Time, tSTG

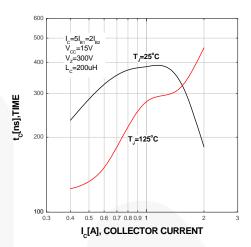


Figure 14. Inductive Switching Time, t_c

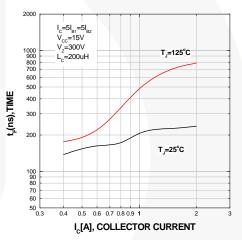
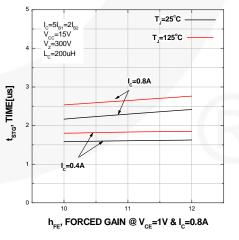
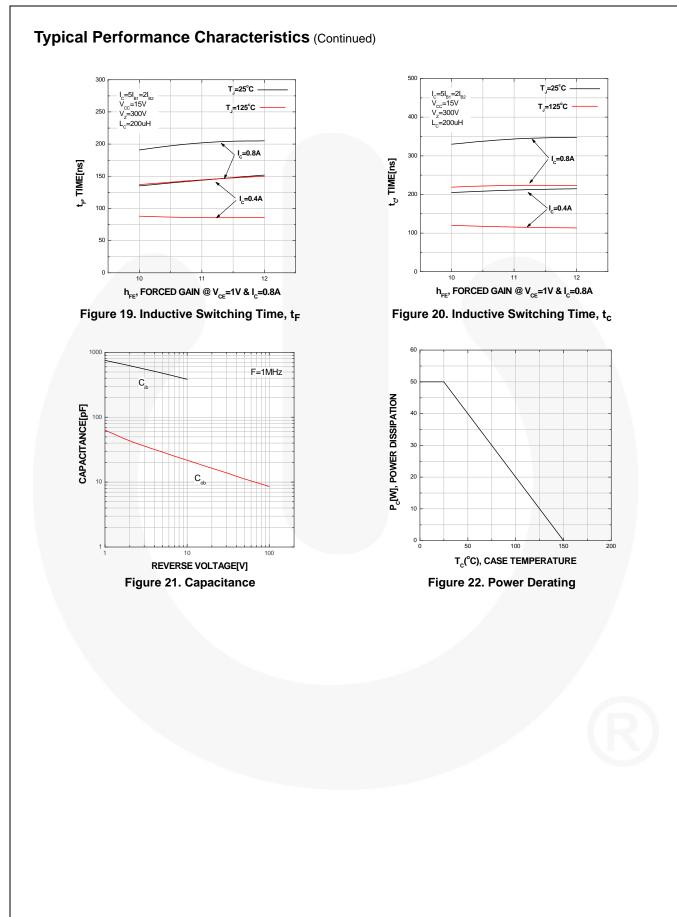
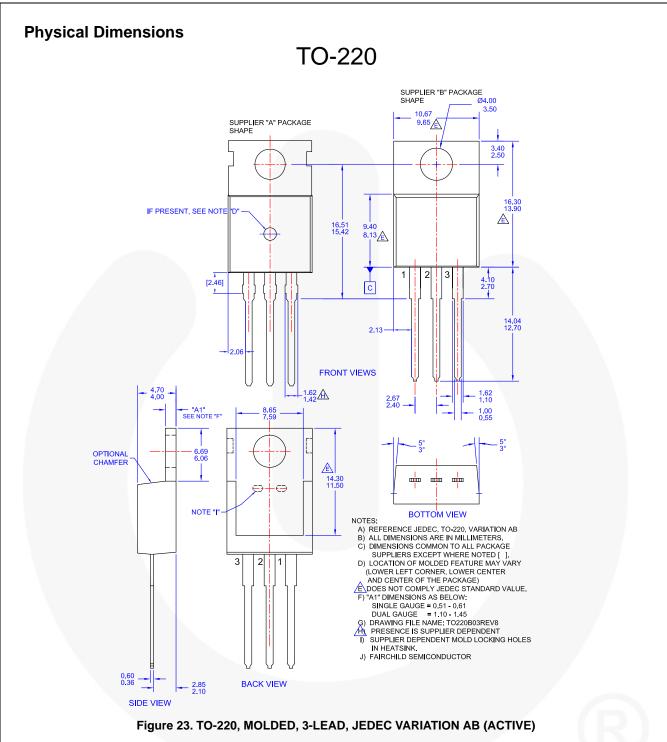





Figure 16. Inductive Switching Time, t_F

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: <u>http://www.fairchildsemi.com/dwg/TO/TO220B03.pdf</u>.

For current tape and reel specifications, visit Fairchild Semiconductor's online packaging area: <u>http://www.fairchildsemi.com/packing_dwg/PKG-T0220B03.pdf</u>.

FAIRCHILD

SEMICONDUCTOR

TRADEMARKS

AccuPower™

Build it Now™

CorePLUS™

DEUXPEED®

Dual Cool™

EcoSPARK[®]

EfficientMax™

®

Fairchild®

FACT

FAST®

FPS™

FastvCore™

FETBench™

FACT Quiet Series™

ESBC™

CorePOWER™

CROSSVOLT™

Current Transfer Logic™

AX-CAP®,

BitSiC™

CTL™

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

F-PFS™ FRFET® Global Power Resource[™] GreenBridge™ Green FPS™ Green FPS™ e-Series™ Gmax™ GTO™ IntelliMAX™ ISOPLANAR™ Making Small Speakers Sound Louder and Better™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ Fairchild Semiconductor® MillerDrive™ MotionMax™ mWSaver OptoHiT™ **OPTOLOGIC[®] OPTOPLANAR[®]**

PowerTrench[®] PowerXS^T Programmable Active Droop™ QFET QS™ Quiet Series™ RapidConfigure™ ◯™ Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM[®] STEALTH™ SuperFET[®] SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS[®] SyncFET™

TinyBoost[®] TinyBuck

Sync-Lock™

TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT®* μSerDes™

UHC[®] Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XS™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

		Defi	nitior	۱ of ٦	「erms
--	--	------	--------	--------	-------

Datasheet Identification	Product Status	Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

Rev. 166

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC