# **ON Semiconductor**

# Is Now



To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

# AMIS-30600 LIN Transceiver Low Power Consumption



ON Semiconductor®

http://onsemi.com

#### Introduction

This document describes how the AMIS-30600 LIN transceiver can be used in low power environments.

#### Questions

How can I consume less power when the AMIS–30600 is disabled ( $V_{EN}$  = 0 V) and what will be the effect on the TxD–, RxD–, INH–, and EN–pin when data is transmitted over the LIN–bus?

#### Conclusion

Although the AMIS-30600 offers a sleep mode, it is possible that the power consumption is still too high in some applications. To reduce power consumption,  $V_{CC}$ ,  $V_{bat}$  and the LIN pullup resistor can be disconnected without any unwanted effects on the TxD-, RxD-, EN-, and INH-pin<sup>1</sup>.

In the Conclusion and Advised Application Schematic Section, an advised application schematic is provided to reduce the AMIS–30600 supply current  $I_{\rm CC}$  and total battery current consumption  $I_{\rm bat}$  to 0 A (microcontroller ignored and ideal 5 V voltage regulator(s) assumed). In this way the AMIS–30600 power consumption will be very low.

#### General

The single-wire transceiver AMIS-30600 is a monolithic integrated circuit in a SOIC-8 package. It works as an interface between the protocol controller and the physical bus.

## APPLICATION NOTE

The AMIS-30600 is especially suitable to drive the bus line in LIN systems in automotive and industrial applications. Further it can be used in standard ISO9141 systems.

In order to reduce the current consumption the AMIS-30600 offers a sleep mode. A wakeup caused by a message on the bus pulls the INH-output high until the device is switched to normal operation mode.

For more info about the AMIS-30600 LIN transceiver I refer to the AMIS-30600 datasheet (<u>www.onsemi.com</u>).

## **Test Setup**

To consume less power when the AMIS-30600 is in sleep mode<sup>2</sup>, three possible setups will be examined.

In the first setup,  $V_{BB}$  will be disconnected or connected to ground<sup>3</sup> (Figure 1:  $V_{BB}$  Disconnected or Connected to Ground). The behavior of the TxD-, RxD-, INH-, and EN-pin will be examined when  $V_{LIN}$  is between -40 V and +40 V (-40 V <  $V_{LIN}$  < +40 V) as also the current in these pins will be measured. Additional, the current consumption of the  $V_{CC}$ -pin (AMIS-30600) and the battery current consumption ( $I_{bat}$ ) will be measured.

This test will be done with the INH-pin connected to an I/O-pin of the microcontroller (by using a 12 V-to-5 V converter) and with the INH-pin pulled to ground (with a 22k resistor).

- 2. A wakeup caused by a message on the communication bus automatically puts AMIS-30600 in stand-by mode and switches the INH-pin to high output.
- 3. Connected to ground without resistor, capacitor or other component.

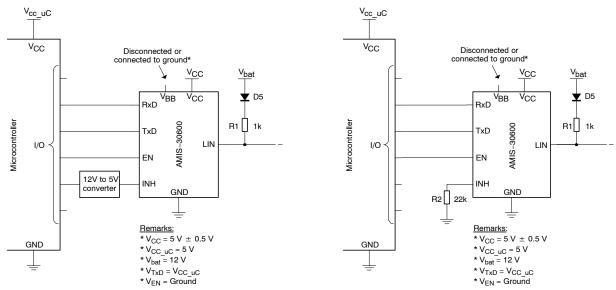



Figure 1.  $V_{\mbox{\footnotesize{BB}}}$  Disconnected or Connected to Ground

In the second test (Figure 2) similar setup will be used but  $V_{CC}$  will also be disconnected or connected to ground<sup>4</sup>.

Similar behaviors and current consumptions will be examined as the first test.

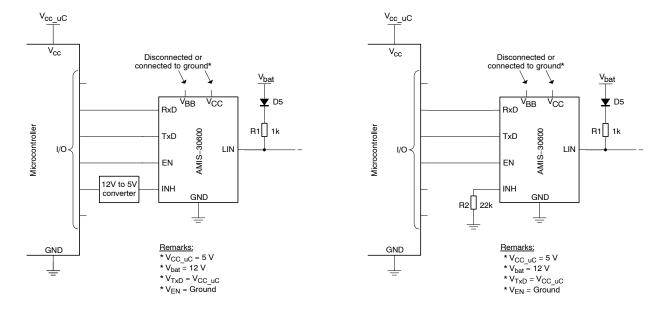



Figure 2. V<sub>BB</sub> Disconnected or Connected to Ground

4. Connected to ground without resistor, capacitor or other component.

For the last test, the LIN pullup resistor will also be disconnected (see Figure 3).

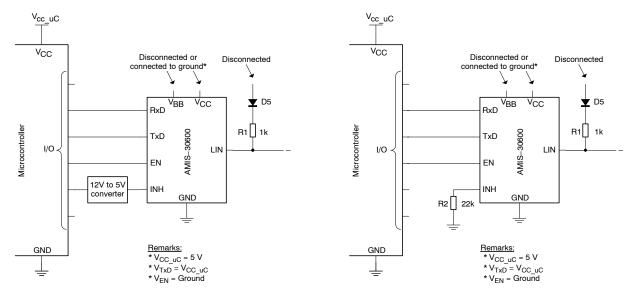



Figure 3. LIN Pullup Resistor Disconnected

Next equipment was used for the measurements:

- Power Supply: Thurlby Thandar Instruments PL330QMD and PL310QMD Philips PE1542
- Curve Tracer: Tektronix Curve Tracer Type 576
- μA–Meter: Keithley 2400 Sourcemeter
- Oscilloscope: Tektronik TDS2014, four channel oscilloscope, 100 MHz, 1 GS/s

**Remark**: For the next tests, the 12 V-to-5 V converter has a high input impedance. In Addendum Section some example schematics of simple 12 V-to-5 V converters are given. They are however not all high impedant.

# **Technical Information**

To examine the effects on the TxD-, RxD-, EN-, and INH-pin a more detailed view of the pins will be given.

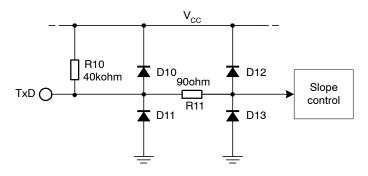



Figure 4. AMIS-30600 TxD-Pin

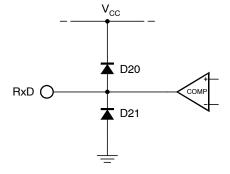



Figure 5. AMIS-30600 RxD-Pin

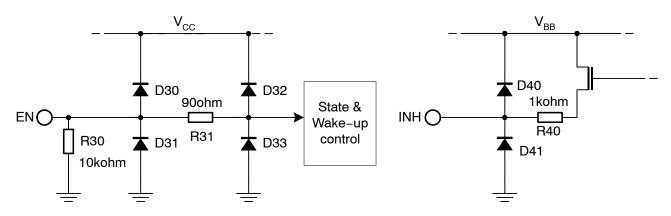



Figure 6. AMIS-30600 EN-Pin

Figure 7. AMIS-30600 INH-Pin

The diodes given in above figures are ESD protection diodes.

#### **Test Results**

All tests were done under next test conditions:

- $-40 \text{ V} < \text{V}_{\text{LIN}} < +40 \text{ V}$
- $V_{CC} = 5 V \pm 0.5 V$
- $V_{CC\ uC} = 5 V$
- $V_{bat} = 12 V$
- $V_{TxD} = high = V_{CC uC} = 5 V$
- $V_{EN} = low = 0 V$
- $T_A = 25^{\circ}C$

All currents measured in next tests are measured when the LIN transceiver is disabled ( $V_{EN}$  = 0 V). Also, when  $V_{BB}$  or  $V_{CC}$  is connected to ground in next measurements, the connection to ground is made without a resistor, capacitor or

other component. The effect on the TxD-, RxD-, EN-, and INH-pin is examined and the total current consumption is measured.

It is advised to first read the application note "AMIS-30600: Special Supply Configuration".

# $V_{\mbox{\footnotesize{BB}}}$ Disconnected or Connected to Ground

**TxD-pin**:  $V_{BB}$  disconnected or connected to ground will have no effect on the TxD-pin (-40 V <  $V_{LIN}$  < +40 V, INH-pin connected with microcontroller through 12 V-to-5 V converter or connected with ground). The only thing to keep in mind is the difference between the supply voltage of the microcontroller and the AMIS-30600 (if there is no common power supply).

For instance, if the supply voltage of the microcontroller  $(V_{CC\_uC})$  is 5 V and the supply voltage of the AMIS-30600 is 4.5 V, the ESD protection diodes D10 and/or D12 could conduct (see Figure 8).

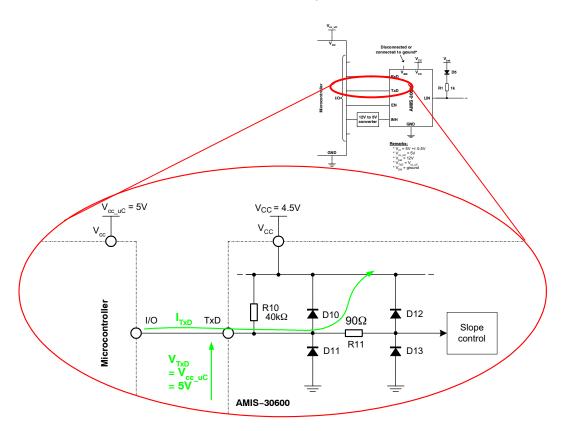



Figure 8. ESD Protection Diode D10 and/or D12 Conducts<sup>5</sup>

5. Figure displays set up where INH-pin is connected to microcontroller.

During our test, the ESD protection diodes D10 and/or D12 conducted at a forwarded voltage drop of about 550 mV. Because of this, ITxD of the AMIS-30600 is max

 $\pm\,12.5~\mu A^6~([V_{CC\_uC}-V_{CC}]$  / R10 with  $V_{CC}$  = 5 V  $\pm\,0.5$  V) (see Figure 9).

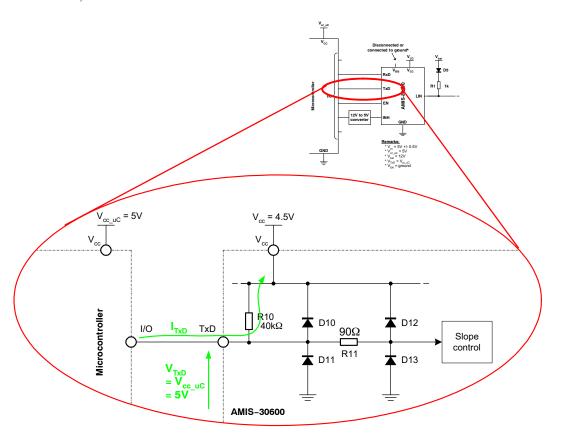



Figure 9.  $I_{TXD}$  when ESD Protection Diodes Don't Conduct<sup>7</sup>

- 6. Positive current means current is injected in TxD-pin of AMIS-30600.
- 7. Figure displays set up where INH-pin is connected with microcontroller.

**RxD-pin**: If EN-pin is pulled low,  $V_{RxD}$  will be high (=  $V_{CC}$  of AMIS-30600). A voltage on the LIN-pin will have no influence on the RxD-pin ( $V_{BB}$  disconnected or connected to ground, INH-pin connected to 12 V-to-5 V converter or pulled to ground).

Again, the only thing to keep in mind is the difference between power supplies. One would assume that this would not be a problem. The microcontroller I/O's however have in most cases ESD protection diodes. If for instance  $V_{CC\_uC}$  is 5 V and  $V_{CC}$  of AMIS–30600 is 5.5 V, ESD protection diode D1 could conduct (depends on ESD protection diode). See Figure 10: ESD Protection Diode D1 Conducts.

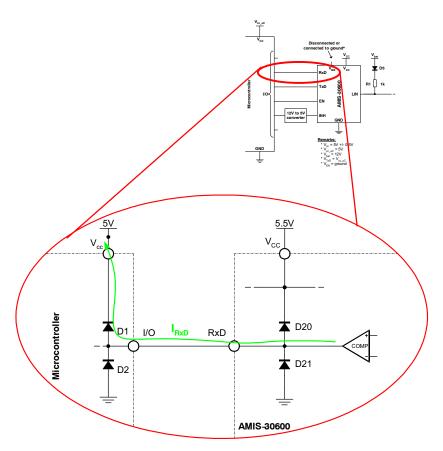



Figure 10. ESD Protection Diode D1 Conducts<sup>8</sup>

During our measurements, the current  $I_{RxD}$  was 36  $\mu A^9$ .

**EN-pin**: The EN-pin is pulled low by the microcontroller. A voltage on the LIN-bus will have no effect on this pin when  $V_{\rm BB}$  is disconnected or connected to ground and INH-pin connected to 12 V-to-5 V converter or to ground.

**INH-pin**: A voltage on the LIN-pin when  $V_{BB}$  is connected to ground will have no influence on the INH-pin when INH-pin is connected to microcontroller (via 12 V-to-5 V converter) or to ground by 22k ( $V_{INH}$  = 0 V).

If  $V_{BB}$  is disconnected,  $V_{BB}$  will be powered through  $V_{CC}$ . The voltage on the INH-pin will be maximum +3.5 V ( $V_{LIN}$  = +40 V) and minimum -500 mV ( $V_{LIN}$  = -40 V) if  $V_{CC}$  is 5.5 V and INH-pin connected with 12 V-to-5 V converter. If INH-pin is connected with ground through a 22k resistor,  $V_{INH}$  is maximum 500 mV and minimum -500 mV when  $V_{CC}$  = 5.5 V. The maximum current measured at the INH-pin is  $\pm 20~\mu A$ .

- 8. Figure displays set up where INH-pin is connected to microcontroller.
- 9. Negative current means current is injected.

Table 1 shows the  $\underline{\text{maximum}}$  current consumption for the different setups (see Figure 1:  $V_{BB}$  Disconnected or Connected to Ground).

| Table 1 MAXIMUM POWER CONSUMPTION WHEN Vo | R IS 12 V. DISCONNECTED OR CONNECTED TO GROUND |
|-------------------------------------------|------------------------------------------------|
|                                           |                                                |

|                                        | V <sub>BB</sub> = 12 V                                         |                       | V <sub>BB</sub> Disconnected |                                                                | V <sub>BB</sub> Connected to<br>Ground |                      |                       |
|----------------------------------------|----------------------------------------------------------------|-----------------------|------------------------------|----------------------------------------------------------------|----------------------------------------|----------------------|-----------------------|
|                                        | I <sub>CC</sub> (μA) (Note 1)                                  | I <sub>bat</sub> (mA) | I <sub>BB</sub> (mA)         | I <sub>CC</sub> (μA)                                           | I <sub>bat</sub> (mA)                  | I <sub>CC</sub> (μA) | I <sub>bat</sub> (mA) |
| INH-pin connected with microcontroller | -12 (V <sub>CC</sub> = 4.5 V)<br>100 (V <sub>CC</sub> = 5.5 V) | 52                    | 1.7                          | 350 (V <sub>CC</sub> = 4.5 V)<br>470 (V <sub>CC</sub> = 5.5 V) | 52<br>(Note 2)                         | 420                  | 52                    |
| INH-pin connected with ground          | -12 (V <sub>CC</sub> = 4.5 V)<br>100 (V <sub>CC</sub> = 5.5 V) | 52                    | 2.2                          | 350 (V <sub>CC</sub> = 4.5 V)<br>470 (V <sub>CC</sub> = 5.5 V) | 52                                     | 400                  | 52<br>(Note 2)        |

- Positive current means injected current in V<sub>CC</sub>-pin.
- 2.  $V_{IIN} = -40 \text{ V}$ .

For the current consumption only the current consumed by the AMIS-30600 ( $I_{CC}$  and  $I_{BB}$  if relevant) and the battery consumption ( $I_{bat}$ ) was measured (see Figure 11).

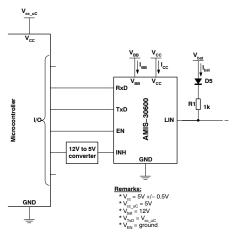



Figure 11. Current Consumption First Setup

In Table 1, one can see that the current consumption of the AMIS–30600 ( $I_{CC}$ ) is between –12  $\mu A$  and 100  $\mu A$  for  $V_{BB}$  = 12 V. The reason  $I_{CC}$  is negative when  $V_{CC}$  is 4.5 V is because  $V_{CC\_uC}$  is 5 V. When  $V_{CC}$  would be 5 V, the current  $I_{cc}$  would be less than 1  $\mu A$  (see also datasheet).

For  $V_{BB}$  disconnected or connected to ground,  $I_{CC}$  is significant higher. This is because there is a connection between  $V_{CC}$  and  $V_{BB}$  of the AMIS–30600 and  $V_{CC}$  will try to power  $V_{BB}$ .

The maximum current  $I_{bat}$  measured is in all cases 52 mA ( $V_{LIN}$  = -40 V). This can also be calculated as the voltage drop over R1 (1 k $\Omega$ ) divided by 1k. See also Figure 11.

If a decoupling capacitor would still be present on the  $V_{BB}$ -pin when  $V_{BB}$  is disconnected (see Figure 12), the

current consumption would be the same as  $V_{BB}$  disconnected (see Table 1).

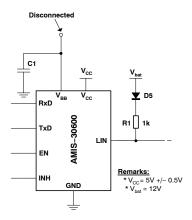



Figure 12. Decoupling Capacitor Present when V<sub>BB</sub> is Disconnected

#### **Intermediate Conclusion:**

One could disconnect  $V_{BB}$  to reduce battery current consumption. The disadvantage is that  $I_{CC}$  will increase. Independent from this care has to be taken in voltage supply. Best way is to take one voltage supply for microcontroller and LIN transceiver (see Figure 13). If two separate voltage supplies are used, make sure the tolerance is not too large  $^{10}$ .

It's advised to connect the TxD-pin of the LIN transceiver to an open-collector or open-drain output of the microcontroller when using two separate power supplies. In this way the ESD protection diodes D10 and/or D12 (see Figure 8) will not conduct if the difference between power supplies is too large.

<sup>10.</sup> Voltage supply tolerance may also be not too large when LIN transceiver is operating in normal mode.

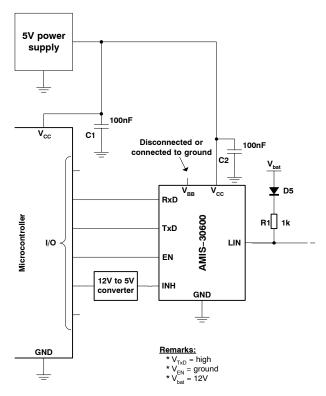



Figure 13. Use One Power Supply to Supply  $\mu\text{C}$  and AMIS-30600

# V<sub>CC</sub> Disconnected or Connected to Ground (see Figure 2)

**TxD-Pin**: When  $V_{CC}$  is disconnected ( $V_{BB}$  disconnected or connected to ground), the TxD-pin will power  $V_{CC}$  of the AMIS-30600 (see Figure 14). Keep in mind that there is a

connection between  $V_{CC}$  and  $V_{BB}$  of the AMIS-30600 which will all together result in a "large"  $I_{TxD}$  of maximum 450  $\mu A$  ( $V_{LIN}$  = -40 V and  $V_{BB}$  disconnected or connected to ground).

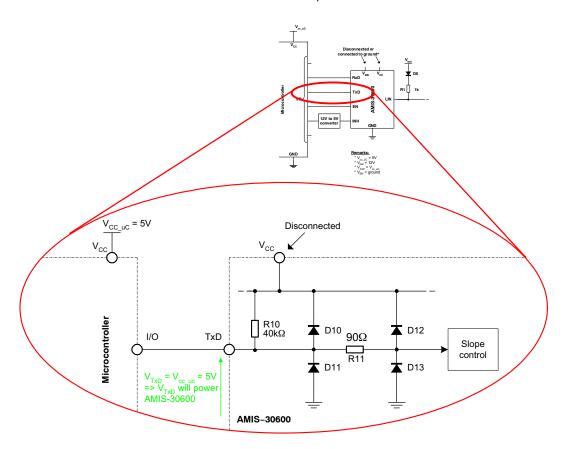



Figure 14.  $V_{TxD}$  will Power AMIS-30600 when  $V_{CC}$  is Disconnected<sup>11</sup>

Connecting  $V_{CC}$  to ground may not be done. This will result in a large current because of the ESD protection diodes D10 and D12 (see Figure 14).

There is no influence on the TxD-pin when a voltage is applied to the LIN-pin ( $V_{CC}$  connected to ground not measured).

**RxD-pin**: Because the voltage on the TxD-pin will power the AMIS-30600,  $V_{RxD}$  will be about 5 V ( $V_{CC\_uC}$ ) when  $V_{CC}$  is disconnected. When  $V_{BB}$  is disconnected or connected to ground ( $V_{CC}$  disconnected), a voltage on the LIN-pin will have no influence on the RxD-pin. The current  $I_{RxD}$  is less than 1  $\mu$ A. Because of above reason (see TxD-pin),  $V_{CC}$  may not be connected to ground.

**EN-pin**: EN-pin is pulled to ground. No influence on this pin noticed when  $V_{BB}$  is disconnected or connected to ground and  $V_{CC}$  is disconnected (-40 V <  $V_{LIN}$  < +40 V). Similar,  $V_{CC}$  may not be connected to ground (see TxD-pin).

**INH-pin**: The maximum voltage on the INH-pin when  $V_{CC}$  and  $V_{BB}$  are disconnected is +3.5 V ( $V_{LIN}$  = +40 V and INH-pin connected to 12 V-to-5 V converter). The minimum voltage is -500 mV ( $V_{LIN}$  = -40 V, INH-pin connected to 12 V-to-5 V converter or connected to ground). The maximum current measured at this pin is  $\pm 20~\mu A^{12}$ .

<sup>11.</sup> Figure displays set up where INH-pin is connected to microcontroller.

<sup>12.</sup> Negative current means current is injected.

When  $V_{CC}$  is disconnected and  $V_{BB}$  connected to ground, the voltage on the INH-pin is 0 V (INH-pin connected to 12 V-to-5 V converter or connected to ground).

Similar as above (TxD-pin),  $V_{CC}$  may not be connected to ground.

Also here no influence on the INH-pin ( $V_{cc}$  connected to ground not measured) when a voltage on the LIN-bus is applied.

Table 2 shows the  $\underline{\text{maximum}}$  battery current consumption  $I_{\text{bat}}$  for the different setups.

Table 2. MAXIMUM POWER CONSUMPTION WHEN  $V_{CC}$  IS DISCONNECTED OR CONNECTED TO GROUND

|                                        | I <sub>bat</sub> [mA]        |                           |                              |                           |  |  |  |
|----------------------------------------|------------------------------|---------------------------|------------------------------|---------------------------|--|--|--|
|                                        | V <sub>BB</sub> Disco        | onnected                  | V <sub>BB</sub> to Ground    |                           |  |  |  |
|                                        | V <sub>CC</sub> Disconnected | V <sub>CC</sub> to Ground | V <sub>CC</sub> Disconnected | V <sub>CC</sub> to Ground |  |  |  |
| INH-pin connected with microcontroller | 52 (Note 3)                  | NA                        | 52 (Note 3)                  | NA                        |  |  |  |
| INH-pin connected with ground          | 52                           | NA                        | 52                           | NA                        |  |  |  |

3.  $V_{LIN} = -40 \text{ V}.$ 

In Table 2 one can see that the battery current is similar as when  $V_{CC}$  is connected. The only advantage is that  $I_{CC}$  is 0 A. But because  $V_{TxD}$  is 5 V (pulled high by the microcontroller), the microcontroller has to deliver the supply current for the AMIS–30600.

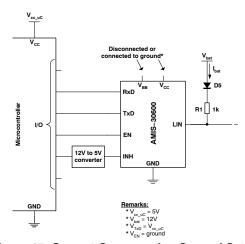



Figure 15. Current Consumption Second Setup

If there is still, when  $V_{CC}$  is disconnected, a decoupling capacitor connected with the  $V_{CC}$ -pin of the AMIS-30600, the results are similar as  $V_{CC}$  disconnected (see Table 2). Similar for the  $V_{BB}$ -pin of the AMIS-30600. See also Figure 16.

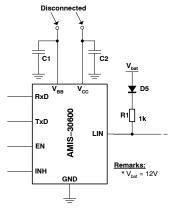



Figure 16. Decoupling Capacitor Present when  $V_{\mbox{\footnotesize{BB}}}$  and  $V_{\mbox{\footnotesize{CC}}}$  Disconnected

#### **Intermediate Conclusion:**

Disconnecting or connecting  $V_{BB}$  to ground and disconnecting  $V_{CC}$  may be done. The supply current for the AMIS-30600  $I_{CC}$  will be 0 A. Because  $V_{TxD}$  is pulled high by the microcontroller however, the TxD-pin will power the AMIS-30600 ( $V_{CC}$  disconnected). The microcontroller needs to deliver the supply current for the AMIS-30600. The result is that the total power consumption did not reduce compared to previous setup.

Connecting  $V_{CC}$  to ground will result in a high current because of the ESD protection diodes.

It's advised to connect the TxD-pin of the AMIS-30600 to an open-collector or open-drain output of the microcontroller. In this way the microcontroller will not power the LIN transceiver through the TxD-pin resulting in less (about 500  $\mu$ A) total power consumption.

One can see that the battery current  $I_{bat}$  is still high (max 52 mA). To reduce this, one can try to disconnect the LIN pullup resistor (see the  $V_{CC}$  Disconnected or Connected to Ground Section).

#### LIN Pullup Resistor Disconnected (see Figure 3)

TxD-pin: Similar as without LIN pullup resistor disconnected (see the V<sub>CC</sub> Disconnected or Connected to Ground Section) with the exception that the battery current consumption I<sub>bat</sub> is 0 A.

RxD-pin: Similar as without LIN pullup resistor disconnected (see the V<sub>CC</sub> Disconnected or Connected to Ground Section) except that I<sub>bat</sub> is 0 A.

EN-pin: Similar as LIN pullup resistor connected (see the V<sub>CC</sub> Disconnected or Connected to Ground Section) except that I<sub>bat</sub> is 0 A.

INH-pin: Similar as without LIN pullup resistor disconnected (see the V<sub>CC</sub> Disconnected or Connected to Ground Section) except that I<sub>bat</sub> is 0 A.

There is no influence on the LIN-network when the LIN pull-up resistor is disconnected. Keep in mind that, when the LIN pullup resistor is disconnected and V<sub>BB</sub> of the AMIS-30600 is connected to ground or disconnected, another node should pull the LIN bus to 12 V.

#### **Intermediate Conclusion:**

One can disconnect the LIN pullup resistor to reduce battery consumption. The consumed battery current is in all cases 0 A which is significant lower than previous test (see the V<sub>CC</sub> Disconnected or Connected to Ground Section).

# **Conclusion and Advised Application Schematic**

To reduce the power consumption of the AMIS-30600 when disabled ( $V_{EN} = 0 \text{ V}$ ), one can disconnect  $V_{BB}$  or connect it to ground and disconnect V<sub>CC</sub>. It's, however, advised to connect the TxD-pin of the AMIS-30600 with an open-collector or open-drain output of the microcontroller otherwise the microcontroller will try to power the LIN transceiver when V<sub>CC</sub> is disconnected.

To reduce battery consumption, the LIN pullup resistor can be disconnected.

Next schematic gives a better view on an advised application schematic.

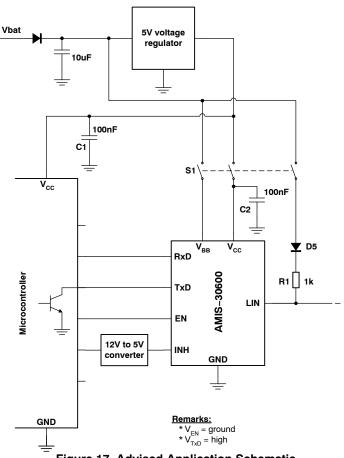



Figure 17. Advised Application Schematic

In Figure 17 one can see that an open-collector is used to control the TxD-pin of the AMIS-30600. One can also see that one power supply is used to power the microcontroller

and AMIS-30600. In this way the voltage tolerance may be high<sup>13</sup>.

13. 5 V voltage regulator has to stay within the operating range of the AMIS-30600 and the microcontroller.

Be aware that it is possible that an additional ESD protection diode should be added to the open-collector or open-drain output of the microcontroller (see data sheet microcontroller).

When  $V_{CC}$  of the LIN transceiver is disconnected, the decoupling capacitor C2 will still be connected to the  $V_{CC}$ -pin of the LIN transceiver. This is no issue.

With above schematic, the battery consumption  $I_{bat}$  is  $0\,A^{14}$  (-40 V <  $V_{LIN}$  < +40 V). Keep in mind that another node should pull the LIN-bus to 12 V.

Applying a voltage on the LIN bus ( $-40~V < V_{LIN} < +40~V$ ) will have no influence on the TxD-, RxD-, EN- and INH-pin. The current for these pins was always lower than 2  $\mu$ A except for the INH-pin when the INH-pin is pulled to ground with a 22k resistor. The current in the INH-pin will then be maximum 20  $\mu$ A (because of a low voltage drop over the 22k resistor when  $V_{LIN}$  is negative).

In Figure 17, one can see that all the three switches will close at once (S1). When S1 is closed, the LIN transceiver is full powered.

In Figure 17 a triple terminal switch is used (S1). One can reduce this by connecting the INH-pin with the 5 V voltage regulator (where it's initially designed for). When the LIN transceiver goes to sleep mode ( $V_{EN}=0$  V), INH-pin will switch of the 5 V voltage regulator. Then the microcontroller can disconnect  $V_{BB}$  and the LIN pullup resistor (S1). As long as  $V_{BB}$  is disconnected, the LIN transceiver will be in an off-state and will not disturb the network 15. From the moment the  $V_{BB}$ -pin of the AMIS-30600 is reconnected by the microcontroller, INH-pin will become high (LIN transceiver in standby mode) and the 5 V voltage regulator will switch back on. The microcontroller can switch the LIN transceiver in normal mode by pulling the EN-pin high.

Figure 18 gives a better view on this.

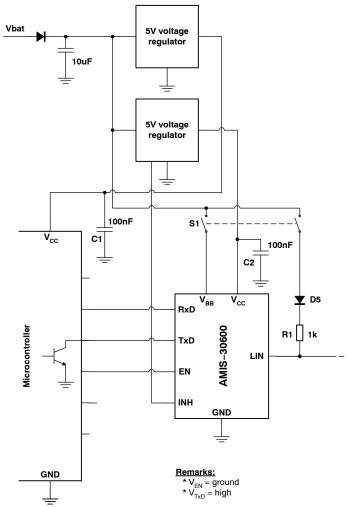



Figure 18. INH-pin Connected with 5 V Voltage Regulator

<sup>14.</sup> Power consumption microcontroller ignored and ideal 5 V voltage regulator assumed.

<sup>15.</sup> Keep in mind that when V<sub>BB</sub> is disconnected, INH-pin cannot be used to detect a wakeup on the LIN bus (for this V<sub>BB</sub> should be connected).

In Figure 18, one can see that two 5 V voltage regulators are used. If only one voltage regulator would be used and the voltage regulator is switched off to reduce power consumption, the microcontroller is also switch off. The microcontroller will most probably control the switch S1 which can not be done anymore if the microcontroller is not powered. To solve this two 5 V voltage regulators are used and only the one supplying the LIN transceiver is switched off.

It will be no issue using two separate power supplies when care is taken in choosing the two 5 V voltage regulators.

One could also use the INH-pin to disconnect the LIN pullup resistor (see Figure 19). When the AMIS-30600 is

put in sleep mode, the LIN pull-up resistor is disconnected and the supply voltage  $V_{CC}$  is switch off (INH-pin high impedant). The microcontroller can now switch off  $V_{BB}$  (S1 open).

From the moment the LIN transceiver has to be switched back on, S1 should be closed by the microcontroller. The LIN transceiver will come in standby mode (INH-pin is high). Because of this, the 5 V voltage regulator will be switched on and the pullup resistor will be reconnected. The microcontroller can put the AMIS-30600 in normal mode by switching the EN-pin high.

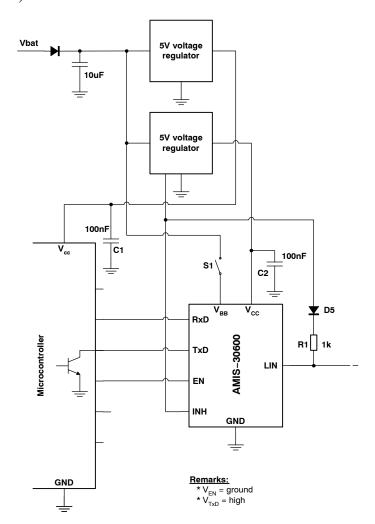



Figure 19. INH-Pin used to Disconnect LIN Pullup Resistor

There was no disturbance measured on the LIN-network when using above circuit ( $-40 \text{ V} < V_{LIN} < +40 \text{ V}$ ).

One can see in Figures 18 and 19 that the 12 V-to-5 V converter is not used anymore. This is because when the

microcontroller pulls the EN-pin low, the microcontroller automatically knows that INH-pin will become floating and that the  $V_{BB}$ -pin and the LIN pullup resistor will be disconnected.

#### **ADDENDUM**

The following figures display simple 12 V-to-5 V converters.

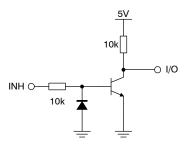



Figure 20. Simple 12 V-to-5 V Converter with **Transistor** 

Figure 20 is similar to the circuit used for a RS232 level converter. The Disadvantage of this is that it's an inverter.

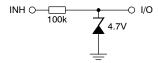



Figure 21. Simple 12 V-to-5 V Converter with Zener Diode

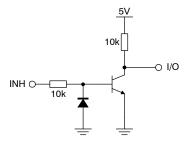



Figure 22. Simple 12 V-to-5 V Converter with Comparator

In Figure 22, a comparator with open-collector is used. The trigger level is about 10 V.

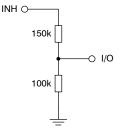



Figure 23. Simple 12 V-to-5 V Converter with Resistors

In Figure 23, one has to be careful in choosing the resistors. The voltage on the I/O-pin may be maximum 5 V. Assumed is that the I/O-pin of the microcontroller is high impedant.

# **Company or Product Inquiries**

For more information about ON Semiconductor's products or services, please visit our web site at http://www.onsemi.com.

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

#### **PUBLICATION ORDERING INFORMATION**

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative