ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

125 kbps with AMIS-4168x

ON Semiconductor®

http://onsemi.com

APPLICATION NOTE

Introduction Question

"Is it possible to drive 125kB with the AMIS-41682?" Please consider all possible CAN bit timings (TSEG1, TSEG2, SJW), a capacitive load at each can pin about 300 pF and l = 20m line (5 ns/m) length. Please investigate different communication scenarios (e.g. arbitration).

Conclusion

The maximum propagation delay measured at 125 kB is 1.555μ s. This is for 270 pF capacitive load and a bus length of 20m. When using the AMIS-41682, the user has to

program the CAN-controller in such a way that the propagation segment of a bit time accounts for two maximum propagation delays to ensure correct function of the bus during arbitration and acknowledgment. In our example, the propagation segment shall be at least 3.11 µs long.

If for instance the bit time is divided in 16 time quanta (t_q), t_q will be 0.5 μ s and the Prop_Seg has to be set to 7 t_q = 3.5 μ s. By applying this CAN-controller setting, it's ensured that the bus signal will be sampled correctly in all situations.

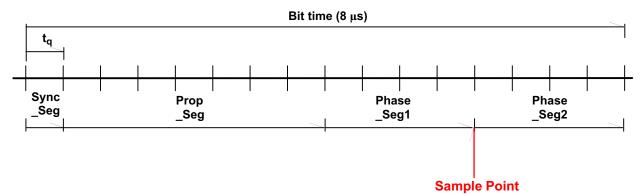


Figure 1. Example of CAN-Controller Setting Suitable for 125kB Operation with AMIS-4168x

Overall, it is not a problem to drive 125 kB with the AMIS-41682.

Performed Measurements

Propagation delay between Tx_1 and Rx_1 (transceiver 1) and Tx_1 and Rx_2 (receive transceiver 2) for different cable length, and CANL/CANH termination of 220 Ω . Used equipment:

 Oscillator type: Hewlett–Packard 3310A Function Generator; frequency 62.5 kHz (t_{bit} = 8 μs)

- Oscilloscope type: Agillent Infiniium 600 MHz, 4 GSa/s
- Power supply: Thurlby Thandar Instruments PL310QMD
- Cable: Alcatel TIA/EIA 568–B.2 Category 5e; 100 Ω; propagation delay: 570 ns/100m at 1 MHz

The circuit shown in was Figure 2 used for the measurement.

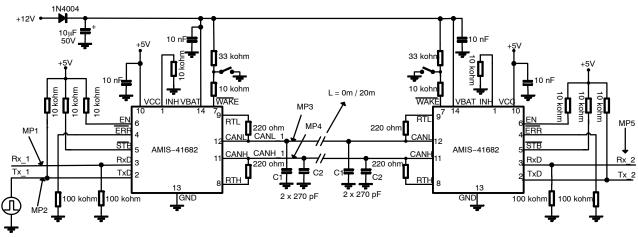


Figure 2. Measurement Set-Up

Measurements Results

Propagation delay (see data sheet) L -> H and H -> L for different bus configurations. T_{bit} = 8 μs T_{amb} = 25°C

Table 1. MEASURED PROPAGATION DELAYS

Symbol	Parameter	Condition	Value	Comment
t _{PD(H)}	Propagation delay Tx_1 to Rx_1 high	$C_1 = C_2 = 270 \text{ pF}$ L = 0m	1.041 μs	See Figure 3
t _{PD(L)}	Propagation delay Tx_1 to Rx_1 low	$C_1 = C_2 = 270 \text{ pF}$ L = 0m	1.107 μs	See Figure 4
t _{PD(H)}	Propagation delay Tx_1 to Rx_2 high	$C_1 = C_2 = 270 \text{ pF}$ L = 0m	1.051 μs	See Figure 5
t _{PD(L)}	Propagation delay Tx_1 to Rx_2 low	$C_1 = C_2 = 270 \text{ pF}$ L = 0m	1.110 μs	See Figure 6
t _{PD(H)}	Propagation delay Tx_1 to Rx_1 high	$C_1 = C_2 = 270 \text{ pF}$ L = 20m	1.536 μs	See Figure 7
t _{PD(L)}	Propagation delay Tx_1 to Rx_1 low	$C_1 = C_2 = 270 \text{ pF}$ L = 20m	1.176 μs	See Figure 8
t _{PD(H)}	Propagation delay Tx_1 to Rx_2 high	$C_1 = C_2 = 270 \text{ pF}$ L = 20m	1.555 μs	See Figure 9
t _{PD(L)}	Propagation delay Tx_1 to Rx_2 low	C ₁ = C ₂ = 270 pF L = 20m	1.244 μs	See Figure 10

Measurements Cable Length 0m

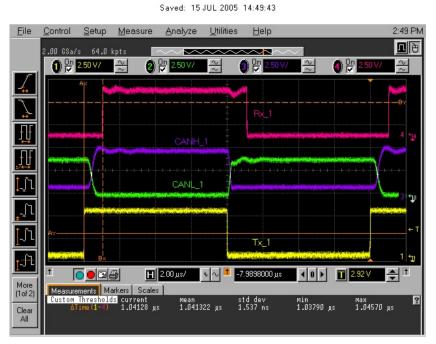
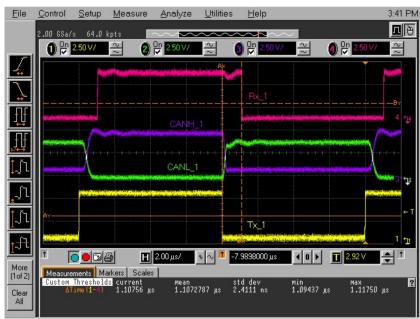
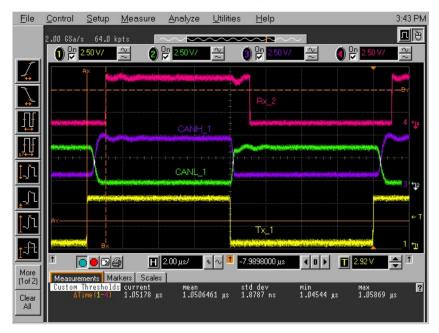




Figure 3. Propagation Delay $t_{PD(H)}$ Between Tx_1 and Rx_1 at 125kB and Cable Length 0m = 1.041 μ s

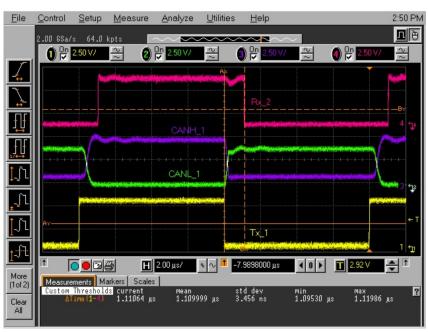
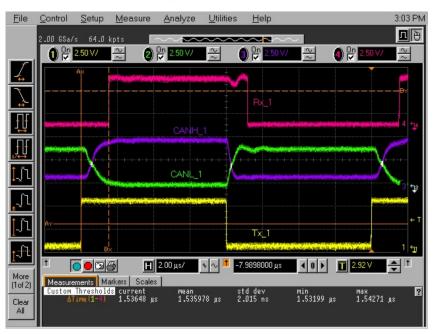
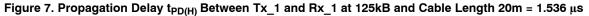
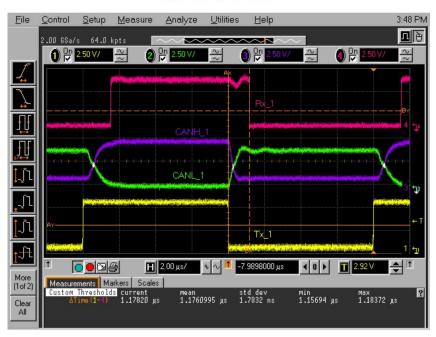

Saved: 15 JUL 2005 15:41:33

Figure 4. Propagation Delay $t_{PD(L)}$ Between Tx_1 and Rx_1 at 125kB and Cable Length 0m = 1.107 μ s

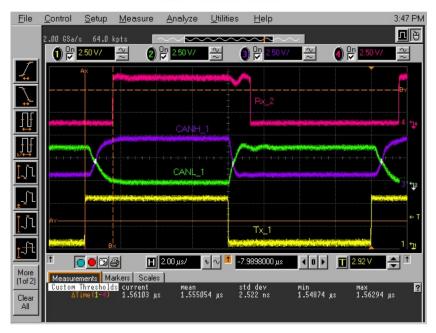
Saved: 15 JUL 2005 15:43:18


Figure 5. Propagation Delay $t_{PD(H)}$ Between Tx_1 and Rx_2 at 125kB and Cable Length 0m = 1.051 μ s


Saved: 15 JUL 2005 14:50:35


Figure 6. Propagation Delay $t_{PD(L)}$ Between Tx_1 and Rx_2 at 125kB and Cable Length 0m = 1.110 μ s

Measurements Cable Length 20m


Saved: 15 JUL 2005 15:03:41

Saved: 15 JUL 2005 15:48:16

Figure 8. Propagation Delay $t_{PD(L)}$ Between Tx_1 and Rx_1 at 125kB and Cable Length 20m = 1.176 μ s

Saved: 15 JUL 2005 15:47:10

Figure 9. Propagation Delay $t_{PD(H)}$ Between Tx_1 and Rx_2 at 125kB and Cable Length 20m = 1.555 μ s



Figure 10. Propagation Delay $t_{PD(L)}$ Between Tx_1 and Rx_2 at 125kB and Cable Length 20m = 1.244 μ s

Company or Product Inquires

For more information about ON Semiconductor's CAN/LIN transceivers, send an email to http://www.onsemi.com/sales.

For more information about ON Semiconductor's products or services visit our Web site at <u>http://www.onsemi.com</u>.

ON Semiconductor and images are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the Follure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized to all application expert or diverse and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5773–3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative