# AND9368/D

CMOS 16-BIT MICROCONTROLLER LC885800 SERIES USER'S MANUAL



www.onsemi.com

### **APPLICATION NOTE**

Microcontroller Business Unit ON Semiconductor

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the desi

| Chapter 1 Overview1-1                          |
|------------------------------------------------|
| 1.1 Overview1-1                                |
| 1.2 Features ······1-1                         |
| 1.3 Pinout                                     |
| 1.4 System Block Diagram ······1-7             |
| 1.5 Pin Functions ······1-8                    |
| 1.6 Port Output Types ······ 1-10              |
|                                                |
| Chapter 2 Internal System Configuration2-1     |
| 2.1 Memory Space2-1                            |
| 2.1.1 Program/Data Space 2-2                   |
| 2.1.2 Data/Program Stack/SFR Space 2-2         |
| 2.2 Program Counter (PC)2-3                    |
| 2.3 General-purpose Registers2-4               |
| 2.3.1 Overview                                 |
| 2.3.2 R0 to R72-4                              |
| 2.3.3 R82-4                                    |
| 2.3.4 R9 2-4                                   |
| 2.3.5 R10 to R132-4                            |
| 2.3.6 R14 (PSW)                                |
| 2.3.7 R15 (SP) 2-5                             |
| 2.4 Program Memory (ROM) ·····2-6              |
| 2.5 Data Memory (RAM)·····2-6                  |
| 2.6 Special Function Registers (SFRs)2-7       |
|                                                |
| Chapter 3 Peripheral System Configuration3-1   |
| 3.1 Port 0                                     |
| 3.1.1 Overview 3-1                             |
| 3.1.2 Functions                                |
| 3.1.3 Related Registers 3-2                    |
| 3.1.4 Register Settings and Port States 3-3    |
| 3.1.5 HALT, HOLD, and HOLDX Mode Operation 3-3 |
| 3.2 Port 1                                     |
| 3.2.1 Overview                                 |
| 3.2.2 Functions                                |
| 3.2.3 Related Registers 3-4                    |
| 3.2.4 Register Settings and Port States        |
| 3.2.5 HALT, HOLD, and HOLDX Mode Operation 3-9 |
| 3.3 Port 2                                     |

| 3.3.1  | Overview                             |
|--------|--------------------------------------|
| 3.3.2  | Functions                            |
| 3.3.3  | Related Registers                    |
| 3.3.4  | Register Settings and Port States    |
| 3.3.5  | HALT, HOLD, and HOLDX Mode Operation |
| 3.4 Po | rt 3 3-16                            |
| 3.4.1  | Overview                             |
| 3.4.2  | Functions3-16                        |
| 3.4.3  | Related Registers                    |
| 3.4.4  | Register Settings and Port States    |
| 3.4.5  | HALT, HOLD, and HOLDX Mode Operation |
| 3.5 Po | rt 4 3-20                            |
| 3.5.1  | Overview                             |
| 3.5.2  | Functions                            |
| 3.5.3  | Related Registers 3-20               |
| 3.5.4  | Register Settings and Port States    |
| 3.5.5  | HALT, HOLD, and HOLDX Mode Operation |
| 3.6 Po | rt 6 3-26                            |
| 3.6.1  | Overview                             |
| 3.6.2  | Functions······3-26                  |
| 3.6.3  | Related Registers ·······3-26        |
| 3.6.4  | Register Settings and Port States    |
| 3.6.5  | HALT, HOLD, and HOLDX Mode Operation |
| 3.7 Po | rt 7 3-30                            |
| 3.7.1  | Overview                             |
| 3.7.2  | Functions······3-30                  |
| 3.7.3  | Related Registers ·······3-30        |
| 3.7.4  | Register Settings and Port States    |
| 3.7.5  | HALT, HOLD, and HOLDX Mode Operation |
| 3.8 Po | rt A ····· 3-32                      |
| 3.8.1  | Overview                             |
| 3.8.2  | Functions                            |
| 3.8.3  | Related Registers                    |
| 3.8.4  | Register Settings and Port States    |
| 3.8.5  | HALT, HOLD, and HOLDX Mode Operation |
| 3.9 Po | rt C 3-37                            |
| 3.9.1  | Overview                             |
| 3.9.2  | Functions                            |
| 3.9.3  | Related Registers                    |
| 3.9.4  | Register Settings and Port States    |
|        |                                      |

|          | HALT, HOLD, and HOLDX Mode Operation                              |
|----------|-------------------------------------------------------------------|
| 3.10 Ex  | ternal Interrupt Functions (INTn)······ 3-39                      |
| 3.10.1   | Overview                                                          |
| 3.10.2   | Functions 3-39                                                    |
| 3.10.3   | Related Registers                                                 |
| 3.10.4   | INTn Input Mode Port Settings ······3-45                          |
| 3.11 Po  | rt 0 Interrupt Functions ······ 3-47                              |
| 3.11.1   | Overview                                                          |
| 3.11.2   | Functions                                                         |
|          | Related Registers                                                 |
|          | Port 0 Interrupt Settings                                         |
| 3.12 Tin | ner 0(T0)                                                         |
| 3.12.1   | Overview3-50                                                      |
| 3.12.2   | Functions ·······3-50                                             |
| 3.12.3   | Circuit Configuration ······3-52                                  |
| 3.12.4   | Related Registers ·······3-56                                     |
| 3.12.5   | Timer 0 Output Port Settings ···································· |
| 3.13 Tin | ner 1(T1)                                                         |
| 3.13.1   | Overview3-59                                                      |
| 3.13.2   | Functions ·······3-59                                             |
| 3.13.3   | Circuit Configuration ······3-60                                  |
| 3.13.4   | Related Registers ······3-63                                      |
| 3.14 Tin | ner 2(T2)                                                         |
| 3.14.1   | Overview3-65                                                      |
| 3.14.2   | Functions ·······3-65                                             |
| 3.14.3   | Circuit Configuration ·······3-66                                 |
| 3.14.4   | Related Registers ······3-71                                      |
| 3.15 Tin | ner 3(T3)                                                         |
| 3.15.1   | Overview                                                          |
| 3.15.2   | Functions                                                         |
| 3.15.3   | Circuit Configuration ······3-76                                  |
| 3.15.4   | Related Registers ······3-81                                      |
| 3.15.5   | Timer 3 Output Port Settings                                      |
| 3.16 Tin | ner 4 and Timer 5 (T4, T5)                                        |
| 3.16.1   | Overview                                                          |
| 3.16.2   | Functions                                                         |
| 3.16.3   | Circuit Configuration ·······3-86                                 |
| 3.16.4   | Related Registers ······3-90                                      |
| 3.16.5   | Timer 4 and Timer 5 Output Port Settings                          |
| 3.17 Ba  | se Timer                                                          |

| 3.17.1  | Overview                                                                  |
|---------|---------------------------------------------------------------------------|
| 3.17.2  | Functions                                                                 |
| 3.17.3  | Circuit Configuration                                                     |
| 3.17.4  | Related Registers ······3-95                                              |
| 3.18 As | ynchronous Serial Interface 0 (UART0)······ 3-96                          |
| 3.18.1  | Overview                                                                  |
| 3.18.2  | Functions                                                                 |
| 3.18.3  | Circuit Configuration                                                     |
| 3.18.4  | Related Registers ······3-99                                              |
| 3.18.5  | UART0 Communication Format Examples 3-101                                 |
| 3.18.6  | UART0 Communication Examples                                              |
| 3.19 As | ynchronous Serial Interface 2 (UART2)······ 3-105                         |
| 3.19.1  | Overview                                                                  |
| 3.19.2  | Functions 3-105                                                           |
| 3.19.3  | Circuit Configuration                                                     |
| 3.19.4  | Related Registers ······ 3-108                                            |
| 3.19.5  | UART2 Communication Format Examples                                       |
| 3.19.6  | UART2 Communication Examples                                              |
| 3.20 Se | rial Interface 0 (SIO0) ······ 3-114                                      |
| 3.20.1  | Overview                                                                  |
| 3.20.2  | Functions 3-114                                                           |
| 3.20.3  | Circuit Configuration ······ 3-115                                        |
| 3.20.4  | Related Registers 3-118                                                   |
| 3.20.5  | Configuring the Number of Transfer Bits                                   |
| 3.20.6  | SIO0 Communication Examples                                               |
| 3.21 Se | rial Interface 1 (SIO1) ······ 3-132                                      |
| 3.21.1  | Overview                                                                  |
| 3.21.2  | Functions 3-132                                                           |
| 3.21.3  | Circuit Configuration                                                     |
| 3.21.4  | Related Registers 3-136                                                   |
| 3.21.5  | Configuring the Number of Transfer Bits                                   |
| 3.21.6  | SIO1 Communication Examples                                               |
| 3.22 SM | AIIC0 (Single Master I <sup>2</sup> C)       3-150                        |
| 3.22.1  | Overview                                                                  |
| 3.22.2  | Circuit Configuration 3-150                                               |
| 3.22.3  | Related Registers ······ 3-152                                            |
| 3.22.4  | Notes on the Configuration of the I <sup>2</sup> C Ports for Slow Setting |
| 3.22.5  | Waveform of Generated Clocks and SCL Rise Times                           |
| 3.22.6  | Start Condition and Stop Condition                                        |
| 3.22.7  | Arbitration Lost                                                          |

| 3.22.8    | Examples of Simple SIO Mode Communication                |
|-----------|----------------------------------------------------------|
| 3.22.9    | Examples of Single Master I <sup>2</sup> C Communication |
| 3.23 P\   | NM0 3-175                                                |
| 3.23.1    | Overview                                                 |
| 3.23.2    | Functions 3-175                                          |
| 3.23.3    | Circuit Configuration ······ 3-176                       |
| 3.23.4    | Related Registers ······ 3-179                           |
| 3.23.5    | PWM0 Output Port Settings                                |
| 3.24 AI   | D Converter ······ 3-184                                 |
| 3.24.1    | Overview                                                 |
| 3.24.2    | Functions ······ 3-184                                   |
| 3.24.3    | Circuit Configuration                                    |
| 3.24.4    | Related Registers 3-186                                  |
| 3.24.5    | AD Conversion Example 3-189                              |
| 3.24.6    | Hints on the Use of the AD Converter 3-190               |
| 3.25 Re   | eal-time Service (RTS) ······ 3-192                      |
| 3.25.1    | Overview                                                 |
| 3.25.2    | Functions ······· 3-192                                  |
| 3.25.3    | Circuit Configuration 3-193                              |
| 3.25.4    | Related Registers ······ 3-195                           |
| 3.26 US   | SM0 ····· 3-197                                          |
| 3.26.1    | Overview                                                 |
| 3.26.2    | Functions ······· 3-197                                  |
| 3.26.3    | Circuit Configuration 3-198                              |
| 3.26.4    | Related Registers ······ 3-202                           |
| 3.26.5    | Buffer Register Reload Timings 3-207                     |
| 3.26.6    | USM0 Port Settings 3-210                                 |
| 3.26.7    |                                                          |
| 3.26.8    | Examples of USM0 Operation in Stepping Motor Mode        |
| 3.26.9    | Notes on Setting Registers 3-221                         |
| Chapter 4 | Control Functions4-1                                     |
| 4.1 Inte  | errupt Function4-1                                       |
| 4.1.1     | Overview 4-1                                             |
| 4.1.2     | Functions 4-1                                            |
| 4.1.3     | Table of Interrupts 4-2                                  |
| 4.1.4     | Related Registers 4-3                                    |
| 4.2 Sys   | stem Clock Generator Function 4-10                       |
| 4.2.1     | Overview4-10                                             |
| 4.2.2     | Functions4-10                                            |

| 4.2.3   | Circuit Configuration4-10          |
|---------|------------------------------------|
|         | Related Registers                  |
|         | 5                                  |
| 4.3 Sta | andby Function ······ 4-14         |
| 4.3.1   | Overview4-14                       |
| 4.3.2   | Functions4-14                      |
| 4.4 Re  | set Function4-20                   |
| 4.4.1   | Overview4-20                       |
| 4.4.2   | Functions4-20                      |
| 4.4.3   | Reset Time State4-20               |
| 4.5 Wa  | atchdog Timer Function ······ 4-21 |
| 4.5.1   | Overview4-21                       |
| 4.5.2   | Functions4-21                      |
| 4.5.3   | Circuit Configuration4-21          |
| 4.5.4   | Related Registers                  |
| 4.5.5   | Using the Watchdog Timer4-24       |

# Chapter 5 Instructions (See separate manual)

# Appendixes

| Appendix-I  | Special Function Register (SFR) Map | · AI (1-9) |
|-------------|-------------------------------------|------------|
| Appendix-II | Port Block Diagrams                 | All (1-6)  |

# 1. Overview

## 1.1 Overview

The LC885800 series is a 16-bit microcontroller that, centered around an Xstormy16 CPU, integrates on a single chip a number of hardware features such as 128K-byte flash ROM (onboard programmable), 6K-byte RAM, six 16-bit timers, a base timer serving as a time-of-day clock, two synchronous SIO interfaces (with automatic transfer function), a single master I<sup>2</sup>C/synchronous SIO interface, two asynchronous SIO (UART) interfaces, two multifrequency 12-bit PWM modules, a 12-bit resolution 11-channel AD converter, a watchdog timer, a motor drive signal generator circuit, a system clock frequency divider, a 40-source (24 modules) 16-vector interrupt feature, and on-chip debugging functions.

## 1.2 Features

### • CPU

- Xstormy16 CPU
- 4G bytes of address space
- General-purpose registers: 16 bits × 16

### • ROM

LC88F58B0A: 131072 × 8 bits (flash ROM)

- Block erasable in 128-byte units
- Can be written in 2-byte units

#### • RAM

LC88F58B0A: 6144 × 8 bits

#### • Instruction cycle time (Tcyc)

| Instruction<br>Cycle Time | Frequency<br>Division Ratio | System Clock Source       | Oscillation<br>Frequency |
|---------------------------|-----------------------------|---------------------------|--------------------------|
| 0.083 µs                  | 1/1                         | Ceramic oscillator (OSC1) | 12 MHz                   |
| 0.100 µs                  | 1/1                         | Ceramic oscillator (OSC1) | 10 MHz                   |
| 0.500 µs                  | 1/2                         | Ceramic oscillator (OSC1) | 4 MHz                    |
| 1 μs (typ)                | 1/1                         | Internal RC oscillator    | 1 MHz (typ)              |
| 30.5 µs                   | 1/1                         | Crystal oscillator (OSC0) | 32.768 kHz               |

#### • Ports

- Normal withstand voltage I/O ports Ports whose input/output can be specified in 1-bit units:
- Oscillator, normal withstand voltage output ports:
- Dedicated oscillator ports:
- Reset pin:
- Test pin:
- Power pins:

52 (P0n, P1n, P2n, P30 to P33, P4n, P6n, P70 to P72, PA0 to PA3, PC2)
2 (PC0, PC1)
2 (CF1, CF2)
1 (RESB)
1 (TEST)
6 (VSS1 to VSS3, VDD1 to VDD3)

#### <u>Overview</u>

## Timers

- Timer 0: 16-bit timer that supports PWM/toggle output
  - 1) With a 5-bit prescaler
  - 2) 8-bit PWM  $\times$  2/8-bit timer + 8-bit PWM mode selectable
  - Clock source can be selected from among the system clock, OSC0, OSC1, and internal RC oscillator.
- Timer 1: 16-bit timer with a capture resistor
  - 1) With a 5-bit prescaler
  - 2) May be divided into 2 channels of 8-bit timer
  - Clock source can be selected from among the system clock, OSC0, OSC1, and internal RC oscillator.
- Timer 2: 16-bit timer with a capture resistor
  - 1) With a 4-bit prescaler
  - 2) May be divided into 2 channels of 8-bit timer
  - 3) Clock source can be selected from among the system clock, OSC0, OSC1, and external events.
- Timer 3: 16-bit timer that supports PWM/toggle output
  - 1) With an 8-bit prescaler
  - 2) 8-bit timer  $\times$  2/8-bit timer + 8-bit PWM mode selectable
  - 3) Clock source can be selected from among the system clock, OSC0, OSC1, and external events.
- Timer 4: 16-bit timer that supports toggle output
  - 1) Clock source can be selected from the system clock and prescaler 0.
- Timer 5: 16-bit timer that supports toggle output
  - 1) Clock source can be selected from the system clock and prescaler 0.
- \* Prescaler 0 is a 4-bit configuration, and the clock source can be selected from among the system clock, OSC0, and OSC1.
- Base timer
  - 1) Clock can be selected from OSC0 (32.768 kHz crystal oscillator) and frequency-divided output of the system clock.
  - 2) An interrupt can be generated in 7 time schemes.

## Serial interfaces

- SIO0, SIO1: 8-bit synchronous SIO
  - 1) LSB first/MSB first selectable
  - 2) Supports less than 8-bit communication (1- to 8-bit data length can be specified)
  - 3) Built-in 8-bit baudrate generator (4 to 512 Tcyc transfer clock)
  - 4) Automatic continuous data transfer function (9 to 32768bits can be specified in 1-bit units)
  - 5) Interval function (interval times of 0 to 64 tSCK)
  - 6) Wakeup function
- SMIIC0: Single master I<sup>2</sup>C/8-bit synchronous SIO
  - Mode 0: Single-master mode communication
  - Mode 1: Synchronous 8-bit serial I/O (MSB first)
- UART0: Asynchronous SIO
  - 1) Data length: 8 bits (LSB first)
  - 2) Stop bits: 1 bit
  - 3) Parity bits: None/even parity/odd parity
  - 4) Transfer rate: 4/8 Tcyc

- 5) Baudrate source clock: P07 input signal (T0PWMH signal available as clock source)
- 6) Full duplex communication
- UART2: Asynchronous SIO
  - 1) Data length: 8 bits (LSB first)
  - 2) Stop bits: 1 bit
  - 3) Parity bits: None/even parity/odd parity
  - 4) Transfer rate: 8 to 4096 Tcyc
  - 5) Baudrate source clock: System clock/OSC0/OSC1
  - 6) Wakeup function
  - 7) Full duplex communication

### • AD converter

- 1) 12-/ 8-bit converter resolution selectable
- 2) Analog inputs: 11 channels
- 3) Comparator mode
- 4) Automatic reference voltage generation

### • PWM

- PWM0: Multifrequency 12-bit PWM × 2 channels (PWM0A and PWM0B)
  - 1) 2-channel pairs controlled independently of one another
  - 2) Clock source can be selected from the system clock and OSC1
  - 3) Built-in 8-bit prescaler: TPWMR0 = (Prescaler value + 1) × clock frequency
  - 4) 8-bit fundamental wave PWM generator circuit + 4-bit additional pulse generator circuit

| 5) | Fundamental wave PWM mode        |                                         |  |
|----|----------------------------------|-----------------------------------------|--|
|    | Fundamental wave period:         | 16TPWMR0 to 256TPWMR0                   |  |
|    | High-level pulse width:          | 0 to (Fundamental wave period – TPWMR0) |  |
| 6) | Fundamental wave + additionation | al pulse mode                           |  |
|    | Fundamental wave period:         | 16TPWMR0 to 256TPWMR0                   |  |
|    | Overall period:                  | Fundamental wave period × 16            |  |

## Watchdog timer

- Driven by the base timer + internal watchdog-timer dedicated counter
- Interrupt or reset mode selectable

#### • Motor drive signal generator circuit

#### • Interrupts (peripheral function)

• 40 sources (24 module), 16 vector addresses

High-level pulse width:

1) Provides three levels of multiplex interrupt control. Any interrupt request of the level equal to or lower than the current interrupt is not accepted.

0 to (Overall period – PWMR0)

2) When interrupt requests to two or more vector addresses occur at the same time, the interrupt of the highest level takes precedence over the other interrupts. For interrupts of the same level, the interrupt with the lowest vector address has priority.

| No. | Vector Address | Interrupt (Peripheral Function)     |
|-----|----------------|-------------------------------------|
| 1   | 08000H         | Watchdog timer (1)                  |
| 2   | 08004H         | Base timer (2)                      |
| 3   | 08008H         | Timer 0 (2)                         |
| 4   | 0800CH         | INT0 (1)                            |
| 5   | 08010H         |                                     |
| 6   | 08014H         | INT1 (1)                            |
| 7   | 08018H         | INT2 (1) / timer 1 (2) / UART2 (4)  |
| 8   | 0801CH         | INT3 (1) / timer 2 (4) / SMIIC0 (1) |
| 9   | 08020H         | INT4 (1) / timer 3 (2)              |
| 10  | 08024H         | INT5 (1) / timer 4 (1) / SIO1 (2)   |
| 11  | 08028H         | USM0 (3)                            |
| 12  | 0802CH         | PWM0 (1)                            |
| 13  | 08030H         | ADC (1) / timer 5 (1)               |
| 14  | 08034H         | INT6 (1)                            |
| 15  | 08038H         | INT7 (1) / SIO0 (2)                 |
| 16  | 0803CH         | Port 0 (3)                          |

• Three priority levels can be specified.

- When interrupts of the same level occur at the same time, the interrupt with the lowest vector address is processed first.
- The number enclosed in parentheses denotes the number of sources.

#### Interrupts (exception processing)

- 5 sources, 1 vector address
  - 1) Interrupts of this type are enabled or disabled through the exception interrupt control register (EXCPL and EXCPH) and not affected by the global enable flag.
  - 2) Exception processing interrupts take precedence over interrupts that are generated by any of the peripheral functions. Consequently, no interrupt request is accepted while an exception interrupt is being processed.

| No. | Vector Address | Interrupt (Exception Processing) |
|-----|----------------|----------------------------------|
| 1   | 08080H         | Exception processing (5)         |

• The number enclosed in parentheses indicates the number of interrupt sources.

#### • Subroutine stack: 6K-byte RAM area

- Subroutine calls that automatically save PSW, interrupt vector calls: 6 bytes
- Subroutine calls that do not automatically save PSW: 4 bytes

#### • Multiplication/division instructions

- 16 bits × 16 bits (Execution time: 18 Tcyc)
- 16 bits ÷ 16 bits (Execution time: 18 to 19 Tcyc)
- 32 bits ÷ 16 bits (Execution time: 18 to 19 Tcyc)

#### Oscillator circuits

- RC oscillator circuit (internal): For system clock
- OSC1 (CF oscillator circuit): For system clock (CF1, CF2)
- OSC0 (crystal oscillator circuit): For low-speed system clock (XT1, XT2)
- Low-speed RC oscillator circuit (internal): For system clock used when the main oscillation is stopped
- PLL circuit (internal): For motor drive signal generator circuit

#### • System clock frequency divider function

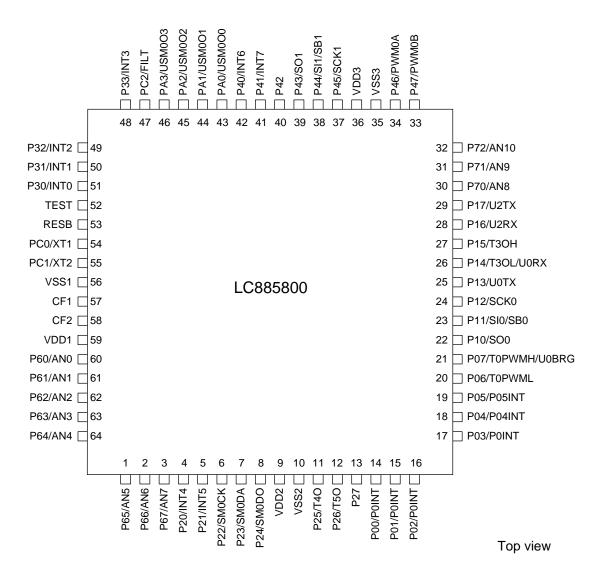
- Can run on low current.
- System clock frequency can be set to 1/1 to 1/128 of base system frequency.

### • Standby function

- HALT mode: Halts instruction execution while allowing the peripheral circuits to continue operation.
  - 1) Oscillation is not halted automatically.
  - 2) Released by a system reset or occurrence of an interrupt.
- HOLD mode: Suspends instruction execution and the operation of the peripheral circuits.
  - 1) OSC1, internal RC, and OSC0 oscillators automatically stop.
  - 2) There are five ways of releasing HOLD mode.
    - <1> Setting the reset pin to a low level
    - <2> Setting at least one of the INT0, INT1, INT2, INT3, INT4, INT5, INT6, and INT7 pins to the specified level
    - <3> Establishing an interrupt source at P0INT, P04INT, or P05INT
    - <4> Establishing an interrupt source at SIO0 or SIO1
    - <5> Establishing an interrupt source at UART2
- HOLDX mode: Suspends instruction execution and the operation of the peripheral circuits except those which run on OSC0.
  - 1) OSC1 and internal RC oscillators automatically stop operation.
  - 2) OSC0 retains the state that is established when HOLDX mode is entered.
  - 3) There are six ways of releasing HOLDX mode.
    - <1> Setting the reset pin to a low level
    - <2> Setting at least one of the INT0, INT1, INT2, INT3, INT4, INT5, INT6, and INT7 pins to the specified level
    - <3> Establishing an interrupt source at POINT, PO4INT, or PO5INT
    - <4> Establishing an interrupt source at SIO0 or SIO1
    - <5> Establishing an interrupt source at UART2
    - <6> Establishing an interrupt source in the base timer circuit

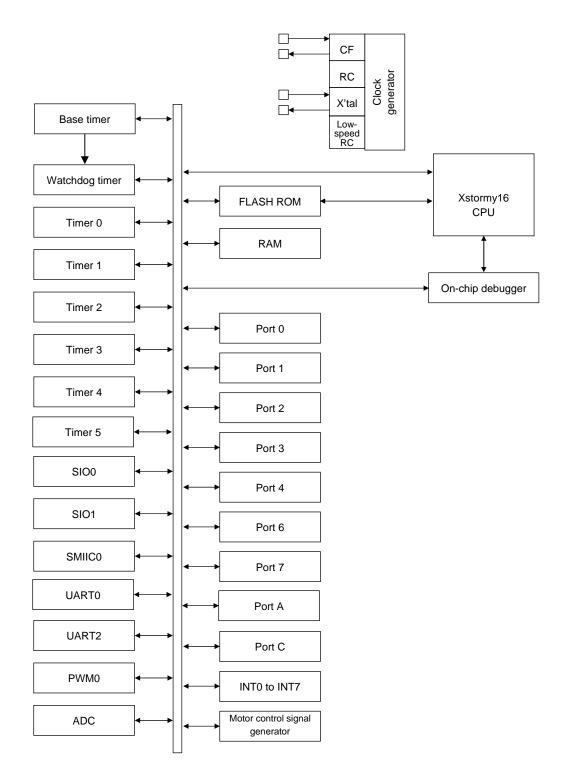
### Package form

• SQFP64  $(10 \times 10)$  Lead-free type


### • On-chip debugger function

- Supports software debugging with the IC mounted on the target board.
- Supports source line debugging, tracing, and breakpoint setting.
- Single-wire communication

#### • Development tools


• On-chip debugger: EOCUIF1 + LC88F58B0A

## 1.3 Pinout



SQFP64 (10 × 10) (lead-free product)

# 1.4 System Block Diagram



# 1.5 Pin Functions

|            | I/O | Description                                                                   |  |  |
|------------|-----|-------------------------------------------------------------------------------|--|--|
| VSS1,VSS2, | -   | – power supply pin                                                            |  |  |
| VSS3       |     |                                                                               |  |  |
| VDD1,VDD2  | -   | + power supply pin                                                            |  |  |
| VDD3       |     |                                                                               |  |  |
| Port 0     | I/O | • 8-bit I/O port                                                              |  |  |
| P00 to P07 |     | • I/O specifiable in 1-bit units                                              |  |  |
|            |     | • Pull-up resistors can be turned on and off in 1-bit units                   |  |  |
|            |     | • Port 0 interrupt input (P00 to P03, P04, P05)                               |  |  |
|            |     | • HOLD release input (P00 to P03, P04, P05)                                   |  |  |
|            |     | • Pin functions                                                               |  |  |
|            |     | P06 : Timer 0L output                                                         |  |  |
|            |     | P07 : Timer 0H output / UART0 clock input                                     |  |  |
| Port 1     | I/O | • 8-bit I/O port                                                              |  |  |
| P10 to P17 |     | • I/O specifiable in 1-bit units                                              |  |  |
|            |     | • Pull-up resistors can be turned on and off in 1-bit units                   |  |  |
|            |     | • Pin functions                                                               |  |  |
|            |     | P10: SIO0 data output                                                         |  |  |
|            |     | P11: SIO0 data input / bus I/O                                                |  |  |
|            |     | P12: SIO0 clock I/O                                                           |  |  |
|            |     | P13: UART0 transmit                                                           |  |  |
|            |     | P14: Timer 3L output / UART0 receive                                          |  |  |
|            |     | P15: Timer 3H output                                                          |  |  |
|            |     | P16: UART2 receive                                                            |  |  |
|            |     | P17: UART2 transmit                                                           |  |  |
| Port 2     | I/O | • 8-bit I/O port                                                              |  |  |
| P20 to P27 |     | • I/O specifiable in 1-bit units                                              |  |  |
|            |     | • Pull-up resistors can be turned on and off in 1-bit units                   |  |  |
|            |     | • Pin functions                                                               |  |  |
|            |     | P20: INT4 input / HOLD release input/timer 3 event input / timer 2L capture   |  |  |
|            |     | input / timer 2H capture input                                                |  |  |
|            |     | P21: INT5 input / HOLD release input /timer 3 event input / timer 2L capture  |  |  |
|            |     | input / timer 2H capture input                                                |  |  |
|            |     | P22: SMIIC clock I/O                                                          |  |  |
|            |     | P23: SMIIC data bus I/O                                                       |  |  |
|            |     | P24: SMIIC data (used in 3-wire SIO mode)                                     |  |  |
|            |     | P25: Timer 4 output                                                           |  |  |
|            |     | P26: Timer 5 output                                                           |  |  |
|            |     | • Interrupt acknowledge type                                                  |  |  |
|            |     | INT4, INT5: H level, L level, H edge, L edge, both edges                      |  |  |
| Port 3     | I/O | • 4-bit I/O port                                                              |  |  |
| P30 to P33 |     | • I/O specifiable in 1-bit units                                              |  |  |
|            |     | • Pull-up resistors can be turned on and off in 1-bit units                   |  |  |
|            |     | • Pin functions                                                               |  |  |
|            |     | P30 : INT0 input / HOLD release input /timer 2L capture input                 |  |  |
|            |     | P31 : INT1 input / HOLD release input /timer 2H capture input                 |  |  |
|            |     | P32 : INT2 input / HOLD release input /timer 2 event input / timer 2L capture |  |  |
|            |     | input                                                                         |  |  |
|            |     | P33 : INT3 input / HOLD release input /timer 2 event input / timer 2H capture |  |  |
|            |     | input                                                                         |  |  |
|            |     | • Interrupt acknowledge type                                                  |  |  |
|            |     | INT0 to INT3: H level, L level, H edge, L edge, both edges                    |  |  |
|            |     |                                                                               |  |  |

|            | I/O | Description                                                 |
|------------|-----|-------------------------------------------------------------|
| Port 4     | I/O | • 8-bit I/O port                                            |
| P40 to P47 |     | • I/O specifiable in 1-bit units                            |
|            |     | • Pull-up resistors can be turned on and off in 1-bit units |
|            |     | • Pin functions                                             |
|            |     | P40 : INT6 input/HOLD release input                         |
|            |     | P41 : INT7 input/HOLD release input                         |
|            |     | P43 : SIO1 data output                                      |
|            |     | P44 : SIO1 data input/bus I/O                               |
|            |     | P45 : SIO1 clock I/O                                        |
|            |     | P46 : PWM0A output                                          |
|            |     | P47 : PWM0B output                                          |
|            |     | • Interrupt acknowledge type                                |
|            |     | INT6, INT7: H level, L level, H edge, L edge, both edges    |
| Port 6     | I/O | • 8-bit I/O port                                            |
| P60 to P67 |     | • I/O specifiable in 1-bit units                            |
|            |     | • Pull-up resistors can be turned on and off in 1-bit units |
|            |     | • Pin functions                                             |
|            |     | AN0 (P70) to AN7 (P61): AD converter input port             |
| Port 7     | I/O | • 3-bit I/O port                                            |
| P70 to P72 |     | • I/O specifiable in 1-bit units                            |
|            |     | • Pull-up resistors can be turned on and off in 1-bit units |
|            |     | • Pin functions                                             |
|            |     | AN8 (P70) to AN10 (P72): AD converter input port            |
| Port A     | I/O | • 4-bit I/O port                                            |
| PA0 to PA3 |     | • I/O specifiable in 1-bit units                            |
|            |     | • Pull-up resistors can be turned on and off in 1-bit units |
|            |     | Multiplexed pin functions                                   |
|            |     | PA0 : USM0 output 0                                         |
|            |     | PA1 : USM0 output 1                                         |
|            |     | PA2 : USM0 output 2                                         |
|            |     | PA3 : USM0 output 3                                         |
| Port C     | I/O | • 3-bit I/O port                                            |
| PC0 to PC2 |     | • Output specifiable in 1-bit units                         |
|            |     | • Pin functions                                             |
|            |     | PC0 : 32.768kHz crystal resonator input                     |
|            |     | PC1 : 32.768kHz crystal resonator output                    |
|            |     | PC2 : Connected to PLL filter circuit                       |
| RESB       | I/O | • Reset pin                                                 |
| TEST       | I/O | • TEST pin                                                  |
|            | 1/0 | Used to communicate with on-chip debugger                   |
| CF1        | Ι   | Ceramic resonator input                                     |
| CF2        | 0   | Ceramic resonator output                                    |

# 1.6 Port Output Types

The table below lists the types of port outputs and the presence/absence of a pull-up resistor. Data can be read into any input port even if it is in the output mode.

| Port                     | Options Selected<br>in Units of | Option<br>Type | Output Type                          | Pull-up Resistor |
|--------------------------|---------------------------------|----------------|--------------------------------------|------------------|
| P00 to P07<br>P10 to P17 | 1 bit<br>(programmable)         | 1              | CMOS                                 | Programmable     |
| P10 to P17<br>P20 to P27 | (programmable)                  |                |                                      |                  |
| P30 to P33               |                                 | 2              | N-channel open drain                 |                  |
| P40 to P47               |                                 |                |                                      |                  |
| P60 to P67               |                                 |                |                                      |                  |
| P70 to P72               |                                 |                |                                      |                  |
| PA0 to PA3               |                                 |                |                                      |                  |
| PC0                      | _                               | _              | N-channel open drain                 | None             |
|                          |                                 |                | (32.768kHz crystal resonator input)  |                  |
| PC1                      | _                               | -              | N-channel open drain                 | None             |
|                          |                                 |                | (32.768kHz crystal resonator output) |                  |
| PC2                      | _                               | _              | CMOS                                 | Programmable     |

# 2. Internal System Configuration

## 2.1 Memory Space

Xstormy 16 can control 4G bytes of linear address memory. 32K bytes from 0000\_0000H to 0000\_7FFFH of the 4G-byte memory address space can be controlled with instructions and are used for CPU operations and to provide peripheral functions.

Approximately 4G bytes of memory from 0000\_8000H to FFFF\_FFFFH are used to store programs and data and subjected to control by the program counter (PC). They can also be controlled with instructions as data storage area in the same manner as the memory space from 0000\_0000h to 0000\_7FFFh.

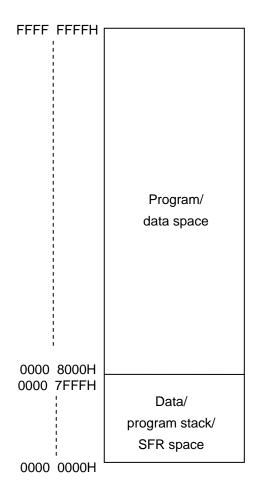
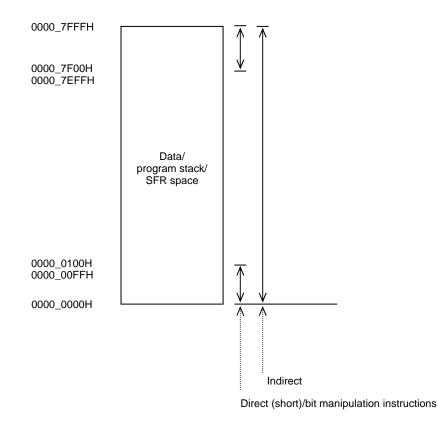



Figure 2.1.1 Xstormy 16 Memory Space


### 2.1.1 Program/Data Space

The program/data space has a size of approximately 4G bytes and extends from addresses 0000\_8000H to FFFF\_FFFH. The size of the memory that is actually incorporated in the microcontroller varies with the type of the microcontroller. 256 bytes out of the program/data space are used to define options. This area cannot be used as a program area.

## 2.1.2 Data/Program Stack/SFR Space

The data/program stack/SFR space has a size of 32K bytes and extends from 0000\_0000H to 0000\_7FFFH. The size of the RAM (data/program stack) and SFR that is actually incorporated in the microcontroller varies with the type of the microcontroller.

As shown in Figure 2.1.2, the instructions that can be used differ according to the address range of the data/program stack/SFR space.



#### Figure 2.1.2 Data/Program Stack/SFR Space Address Map

When the PC value is stored in RAM during the execution of a subroutine which automatically saves the PSW value or on an interrupt, the low-order 16 bits of the PC are stored in SP in RAM (assuming that SP represents the current stack pointer value) and the high-order 16 bits in SP + 2, and the PSW value in SP + 4, resulting in SP = SP + 6. If a call is made to a subroutine which does not automatically save the PSW value, the low-order 16 bits of the PC are stored in SP in RAM and the high-order 16 bits in SP + 2, resulting in SP = SP + 4.

## 2.2 Program Counter (PC)

The program counter (PC) is 32 bits long and allows linear access to up to approximately 4G bytes of memory space from 0000\_8000h to FFFF\_FFFh.

Since all CPU instructions are 2 bytes in length, their least significant bit is invalid and assumed to be 0.

When executing a branch or subroutine instruction, when accepting an interrupt, or when a reset is generated, the value corresponding to each operation is loaded into the PC.

Table 2.2.1 lists the values that are loaded into the PC when the respective operations are performed.

|           |                 | Operation                         | PC Value                                      |
|-----------|-----------------|-----------------------------------|-----------------------------------------------|
|           | Reset/Watchd    | og timer                          | 0000_8000H                                    |
|           | Base timer      |                                   | 0000_8004H                                    |
|           | Timer 0         |                                   | 0000_8008H                                    |
|           | INT0            |                                   | 0000_800CH                                    |
|           |                 |                                   | 0000_8010H                                    |
|           | INT1            |                                   | 0000_8014H                                    |
|           | INT2 / Timer    | 1 / UART2                         | 0000_8018H                                    |
| ıpt       | INT3 / Timer    | 2 / SMIICO                        | 0000_801CH                                    |
| Interrupt | INT4 / Timer    | 3                                 | 0000_8020H                                    |
| Into      | INT5 / Timer    | 4 / SIO1                          | 0000_8024H                                    |
|           | USM0            |                                   | 0000_8028H                                    |
|           | PWM0            |                                   | 0000_802CH                                    |
|           | ADC / Timer     | 5                                 | 0000_8030H                                    |
|           | INT6            |                                   | 0000_8034H                                    |
|           | INT7 / SIO0     |                                   | 0000_8038H                                    |
|           | Port0           |                                   | 0000_803CH                                    |
|           | Exception pro   | cessing                           | 0000_8080H                                    |
| Unc       | conditional     | JMPF a24                          | PC = a24                                      |
| bra       | nch instruction | JMP Rb, Rs                        | PC = Rb << 16 + Rs                            |
|           |                 | ,<br>,                            | Rb: Contents of base register                 |
|           |                 |                                   | Rs: Contents of general-purpose register      |
|           |                 | BR r12                            | PC = PC + 2 + r12[-2048  to  + 2047]          |
|           |                 | BR Rs                             | PC = PC + 2 + Rs[-32768  to  + 32768]         |
|           |                 |                                   | Rs: Contents of general-purpose register      |
| Cor       | nditional       | BGE, BNC, BLT, BC, BGT, BHI, BLE, | PC= PC+nb+r12[-2048 to +2048]                 |
| bra       | nch instruction | BLS, BPL, BNV, BMI, BV, BNZ, BZ,  | or                                            |
|           |                 | BN, BP                            | PC = PC+nb+r8[-128  to  +127]                 |
|           |                 |                                   | nb: Instruction byte count                    |
| CA        | LL instruction  | CALLF a24                         | PC = a24                                      |
|           |                 | CALL Rb, Rs                       | PC = Rb << 16 + Rs                            |
|           |                 | ICALL Rb, Rs                      | Rb: Contents of base register                 |
|           |                 |                                   | Rs: Contents of general-purpose register      |
|           |                 | CALLR r12                         | PC = PC + 2 + r12[-2048  to  +2047]           |
|           |                 | ICALLR r12                        |                                               |
|           |                 | CALLR Rs                          | PC = PC + 2 + Rs[-32768  to  +32768]          |
|           |                 | ICALLR Rs                         |                                               |
| Ret       |                 | RET, IRET                         | PC32  to  00 = (SP)                           |
| inst      | ruction         |                                   | (SP) denotes the contents of the RAM location |
|           |                 |                                   | designated by the stack pointer value SP.     |

Table 2.2.1 Values Loaded in the PC

## 2.3 General-purpose Registers

## 2.3.1 Overview

This series of microcontrollers is provided with 16 general-purpose registers (R0 to R15).

Only the low-order 8 bits of these registers are used for execution in byte mode. The high-order 8 bits of a general-purpose register are loaded with 0 when these bits are loaded with data in byte mode.

| Name      | Symbol | Description                                                             |
|-----------|--------|-------------------------------------------------------------------------|
| R0 to R13 |        | 16-bit general-purpose registers                                        |
| R14       | PSW    | Used as a 16-bit register that indicates the state of the CPU.          |
| R15       | SP     | 16-bit register that is implicitly used as the subroutine stack pointer |
|           |        | Bit 0 of the SP must always be set to 0.                                |

## 2.3.2 R0 to R7

R0 to R7 are 16-bit registers that are used to store data and address values in various types of operations.

## 2.3.3 R8

- 1) R8 is a 16-bit register that is used to store data and address values in various types of operations.
- 2) It is used as a base address register by the 1-word MOVF instruction.
- 3) It is used as a base address register by the 2-word MOVF instruction.
- 4) It is used to designate PC32 to PC16 during the CALL, ICALL, and JMP instructions.

## 2.3.4 R9

- 1) R9 is a 16-bit register that is used to store data and address values in various types of operations.
- 2) It is used as a base address register by the 2-word MOVF instruction.
- 3) It is used to designate PC32 to PC16 during the CALL, ICALL, and JMP instructions.

## 2.3.5 R10 to R13

- 1) R10 to R13 are 16-bit registers that are used to store data and address values in various types of operations.
- 2) They are used as base address registers by the 2-word MOVF instruction.

## 2.3.6 R14 (PSW)

| Bit | Symbol | Description                                                                                                                                                                                                                          |
|-----|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0   | Z8     | Set to 1 when the low-order 8 bits of data are set to 0 during data transfer and arithmetic operation.                                                                                                                               |
| 1   | Z16    | Set to 1 when the data is set to 0 during data transfer and arithmetic operation. Z16 behaves in the same manner as Z8 during an 8-bit transfer operation.                                                                           |
| 2   | СҮ     | <ul><li>The value of CY changes in the following two cases:</li><li>Loaded with a carry or borrow from bit 15 as the result of arithmetic operation.</li><li>The value of CY changes with the shift or rotate instruction.</li></ul> |
| 3   | HC     | Loaded with a carry or borrow from bit 3 as a result of arithmetic operation.                                                                                                                                                        |
| 4   | OV     | Loaded with the overflow bit as a result of arithmetic operation.                                                                                                                                                                    |
| 5   | Р      | Set to 1 when the total number of data 1 during data transfer and arithmetic operation is an odd number.                                                                                                                             |
| 6   | S      | Stores the most significant bit of the last handled data.                                                                                                                                                                            |
| 7   | IE     | Enables interrupts.<br>* All types of interrupts are suppressed unless this bit is set to 1.                                                                                                                                         |
| 8   | IL0    | Control the interrupt level.                                                                                                                                                                                                         |
| 9   | IL1    | * When IE = 1, the CPU accepts the interrupt requests with an interrupt level higher                                                                                                                                                 |
| 10  | IL2    | than the one specified by IL2 to IL0.                                                                                                                                                                                                |
| 11  | WS     | Write control for exception interrupt control register. (0/1: disable/ enable)                                                                                                                                                       |
| 12  | N0     | Referenced by the instructions that designate registers with the values of N3 to N0.                                                                                                                                                 |
| 13  | N1     | These bits are loaded with the address of the general-purpose register that was used                                                                                                                                                 |
| 14  | N2     | for data transfer and arithmetic operation.                                                                                                                                                                                          |
| 15  | N3     |                                                                                                                                                                                                                                      |

R14 (PSW) is a 16-bit register that is used to save the state of the CPU.

Note: When MUL, DIV, DIVLH, SDIV, and SDIVLH instructions are executed, the flags change as follows. Z8, Z16, P, S: Changes according to the arithmetic operation results R0. HC, OV, N0 to N3: Cleared.

CY: The same value as S flag in the case of SDIV and SDIVLH instructions. Cleared in other instructions.

## 2.3.7 R15 (SP)

R15 (SP) is a 16-bit register that is used implicitly as the stack pointer for subroutines.

Since R15 is used as the subroutine stack pointer, it is necessary to make sure that bit 0 of the SP is always set to 0.

The value of the SP changes as follows:

| 1) | When a PUSH instruction is executed: | RAM(SP) = DATA, SP = SP + 2        |
|----|--------------------------------------|------------------------------------|
| 2) | When a CALL, CALLF, or CALLR         |                                    |
|    | instruction is executed:             | RAM(SP) = PCL, SP = SP + 2,        |
|    |                                      | RAM(SP) = PCH, SP = SP + 2         |
| 3) | When an ICALL, ICALLF, or ICALLR     |                                    |
|    | instruction is executed:             | RAM(SP) = PCL, SP = SP + 2,        |
|    |                                      | RAM(SP) = PCH, SP = SP + 2,        |
|    |                                      | RAM(SP) = PSW, SP = SP + 2         |
| 4) | When a POP instruction is executed:  | SP = SP - 2, $DATA = RAM$ ( $SP$ ) |
| 5) | When a RET instruction is executed:  | SP = SP - 2, $PCH = RAM$ ( $SP$ ), |
|    |                                      | SP = SP - 2, $PCL = RAM$ ( $SP$ )  |
|    |                                      |                                    |

#### **System Configuration**

6) When an IRET instruction is executed:

SP = SP - 2, PSW = RAM (SP), SP = SP - 2, PCH = RAM (SP), SP = SP - 2, PCL = RAM (SP)

\* PCL represents bits 0 to 15 of the PC (program counter) and PCH represents bits 16 to 31 of the PC.

## 2.4 Program Memory (ROM)

This series of microcontrollers incorporates a program memory (ROM) that is allocated to the program/data space as shown below.

| Model Name | Address                 | ROM Size    |
|------------|-------------------------|-------------|
| LC88F58B0A | 0000_8000H to 0002_7FFF | 128 K bytes |

Note: This series of microcontrollers uses the 256-byte area from 0002\_7F00 to 0002\_7FFF as the option area. This area cannot be used as a program area.

## 2.5 Data Memory (RAM)

This series of microcontrollers incorporates the RAM that is used as a data memory or program stack as shown below.

| Model Name | Address                  | RAM Size   |
|------------|--------------------------|------------|
| LC88F58B0A | 0000_0000H to 0000_17FFH | 6144 bytes |

## 2.6 Special Function Registers (SFRs)

This series of microcontrollers has special function registers allocated to addresses 0000\_7F00H to 0000\_7FFFH. They are used to control the peripheral module functions. The SFRs are listed in Table 2.6.1. For the definition of the registers in the SFR area, refer to individual register descriptions.

| Symbol | Address | R/W | Name                                           | Initial Value |
|--------|---------|-----|------------------------------------------------|---------------|
|        | 7F00    |     |                                                |               |
|        | 7F01    |     |                                                |               |
| IL1L   | 7F02    | R/W | Interrupt level setting register 1L            | 0000_0000     |
| IL1H   | 7F03    | R/W | Interrupt level setting register 1H            | 0000_0000     |
| IL2L   | 7F04    | R/W | Interrupt level setting register 2L            | 0000_0000     |
| IL2H   | 7F05    | R/W | Interrupt level setting register 2H            | 0000_0000     |
|        | 7F06    |     |                                                |               |
|        | 7F07    |     |                                                |               |
| EXCPL  | 7F08    | R/W | Exception interrupt control register low byte  | 0000_0000     |
| EXCPH  | 7F09    | R/W | Exception interrupt control register high byte | LL00_L0L0     |
| OCR0   | 7F0A    | R/W | Oscillation control register 0                 | 0000_0000     |
| OCR1   | 7F0B    | R/W | Oscillation control register 1                 | 0L00_L000     |
| WDTCR  | 7F0C    | R/W | Watchdog timer control register                | 0L00_0000     |
| RAND   | 7F0D    |     | System reserved register                       |               |
| BTCR   | 7F0E    | R/W | Base timer control register                    | 0000_0000     |
| PWRDET | 7F0F    |     | System reserved register                       |               |
| TOLR   | 7F10    | R/W | Timer 0 period setting register low byte       | 0000_0000     |
| TOHR   | 7F11    | R/W | Timer 0 period setting register high byte      | 0000_0000     |
| TOCNT  | 7F12    | R/W | Timer 0 control register                       | 0000_0000     |
| TOPR   | 7F13    | R/W | Timer 0 prescaler                              | 0000_0000     |
| T1LR   | 7F14    | R/W | Timer 1 period setting register low byte       | 0000_0000     |
| T1HR   | 7F15    | R/W | Timer 1 period setting register high byte      | 0000_0000     |
| T1CNT  | 7F16    | R/W | Timer 1 control register                       | 0000_0000     |
| T1PR   | 7F17    | R/W | Timer 1 prescaler                              | 0000_0000     |
| T2LR   | 7F18    | R/W | Timer 2 period setting register low byte       | 0000_0000     |
| T2HR   | 7F19    | R/W | Timer 2 period setting register high byte      | 0000_0000     |
| T2L    | 7F1A    | R   | Timer 2 counter                                | 0000_0000     |
| T2H    | 7F1B    | R   | Timer 2 counter                                | 0000_0000     |
| T2CNT0 | 7F1C    | R/W | Timer 2 control register 0                     | 0000_0000     |
| T2CNT1 | 7F1D    | R/W | Timer 2 control register 1                     | LLL0_0000     |
| T2CNT2 | 7F1E    | R/W | Timer 2 control register2                      | 000L_0000     |
|        | 7F1F    |     |                                                |               |
| ADCR   | 7F20    | R/W | AD converter control register                  | 0000_0000     |
| ADMR   | 7F21    | R/W | AD converter mode register                     | 0000_0000     |
| ADRL   | 7F22    | R/W | AD converter result register low byte          | 0000_0000     |
| ADRH   | 7F23    | R/W | AD converter result register high byte         | 0000_0000     |

Table 2.6.1 List of SFRs

Note 1: Null columns represent reserved areas and must not be accessed.

| Symbol  | Address | R/W | Name                                      | Initial Value |
|---------|---------|-----|-------------------------------------------|---------------|
|         | 7F24    |     |                                           |               |
|         | 7F25    |     |                                           |               |
|         | 7F26    |     |                                           |               |
|         | 7F27    |     |                                           |               |
| T3LR    | 7F28    | R/W | Timer 3 period setting register low byte  | 0000_0000     |
| T3HR    | 7F29    | R/W | Timer 3 period setting register high byte | 0000_0000     |
| T3L     | 7F2A    | R/W | Timer 3 counter                           | 0000_0000     |
| ТЗН     | 7F2B    | R/W | Timer 3 counter                           | 0000_0000     |
| T3CNT0  | 7F2C    | R/W | Timer 3 control register 0                | 0000_0000     |
| T3CNT1  | 7F2D    | R/W | Timer 3 control register 1                | LLLL_L000     |
| T3PR    | 7F2E    | R/W | Timer 3 prescaler control register        | 0000_0000     |
|         | 7F2F    |     |                                           |               |
| SOCNT   | 7F30    | R/W | SIO0 control register                     | 0000_0000     |
| SOBG    | 7F31    | R/W | SIO0 baudrate control register            | 0000_0000     |
| SOBUF   | 7F32    | R/W | SIO0 data buffer                          | 0000_0000     |
| SOINTVL | 7F33    | R/W | SIO0 interval register                    | 0000_0000     |
| S1CNT   | 7F34    | R/W | SIO1 control register                     | 0000_0000     |
| S1BG    | 7F35    | R/W | SIO1 baudrate control register            | 0000_0000     |
| S1BUF   | 7F36    | R/W | SIO1 data buffer                          | 0000_0000     |
| S1INTVL | 7F37    | R/W | SIO1 interval register                    | 0000_0000     |
| U0CR    | 7F38    | R/W | UART0 control register                    | 0000_1000     |
|         | 7F39    |     |                                           |               |
| U0RXL   | 7F3A    | R/W | UART0 receive register low byte           | 0000_0000     |
| U0RXH   | 7F3B    | R/W | UART0 receive register high byte          | LLLL_LL00     |
| U0TXL   | 7F3C    | R/W | UART0 transmit register low byte          | 0000_0000     |
| U0TXH   | 7F3D    | R/W | UART0 transmit register high byte         | LLLL_LLH0     |
|         | 7F3E    |     |                                           |               |
|         | 7F3F    |     |                                           |               |
| POLAT   | 7F40    | R/W | Port 0 data latch                         | 0000_0000     |
| POIN    | 7F41    | R   | Port 0 input address                      | XXXX_XXXX     |
| PODDR   | 7F42    | R/W | Port 0 direction control register         | 0000_0000     |
| POFSA   | 7F43    | R/W | Port 0 function control register A        | 0000_0000     |
| P1LAT   | 7F44    | R/W | Port 1 data latch                         | 0000_0000     |
| P1IN    | 7F45    | R   | Port 1 input address                      | XXXX_XXXX     |
| P1DDR   | 7F46    | R/W | Port 1 direction control register         | 0000_0000     |
| P1FSA   | 7F47    | R/W | Port 1 function control register A        | 0000_0000     |
| P2LAT   | 7F48    | R/W | Port 2 data latch                         | 0000_0000     |
| P2IN    | 7F49    | R   | Port 2 input address                      | XXXX_XXXX     |
| P2DDR   | 7F4A    | R/W | Port 2 direction control register         | 0000_0000     |
| P2FSA   | 7F4B    | R/W | Port 2 function control register A        | 0000_0000     |
| P3LAT   | 7F4C    | R/W | Port 3 data latch                         | LLLL_0000     |
| P3IN    | 7F4D    | R   | Port 3 input address                      | XXXX_XXXX     |
| P3DDR   | 7F4E    | R/W | Port 3 direction control register         | LLLL_0000     |
| P3FSA   | 7F4F    | R/W | Port 3 function control register A        | LLLL_0000     |

| Symbol    | Address | R/W | Name                                         | Initial Value |
|-----------|---------|-----|----------------------------------------------|---------------|
| P4LAT     | 7F50    | R/W | Port 4 data latch                            | 0000_0000     |
| P4IN      | 7F51    | R   | Port 4 input address                         | XXXX_XXXX     |
| P4DDR     | 7F52    | R/W | Port 4 direction control register            | 0000_0000     |
| P4FSA     | 7F53    | R/W | Port 4 function control register A           | 0000_0000     |
|           | 7F54    |     |                                              |               |
|           | 7F55    |     |                                              |               |
|           | 7F56    |     |                                              |               |
|           | 7F57    |     |                                              |               |
| P6LAT     | 7F58    | R/W | Port 6 data latch                            | 0000_0000     |
| P6IN      | 7F59    | R   | Port 6 input address                         | XXXX_XXXX     |
| P6DDR     | 7F5A    | R/W | Port 6 direction control register            | 0000_0000     |
|           | 7F5B    |     |                                              |               |
| P7LAT     | 7F5C    | R/W | Port 7 data latch                            | LLLL_L000     |
| P7IN      | 7F5D    | R   | Port 7 input address                         | LLLL_LXXX     |
| P7DDR     | 7F5E    | R/W | Port 7 direction control register            | LLLL_L000     |
|           | 7F5F    |     |                                              |               |
| SMIC0CNT  | 7F60    | R/W | I <sup>2</sup> C control register 0          | 0000_0000     |
| SMICOSTA  | 7F61    | R/W | I <sup>2</sup> C status register 0           | 0000_0000     |
| SMIC0BRG  | 7F62    | R/W | I <sup>2</sup> C baudrate control register 0 | 0000_0000     |
| SMICOBUF  | 7F63    | R/W | I <sup>2</sup> C data buffer 0               | 0000_0000     |
|           | 7F64    |     |                                              |               |
|           | 7F65    |     |                                              |               |
|           | 7F66    |     |                                              |               |
|           | 7F67    |     |                                              |               |
| SMICOPCNT | 7F68    | R/W | I <sup>2</sup> C port control register 0     | LLLL_0000     |
|           | 7F69    |     |                                              |               |
|           | 7F6A    |     |                                              |               |
|           | 7F6B    |     |                                              |               |
| U2CNT0    | 7F6C    | R/W | UART2 control register 0                     | 0010_0000     |
| U2CNT1    | 7F6D    | R/W | UART2 control register 1                     | 0000_0000     |
| U2TBUF    | 7F6E    | R/W | UART2 transmit data register                 | 0000_0000     |
| U2RBUF    | 7F6F    | R   | UART2 receive data register                  | 0000_0000     |
|           | 7F70    |     |                                              |               |
|           | 7F71    |     |                                              |               |
|           | 7F72    |     |                                              |               |
|           | 7F73    |     |                                              |               |
| U2BG      | 7F74    | R/W | UART2 baudrate control register              | 0000_0000     |
|           | 7F75    |     |                                              |               |
| FSR0      | 7F76    |     | System reserved register                     |               |
|           | 7F77    |     |                                              |               |
|           | 7F78    |     |                                              |               |
|           | 7F79    |     |                                              |               |
|           | 7F7A    |     |                                              |               |
|           | 7F7B    |     |                                              |               |

| Symbol         | Address      | R/W | Name                                      | Initial Value |
|----------------|--------------|-----|-------------------------------------------|---------------|
|                | 7F7C         |     |                                           |               |
|                | 7F7D         |     |                                           |               |
|                | 7F7E         |     |                                           |               |
|                | 7F7F         |     |                                           |               |
| USM0CTL        | 7F80         | R/W | USM0 control register                     | 0000_0000     |
| <b>USM0NPH</b> | 7F81         | R/W | USM0 phase number setup register          | 0000_0000     |
| <b>USM0TWL</b> | 7F82         | R/W | USM0 period setup register low byte       | 0000_0000     |
| USM0TWH        | 7F83         | R/W | USM0 period setup register high byte      | 00LL_0000     |
| USM0LPL        | 7F84         | R/W | USM0 low period setup register low byte   | 0000_0000     |
| USM0LPH        | 7F85         | R/W | USM0 low period setup register high byte  | LOOL_LLOO     |
| USM0PSF        | 7F86         | R/W | USM0 output waveform setup register       | 0000_L000     |
|                | 7F87         |     |                                           |               |
| USM0PLLC       | 7F88         | R/W | USM0 PLL control register                 | 0L00_0000     |
|                | 7F89         |     |                                           |               |
|                | 7F8A         |     |                                           |               |
|                | 7F8B         |     |                                           |               |
|                | 7F8C         |     |                                           |               |
|                | 7F8D         |     |                                           |               |
|                | 7F8E         |     |                                           |               |
|                | 7F8F         |     |                                           |               |
|                | 7F90         |     |                                           |               |
|                | 7F91         |     |                                           |               |
|                | 7F92         |     |                                           |               |
|                | 7F93         |     |                                           |               |
|                | 7F94         |     |                                           |               |
|                | 7F95         |     |                                           |               |
|                | 7F96         |     |                                           |               |
|                | 7F97         |     |                                           |               |
|                | 7F98         |     |                                           |               |
|                | 7F99         |     |                                           |               |
|                | 7F9A         |     |                                           |               |
|                | 7F9B<br>7F9C |     |                                           |               |
|                | 7F9C<br>7F9D |     |                                           |               |
|                | 7F9E         |     |                                           |               |
|                | 7F9F         |     |                                           |               |
| T4LR           | 7FA0         | R/W | Timer 4 period setting register low byte  | 0000_0000     |
| T4HR           | 7FA1         | R/W | Timer 4 period setting register low byte  | 0000_0000     |
| T5LR           | 7FA2         | R/W | Timer 5 period setting register low byte  | 0000 0000     |
| T5HR           | 7FA3         | R/W | Timer 5 period setting register high byte | 0000_0000     |
| T45CNT         | 7FA4         | R/W | Timer 45 control register                 | 0000_0000     |
|                | 7FA5         |     |                                           |               |
|                | 7FA6         |     |                                           |               |
|                | 7FA7         |     |                                           |               |

| Symbol | Address | R/W | Name                               | Initial Value |
|--------|---------|-----|------------------------------------|---------------|
|        | 7FA8    |     |                                    |               |
|        | 7FA9    |     |                                    |               |
| PWM0AL | 7FAA    | R/W | PWM0A compare register L           | 0000_LLLL     |
| PWM0AH | 7FAB    | R/W | PWM0A compare register H           | 0000_0000     |
| PWM0BL | 7FAC    | R/W | PWM0 B compare register L          | 0000_LLLL     |
| PWM0BH | 7FAD    | R/W | PWM0 B compare register H          | 0000_0000     |
| PWM0C  | 7FAE    | R/W | PWM0 control register              | 0000_0000     |
| PWM0PR | 7FAF    | R/W | PWM0 prescaler                     | 0000_0000     |
|        | 7FB0    |     |                                    |               |
|        | 7FB1    |     |                                    |               |
|        | 7FB2    |     |                                    |               |
|        | 7FB3    |     |                                    |               |
|        | 7FB4    |     |                                    |               |
|        | 7FB5    |     |                                    |               |
| TMCLK0 | 7FB6    | R/W | Timer clock setting register 0     | 0000_00L0     |
|        | 7FB7    |     |                                    |               |
|        | 7FB8    |     |                                    |               |
|        | 7FB9    |     |                                    |               |
|        | 7FBA    |     |                                    |               |
|        | 7FBB    |     |                                    |               |
|        | 7FBC    |     |                                    |               |
|        | 7FBD    |     |                                    |               |
|        | 7FBE    |     |                                    |               |
|        | 7FBF    |     |                                    |               |
|        | 7FC0    |     |                                    |               |
|        | 7FC1    |     |                                    |               |
|        | 7FC2    |     |                                    |               |
|        | 7FC3    |     |                                    |               |
|        | 7FC4    |     |                                    |               |
|        | 7FC5    |     |                                    |               |
|        | 7FC6    |     |                                    |               |
|        | 7FC7    |     |                                    |               |
| PALAT  | 7FC8    | R/W | Port A data latch                  | 0000_0000     |
| PAIN   | 7FC9    | R   | Port A input address               | XXXX_XXXX     |
| PADDR  | 7FCA    | R/W | Port A direction control register  | 0000_0000     |
| PAFSA  | 7FCB    | R/W | Port A function control register A | 0000_0000     |
|        | 7FCC    |     |                                    |               |
|        | 7FCD    |     |                                    |               |
|        | 7FCE    |     |                                    |               |
|        | 7FCF    |     |                                    |               |
| PCLAT  | 7FD0    | R/W | Port C data latch                  | LLLL_L000     |
| PCIN   | 7FD1    | R   | Port C input address               | LLLL_LXXX     |
| PCDDR  | 7FD2    | R/W | Port C direction control register  | LLLL_L000     |

| Symbol   | Address | R/W | Name                                 | Initial Value |
|----------|---------|-----|--------------------------------------|---------------|
|          | 7FD4    |     |                                      |               |
|          | 7FD5    |     |                                      |               |
|          | 7FD6    |     |                                      |               |
|          | 7FD7    |     |                                      |               |
| INT01CR  | 7FD8    | R/W | INT01 control register               | 0000_0000     |
| INT23CR  | 7FD9    | R/W | INT23 control register               | 0000_0000     |
| INT45CR  | 7FDA    | R/W | INT45 control register               | 0000_0000     |
| INT67CR  | 7FDB    | R/W | INT67 control register               | 0000_0000     |
| IRQREG0  | 7FDC    |     | System reserved register             |               |
| IRQREG1  | 7FDD    |     | System reserved register 1           |               |
|          | 7FDE    |     |                                      |               |
|          | 7FDF    |     |                                      |               |
| RTS1ADRL | 7FE0    | R/W | RTS1 base address register low byte  | 0000_0000     |
| RTS1ADRH | 7FE1    | R/W | RTS1 base address register high byte | LLL0_0000     |
| RTS2ADRL | 7FE2    | R/W | RTS2 base address register low byte  | 0000_0000     |
| RTS2ADRH | 7FE3    | R/W | RTS2 base address register high byte | LLL0_0000     |
| RTS1CTR  | 7FE4    | R/W | RTS1 transfer count setting register | 0000_0000     |
| RTS2CTR  | 7FE5    | R/W | RTS2 transfer count setting register | 0000_0000     |
|          | 7FE6    |     |                                      |               |
|          | 7FE7    |     |                                      |               |
|          | 7FE8    |     |                                      |               |
|          | 7FE9    |     |                                      |               |
|          | 7FEA    |     |                                      |               |
|          | 7FEB    |     |                                      |               |
|          | 7FEC    |     |                                      |               |
|          | 7FED    |     |                                      |               |
|          | 7FEE    |     |                                      |               |
|          | 7FEF    |     |                                      |               |
|          | 7FF0    |     |                                      |               |
| P1FSB    | 7FF1    | R/W | Port 1 function control register B   | 0000_0000     |
| P2FSB    | 7FF2    | R/W | Port 2 function control register B   | 0000_0000     |
| P3FSB    | 7FF3    | R/W | Port 3 function control register B   | LLLL_0000     |
| P4FSB    | 7FF4    | R/W | Port 4 function control register B   | 0000_0000     |
|          | 7FF5    |     |                                      |               |
| P6FSB    | 7FF6    | R/W | Port 6 function control register B   | 0000_0000     |
| P7FSB    | 7FF7    | R/W | Port 7 function control register B   | LLLL_L000     |
|          | 7FF8    |     |                                      |               |
|          | 7FF9    |     |                                      |               |
| PAFSB    | 7FFA    | R/W | Port A function control register B   | 0000_0000     |
|          | 7FFB    |     |                                      |               |
|          | 7FFC    |     |                                      |               |
|          | 7FFD    |     |                                      |               |
| RTSTST   | 7FFE    | R/W | RTS test register                    | 0000_0000     |
| RTSPCNT  | 7FFF    | R/W | RTS control register                 | LL00_0000     |

# 3. Peripheral System Configuration

## 3.1 Port 0

### 3.1.1 Overview

Port 0 is an 8-bit I/O port equipped with programmable pull-up resistors. It is made up of a data latch, a data direction register, a function control register, and a control circuit. The I/O direction and the pull-up resistor are set by the data direction register in 1-bit units.

P0n (n = 0 to 5) can also be used as external interrupt pins and can release HOLD mode and HOLDX mode.

Pins P06 and P07 can also be used as the PWM output ports for timer 0.

### 3.1.2 Functions

- 1) I/O port (8 bits: P00 to P07)
  - The port output data is controlled by the port 0 data latch (P0LAT:7F40) and the I/O direction is controlled by the port 0 data direction register (P0DDR:FE42).
  - The data at input pins can be read in through the port 0 input address (P0IN:7F41).
  - Each port is provided with a programmable pull-up resistor.
- 2) Interrupt pin function
  - P0FLG (P0FSA:7F43, bit 1) is set to 1, HOLD or HOLDX mode is released, and an interrupt request to vector address 803CH is generated if P0IE (P0FSA:7F43, bit 0) is set to 1 and a low level signal is input to one of pins P00 to P03 whose corresponding bit of P0DDR <n> is set to 0.
  - P04FLG (P0FSA:7F43, bit 3) is set to 1, HOLD or HOLDX mode is released, and an interrupt request to vector address 803CH is generated if P04IE (P0FSA:7F43, bit 2) is set to 1 and the level defined by P04IL (P0FSA:7F43, bit 4) is input to pin P04.
  - P05FLG (P0FSA:7F43, bit 6) is set to 1, HOLD or HOLDX mode is released, and an interrupt request to vector address 803CH is generated if P05IE (P0FSA:7F43, bit 5) is set to 1 and the level defined by P05IL (P0FSA:7F43, bit 7) is input to pin P05.
- 3) Multiplexed pins
  - P06 and P07 generate the OR of the timer 0 PWM outputs (T0PWML and T0PWMH). The outputs of T0PWML and T0PWMH are set to 0 if PWM is not available in operation mode.

|         |               |     |       |       |        |       |       |        | _     |       | _    |
|---------|---------------|-----|-------|-------|--------|-------|-------|--------|-------|-------|------|
| Address | Initial value | R/W | Name  | BIT7  | BIT6   | BIT5  | BIT4  | BIT3   | BIT2  | BIT1  | BIT0 |
| 7F40    | 0000 0000     | R/W | POLAT | BIT7  | BIT6   | BIT5  | BIT4  | BIT3   | BIT2  | BIT1  | BIT0 |
| 7F41    | XXXX XXXX     | R   | POIN  | BIT7  | BIT6   | BIT5  | BIT4  | BIT3   | BIT2  | BIT1  | BIT0 |
| 7F42    | 0000 0000     | R/W | PODDR | BIT7  | BIT6   | BIT5  | BIT4  | BIT3   | BIT2  | BIT1  | BIT0 |
| 7F43    | 0000 0000     | R/W | P0FSA | P05IL | FLGP05 | P05IE | P04IL | P04FLG | P04IE | P0FLG | POIE |

• P07 is multiplexed with the input of the UART0 baudrate clock.

### 3.1.3 Related Registers

#### 3.1.3.1 Port 0 data latch (P0LAT)

1) This latch is an 8-bit register for controlling the port 0 output data, pull-up resistor, and port 0 interrupts.

| Address | Initial value | R/W | Name  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|-------|------|------|------|------|------|------|------|------|
| 7F40    | 0000 0000     | R/W | POLAT | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

#### 3.1.3.2 Port 0 input address (P0IN)

- 1) The port 0 input address is used to read in data from the port 0 pins.
- 2) Port 0 data can always be read regardless of the I/O state of the port.

| Address | Initial value | R/W | Name | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|------|------|------|------|------|------|------|------|------|
| 7F41    | 0000 0000     | R   | POIN | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

#### 3.1.3.3 Port 0 data direction register (P0DDR)

- 1) This register is an 8-bit register that controls the I/O direction of the port 0 data in 1-bit units. Port P0n is placed in output mode when bit P0DDR<n> is set to 1 and in input mode when bit P0DDR<n> is set to 0.
- 2) Port P0n is placed in input mode with a pull-up resistor when bit P0DDR<n> is set to 0 and bit P0n of the port 0 data latch register is set to 1.

| Address | Initial value | R/W | Name  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|-------|------|------|------|------|------|------|------|------|
| 7F42    | 0000 0000     | R/W | PODDR | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

#### 3.1.3.4 Port 0 function control register A (P0FSA)

1) This register is an 8-bit register for controlling port 0 interrupts.

| Address | Initial value | R/W | Name  | BIT7  | BIT6   | BIT5  | BIT4  | BIT3   | BIT2  | BIT1  | BIT0 |
|---------|---------------|-----|-------|-------|--------|-------|-------|--------|-------|-------|------|
| 7F43    | 0000 0000     | R/W | P0FSA | P05IL | FLGP05 | P05IE | P04IL | P04FLG | P04IE | P0FLG | POIE |

#### P05IL (bit 7): P05 interrupt detection mode

When this bit is set to 1, high levels are detected.

When this bit is set to 0, low levels are detected.

#### P05FLG (bit 6): P05 interrupt detection flag

This bit is set to 1 when the P05 interrupt conditions are met.

This bit is automatically set to 0 when the POFSA register is written.

#### P05IE (bit 5): P05 interrupt operation control

When this bit is set to 1, P05 interrupt operation is performed.

When this bit and P05FLG are set to 1, a HOLD or HOLDX mode release signal and an interrupt request to vector address 803CH are generated.

#### P04IL (bit 4): P04 interrupt detection mode

When this bit is set to 1, high levels are detected. When this bit is set to 0, low levels are detected.

#### P04FLG (bit 3): P04 interrupt detection flag

This bit is set to 1 when the P04 interrupt conditions are met.

This bit is automatically set to 0 when the P0FSA register is written.

#### P04IE (bit 2): P04 interrupt operation control

When this bit is set to 1, P04 interrupt operation is performed.

When this bit and P04FLG are set to 1, a HOLD or HOLDX mode release signal and an interrupt request to vector address 803CH are generated.

#### P0FLG (bit 1): P0L interrupt detection flag

This bit is set to 1 when the POL interrupt conditions are met.

This bit is automatically set to 0 when the P0FSA register is written.

#### P0IE (bit 0): P0L interrupt operation control

When this bit is set to 1, POL interrupt detection is performed for POn (n = 0 to 3) for which the corresponding bit in PODDR<n> is set to 0.

When this bit and P0FLG are set to 1, a HOLD or HOLDX mode release signal and an interrupt request to vector address 803CH are generated.

#### 3.1.4 Register Settings and Port States

| Regist        | er Data       |         | Port P0n State            |
|---------------|---------------|---------|---------------------------|
| P0LAT <n></n> | P0DDR <n></n> | Input   | Output                    |
| 0             | 0             | Enabled | Open                      |
| 1             | 0             | Enabled | Internal pull-up resistor |
| 0             | 1             | Enabled | Low                       |
| 1             | 1             | Enabled | High                      |

### 3.1.5 HALT, HOLD, and HOLDX Mode Operation

When in HALT, HOLD, or HOLDX mode, port 0 retains the state that is established when HALT, HOLD, or HOLDX mode is entered.

## 3.2 Port 1

## 3.2.1 Overview

Port 1 is an 8-bit I/O port equipped with programmable pull-up resistors. It is made up of a data latch, a data direction register, function control registers A and B, and a control circuit. The I/O direction is set by the data direction register in 1-bit units.

## 3.2.2 Functions

- 1) I/O port (8 bits: P10 to P17)
  - The port output data is controlled by the port 1 data latch (P1LAT:7F44) and the I/O direction is controlled by the port 1 data direction register (P1DDR:7F46).
    Each output mode can be set by controlling the port 1 function control registers A (P1FSA: 7F47) and B (P1FSB:7FF1).
  - Each port bit is provided with a programmable pull-up resistor.

### 2) Multiplexed pins

- P10 to P12 are multiplexed with the SIO0 communication function.
- P13 and P14 are multiplexed with the UART0 I/O.
- P14 and P15 are multiplexed with the timer 3 PWM/toggle outputs.
- P16 and P17 are multiplexed with the UART2 I/O.

| Address | Initial value | R/W | Name  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|-------|------|------|------|------|------|------|------|------|
| 7F44    | 0000 0000     | R/W | P1LAT | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
| 7F45    | XXXX XXXX     | R   | P1IN  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
| 7F46    | 0000 0000     | R/W | P1DDR | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
| 7F47    | 0000 0000     | R/W | P1FSA | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
| 7FF1    | 0000 0000     | R/W | P1FSB | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

## 3.2.3 Related Registers

### 3.2.3.1 Port 1 data latch (P1LAT)

1) This latch is an 8-bit register for controlling the port 1 output data and pull-up resistors.

| Address | Initial value | R/W | Name  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|-------|------|------|------|------|------|------|------|------|
| 7F44    | 0000 0000     | R/W | P1LAT | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

### 3.2.3.2 Port 1 input address (P1IN)

- 1) The port 1 input address is used to read in data from the port 1 pins.
- 2) Inverted data is read from the port pins that are configured for inverted input.
- 3) Port 1 data can always be read regardless of the I/O state of the port.

| Address | Initial value | R/W | Name | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|------|------|------|------|------|------|------|------|------|
| 7F45    | XXXX XXXX     | R   | P1IN | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

### 3.2.3.3 Port 1 data direction register (P1DDR)

1) This register is an 8-bit register that controls the I/O direction of the port 1 data in 1-bit units.

| Address | Initial value | R/W | Name  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|-------|------|------|------|------|------|------|------|------|
| 7F46    | 0000 0000     | R/W | P1DDR | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

### 3.2.3.4 Port 1 function control register A (P1FSA)

1) This register is an 8-bit register that controls the functions of port 1.

| Address | Initial value | R/W | Name  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|-------|------|------|------|------|------|------|------|------|
| 7F47    | 0000 0000     | R/W | P1FSA | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

### 3.2.3.5 Port 1 function control register B (P1FSB)

1) This register is an 8-bit register that controls the functions of port 1.

| Address | Initial value | R/W | Name  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|-------|------|------|------|------|------|------|------|------|
| 7FF1    | 0000 0000     | R/W | P1FSB | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

## 3.2.4 Register Settings and Port States

Note: The pin data is taken into the multiplexed pins.

#### 3.2.4.1 P10 states

|          | Regis    | ter Data |          | Port P10 State        |                                 |                              |  |  |
|----------|----------|----------|----------|-----------------------|---------------------------------|------------------------------|--|--|
| P1FSA<0> | P1FSB<0> | P1LAT<0> | P1DDR<0> | Pin Data<br>Read      | Multiplexed Pin<br>Input (None) | Output                       |  |  |
| 0        | 0        | 0        | 0        | Enabled               | -                               | Open                         |  |  |
| 0        | 0        | 1        | 0        | Enabled               | -                               | Internal pull-up resistor    |  |  |
| 0        | 0        | 0        | 1        | Enabled               | -                               | Low                          |  |  |
| 0        | 0        | 1        | 1        | Enabled               | -                               | High                         |  |  |
| 0        | 1        | 0        | 0        | Enabled               | -                               | Low (slow change)            |  |  |
| 0        | 1        | 1        | 0        | Enabled               | -                               | High (slow change)           |  |  |
| 0        | 1        | 0        | 1        | Enabled               | -                               | Low                          |  |  |
| 0        | 1        | 1        | 1        | Enabled<br>(inverted) | -                               | Open                         |  |  |
| 1        | 0        | 0        | 0        | Enabled               | _                               | Low                          |  |  |
| 1        | 0        | 1        | 0        | Enabled<br>(inverted) | -                               | SIO0 data<br>(CMOS inverted) |  |  |
| 1        | 0        | 0        | 1        | Enabled               | _                               | SIO0 data (CMOS)             |  |  |
| 1        | 0        | 1        | 1        | Enabled               | _                               | High                         |  |  |
| 1        | 1        | 0        | 0        | Enabled               | _                               | Low (slow change)            |  |  |
| 1        | 1        | 1        | 0        | Enabled               | _                               | SIO0 data                    |  |  |
|          |          |          |          |                       |                                 | (slow change)                |  |  |
| 1        | 1        | 0        | 1        | Enabled               | -                               | SIO0 data                    |  |  |
|          |          |          |          |                       |                                 | (N-channel open drain)       |  |  |
| 1        | 1        | 1        | 1        | Enabled               | _                               | Open                         |  |  |

### 3.2.4.2 P11 states

|                   | Regis | ter Data |          | Port P11 State        |                                      |                              |  |  |
|-------------------|-------|----------|----------|-----------------------|--------------------------------------|------------------------------|--|--|
| P1FSA<1> P1FSB<1> |       | P1LAT<1> | P1DDR<1> | Pin Data<br>Read      | Multiplexed Pin<br>Input (SIO0 Data) | Output                       |  |  |
| 0                 | 0     | 0        | 0        | Enabled               | Enabled                              | Open                         |  |  |
| 0                 | 0     | 1        | 0        | Enabled               | Enabled                              | Internal pull-up resistor    |  |  |
| 0                 | 0     | 0        | 1        | Enabled               | Enabled                              | Low                          |  |  |
| 0                 | 0     | 1        | 1        | Enabled               | Enabled                              | High                         |  |  |
| 0                 | 1     | 0        | 0        | Enabled               | Enabled                              | Low (slow change)            |  |  |
| 0                 | 1     | 1        | 0        | Enabled               | Enabled                              | High (slow change)           |  |  |
| 0                 | 1     | 0        | 1        | Enabled               | Enabled                              | Low                          |  |  |
| 0                 | 1     | 1        | 1        | Enabled<br>(inverted) | Enabled (inverted)                   | Open                         |  |  |
| 1                 | 0     | 0        | 0        | Enabled               | Enabled                              | Low                          |  |  |
| 1                 | 0     | 1        | 0        | Enabled<br>(inverted) | Enabled (inverted)                   | SIO0 data<br>(CMOS inverted) |  |  |
| 1                 | 0     | 0        | 1        | Enabled               | Enabled                              | SIO0 data (CMOS)             |  |  |
| 1                 | 0     | 1        | 1        | Enabled               | Enabled                              | High                         |  |  |
| 1                 | 1     | 0        | 0        | Enabled               | Enabled                              | Low (slow change)            |  |  |
| 1                 | 1     | 1        | 0        | Enabled               | Enabled                              | SIO0 data                    |  |  |
|                   |       |          |          |                       |                                      | (slow change)                |  |  |
| 1                 | 1     | 0        | 1        | Enabled               | Enabled                              | SIO0 data                    |  |  |
|                   |       |          |          |                       |                                      | (N-channel open drain)       |  |  |
| 1                 | 1     | 1        | 1        | Enabled               | Enabled                              | Open                         |  |  |

## 3.2.4.3 P12 states

|          | Regis    | ter Data |                                                                 | Port P12 State        |                    |                               |  |  |
|----------|----------|----------|-----------------------------------------------------------------|-----------------------|--------------------|-------------------------------|--|--|
| P1FSA<2> | P1FSB<2> | P1LAT<2> | 2> P1DDR<2> Pin Data Multiplexed Pin<br>Read Input (SIO0 Clock) |                       | Output             |                               |  |  |
| 0        | 0        | 0        | 0                                                               | Enabled               | Enabled            | Open                          |  |  |
| 0        | 0        | 1        | 0                                                               | Enabled               | Enabled            | Internal pull-up resistor     |  |  |
| 0        | 0        | 0        | 1                                                               | Enabled               | Enabled            | Low                           |  |  |
| 0        | 0        | 1        | 1                                                               | Enabled               | Enabled            | High                          |  |  |
| 0        | 1        | 0        | 0                                                               | Enabled               | Enabled            | Low (slow change)             |  |  |
| 0        | 1        | 1        | 0                                                               | Enabled               | Enabled            | High (slow change)            |  |  |
| 0        | 1        | 0        | 1                                                               | Enabled               | Enabled            | Low                           |  |  |
| 0        | 1        | 1        | 1                                                               | Enabled<br>(inverted) | Enabled (inverted) | Open                          |  |  |
| 1        | 0        | 0        | 0                                                               | Enabled               | Enabled            | Low                           |  |  |
| 1        | 0        | 1        | 0                                                               | Enabled<br>(inverted) | Enabled (inverted) | SIO0 clock<br>(CMOS inverted) |  |  |
| 1        | 0        | 0        | 1                                                               | Enabled               | Enabled            | SIO0 clock (CMOS)             |  |  |
| 1        | 0        | 1        | 1                                                               | Enabled               | Enabled            | High                          |  |  |
| 1        | 1        | 0        | 0                                                               | Enabled               | Enabled            | Low (slow change)             |  |  |
| 1        | 1        | 1        | 0                                                               | Enabled               | Enabled            | SIO0 clock                    |  |  |
|          |          |          |                                                                 |                       |                    | (slow change)                 |  |  |
| 1        | 1 1 0 1  |          | 1                                                               | Enabled               | Enabled            | SIO0 clock                    |  |  |
|          |          |          |                                                                 |                       |                    | (N-channel open drain)        |  |  |
| 1        | 1        | 1        | 1                                                               | Enabled               | Enabled            | Open                          |  |  |

### 3.2.4.4 P13 states

|          | Regis    | ter Data |          |                       | Port P13 Sta                    | te                                                      |
|----------|----------|----------|----------|-----------------------|---------------------------------|---------------------------------------------------------|
| P1FSA<3> | P1FSB<3> | P1LAT<3> | P1DDR<3> | Pin Data<br>Read      | Multiplexed Pin<br>Input (None) | Output                                                  |
| 0        | 0        | 0        | 0        | Enabled               | -                               | Open                                                    |
| 0        | 0        | 1        | 0        | Enabled               | _                               | Internal pull-up resistor                               |
| 0        | 0        | 0        | 1        | Enabled               | _                               | Low                                                     |
| 0        | 0        | 1        | 1        | Enabled               | _                               | High                                                    |
| 0        | 1        | 0        | 0        | Enabled               | _                               | Low (slow change)                                       |
| 0        | 1        | 1        | 0        | Enabled               | _                               | High (slow change)                                      |
| 0        | 1        | 0        | 1        | Enabled               | _                               | Low                                                     |
| 0        | 1        | 1        | 1        | Enabled<br>(inverted) | -                               | Open                                                    |
| 1        | 0        | 0        | 0        | Enabled               | _                               | Low                                                     |
| 1        | 0        | 1        | 0        | Enabled<br>(inverted) | -                               | UART0 transmit data<br>output<br>(CMOS inverted)        |
| 1        | 0        | 0        | 1        | Enabled               | -                               | UART0 transmit data<br>output (CMOS)                    |
| 1        | 0        | 1        | 1        | Enabled               | -                               | High                                                    |
| 1        | 1        | 0        | 0        | Enabled               | -                               | Low (slow change)                                       |
| 1        | 1        | 1        | 0        | Enabled               | -                               | UART0 transmit data<br>output (slow CMOS<br>change)     |
| 1        | 1        | 0        | 1        | Enabled               | -                               | UART0 transmit data<br>output<br>(N-channel open drain) |
| 1        | 1        | 1        | 1        | Enabled               | _                               | Open                                                    |

# 3.2.4.5 P14 states

|          | Regis    | ter Data |          |                       | Port P14 Sta                     | te                                        |
|----------|----------|----------|----------|-----------------------|----------------------------------|-------------------------------------------|
| P1FSA<4> | P1FSB<4> | P1LAT<4> | P1DDR<4> | Pin Data<br>Read      | Multiplexed Pin<br>Input (UART0) | Output                                    |
| 0        | 0        | 0        | 0        | Enabled               | Enabled                          | Open                                      |
| 0        | 0        | 1        | 0        | Enabled               | Enabled                          | Internal pull-up resistor                 |
| 0        | 0        | 0        | 1        | Enabled               | Enabled                          | Low                                       |
| 0        | 0        | 1        | 1        | Enabled               | Enabled                          | High                                      |
| 0        | 1        | 0        | 0        | Enabled               | Enabled                          | Low (slow change)                         |
| 0        | 1        | 1        | 0        | Enabled               | Enabled                          | High (slow change)                        |
| 0        | 1        | 0        | 1        | Enabled               | Enabled                          | Low                                       |
| 0        | 1        | 1        | 1        | Enabled<br>(inverted) | Enabled (inverted)               | Open                                      |
| 1        | 0        | 0        | 0        | Enabled               | Enabled                          | Low                                       |
| 1        | 0        | 1        | 0        | Enabled<br>(inverted) | Enabled (inverted)               | Timer 3L output<br>(CMOS inverted)        |
| 1        | 0        | 0        | 1        | Enabled               | Enabled                          | Timer 3L output<br>(CMOS)                 |
| 1        | 0        | 1        | 1        | Enabled               | Enabled                          | High                                      |
| 1        | 1        | 0        | 0        | Enabled               | Enabled                          | Low (slow change)                         |
| 1        | 1        | 1        | 0        | Enabled               | Enabled                          | Timer 3L output<br>(slow CMOS change)     |
| 1        | 1        | 0        | 1        | Enabled               | Enabled                          | Timer 3L output<br>(N-channel open drain) |
| 1        | 1        | 1        | 1        | Enabled               | Enabled                          | Open                                      |

# 3.2.4.6 P15 states

|          | Regis    | ter Data |          |                       | Port P15 Sta                    | te                                        |
|----------|----------|----------|----------|-----------------------|---------------------------------|-------------------------------------------|
| P1FSA<5> | P1FSB<5> | P1LAT<5> | P1DDR<5> | Pin Data<br>Read      | Multiplexed Pin<br>Input (None) | Output                                    |
| 0        | 0        | 0        | 0        | Enabled               | -                               | Open                                      |
| 0        | 0        | 1        | 0        | Enabled               | -                               | Internal pull-up resistor                 |
| 0        | 0        | 0        | 1        | Enabled               | -                               | Low                                       |
| 0        | 0        | 1        | 1        | Enabled               | -                               | High                                      |
| 0        | 1        | 0        | 0        | Enabled               | -                               | Low (slow change)                         |
| 0        | 1        | 1        | 0        | Enabled               | -                               | High (slow change)                        |
| 0        | 1        | 0        | 1        | Enabled               | -                               | Low                                       |
| 0        | 1        | 1        | 1        | Enabled<br>(inverted) | -                               | Open                                      |
| 1        | 0        | 0        | 0        | Enabled               | -                               | Low                                       |
| 1        | 0        | 1        | 0        | Enabled<br>(inverted) | _                               | Timer 3H output<br>(CMOS inverted)        |
| 1        | 0        | 0        | 1        | Enabled               | _                               | Timer 3H output<br>(CMOS)                 |
| 1        | 0        | 1        | 1        | Enabled               | -                               | High                                      |
| 1        | 1        | 0        | 0        | Enabled               | -                               | Low (slow change)                         |
| 1        | 1        | 1        | 0        | Enabled               | _                               | Timer 3H output<br>(slow CMOS change)     |
| 1        | 1        | 0        | 1        | Enabled               | _                               | Timer 3H output<br>(N-channel open drain) |
| 1        | 1        | 1        | 1        | Enabled               | -                               | Open                                      |

# 3.2.4.7 P16 states

|          | Regis    | ter Data |          |                       | Port P16 Sta                                | te                        |
|----------|----------|----------|----------|-----------------------|---------------------------------------------|---------------------------|
| P1FSA<6> | P1FSB<6> | P1LAT<6> | P1DDR<6> | Pin Data<br>Read      | Multiplexed Pin<br>Input<br>(UART2 receive) | Output                    |
| 0        | 0        | 0        | 0        | Enabled               | Enabled                                     | Open                      |
| 0        | 0        | 1        | 0        | Enabled               | Enabled                                     | Internal pull-up resistor |
| 0        | 0        | 0        | 1        | Enabled               | Enabled                                     | Low                       |
| 0        | 0        | 1        | 1        | Enabled               | Enabled                                     | High                      |
| 0        | 1        | 0        | 0        | Enabled               | Enabled                                     | Low (slow change)         |
| 0        | 1        | 1        | 0        | Enabled               | Enabled                                     | High (slow change)        |
| 0        | 1        | 0        | 1        | Enabled               | Enabled                                     | Low                       |
| 0        | 1        | 1        | 1        | Enabled<br>(inverted) | Enabled (inverted)                          | Open                      |
| 1        | 0        | 0        | 0        | Enabled               | Enabled                                     | Low                       |
| 1        | 0        | 1        | 0        | Enabled<br>(inverted) | Enabled (inverted)                          | Low                       |
| 1        | 0        | 0        | 1        | Enabled               | Enabled                                     | High                      |
| 1        | 0        | 1        | 1        | Enabled               | Enabled                                     | High                      |
| 1        | 1        | 0        | 0        | Enabled               | Enabled                                     | Low (slow change)         |
| 1        | 1        | 1        | 0        | Enabled               | Enabled                                     | High (slow change)        |
| 1        | 1        | 0        | 1        | Enabled               | Enabled                                     | Open                      |
| 1        | 1        | 1        | 1        | Enabled               | Enabled                                     | Open                      |

### 3.2.4.8 P17 states

|          | Regis    | ter Data |          |                       | Port P17 St                     | ate                                                     |
|----------|----------|----------|----------|-----------------------|---------------------------------|---------------------------------------------------------|
| P1FSA<7> | P1FSB<7> | P1LAT<7> | P1DDR<7> | Pin Data<br>Read      | Multiplexed Pin<br>Input( None) | Output                                                  |
| 0        | 0        | 0        | 0        | Enabled               | -                               | Open                                                    |
| 0        | 0        | 1        | 0        | Enabled               | —                               | Internal pull-up resistor                               |
| 0        | 0        | 0        | 1        | Enabled               | —                               | Low                                                     |
| 0        | 0        | 1        | 1        | Enabled               | -                               | High                                                    |
| 0        | 1        | 0        | 0        | Enabled               | -                               | Low (slow change)                                       |
| 0        | 1        | 1        | 0        | Enabled               | -                               | High (slow change)                                      |
| 0        | 1        | 0        | 1        | Enabled               | -                               | Low                                                     |
| 0        | 1        | 1        | 1        | Enabled<br>(inverted) | _                               | Open                                                    |
| 1        | 0        | 0        | 0        | Enabled               | -                               | Low                                                     |
| 1        | 0        | 1        | 0        | Enabled<br>(inverted) | _                               | UART2 transmit data<br>output<br>(CMOS inverted)        |
| 1        | 0        | 0        | 1        | Enabled               | -                               | UART2 transmit data<br>output (CMOS)                    |
| 1        | 0        | 1        | 1        | Enabled               | -                               | High                                                    |
| 1        | 1        | 0        | 0        | Enabled               | —                               | Low (slow change)                                       |
| 1        | 1        | 1        | 0        | Enabled               | _                               | UART2 transmit data<br>output<br>(slow CMOS change)     |
| 1        | 1        | 0        | 1        | Enabled               | _                               | UART2 transmit data<br>output<br>(N-channel open drain) |
| 1        | 1        | 1        | 1        | Enabled               | —                               | Open                                                    |

# 3.2.5 HALT, HOLD, and HOLDX Mode Operation

When in HALT, HOLD, or HOLDX mode, port 1 retains the state that is established when HALT, HOLD, or HOLDX mode is entered.

# 3.3 Port 2

# 3.3.1 Overview

Port 2 is an 8-bit I/O port equipped with programmable pull-up resistors. It is made up of a data latch, a data direction register, function control registers A and B, and a control circuit. The I/O direction is set by the data direction register in 1-bit units.

# 3.3.2 Functions

- 1) I/O port (8 bits: P20 to P27)
  - The port output data is controlled by the port 2 data latch (P2LAT:7F48) and the I/O direction is controlled by the port 2 data direction register (P2DDR:7F4A).
     Each output mode can be set by controlling the port 2 function control registers A (P2FSA: 7F4B) and B (P2FSB:7FF2).
  - Each port bit is provided with a programmable pull-up resistor.
- 2) Multiplexed pins
  - P20 and P21 are multiplexed with the external interrupt inputs (INT4 and INT5).
  - P22, P23, and P24 are multiplexed with the single master  $I^2C$  communication function.
  - P25 is multiplexed with the timer 4 output.
  - P26 is multiplexed with the timer 5 output.

| Address | Initial value | R/W | Name  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|-------|------|------|------|------|------|------|------|------|
| 7F48    | 0000 0000     | R/W | P2LAT | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
| 7F49    | XXXX XXXX     | R   | P2IN  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
| 7F4A    | 0000 0000     | R/W | P2DDR | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
| 7F4B    | 0000 0000     | R/W | P2FSA | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
| 7FF2    | 0000 0000     | R/W | P2FSB | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

# 3.3.3 Related Registers

# 3.3.3.1 Port 2 data latch (P2LAT)

1) This latch is an 8-bit register for controlling the port 2 output data and pull-up resistors.

| Address | Initial value | R/W | Name  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|-------|------|------|------|------|------|------|------|------|
| 7F48    | 0000 0000     | R/W | P2LAT | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

# 3.3.3.2 Port 2 input address (P2IN)

- 1) The port 2 input address is used to read in data from the port 2 pins.
- 2) Inverted data is read from the port pins that are configured for inverted input.
- 3) Port 2 data can always be read regardless of the I/O state of the port.

| Address | Initial value | R/W | Name | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|------|------|------|------|------|------|------|------|------|
| 7F49    | XXXX XXXX     | R   | P2IN | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

### 3.3.3.3 Port 2 data direction register (P2DDR)

1) This register is an 8-bit register that controls the I/O direction of the port 2 data in 1-bit units.

| Address | Initial value | R/W | Name  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|-------|------|------|------|------|------|------|------|------|
| 7F4A    | 0000 0000     | R/W | P2DDR | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

### 3.3.3.4 Port 2 function control register A (P2FSA)

1) This register is an 8-bit register that controls the functions of port 2.

| Address | Initial value | R/W | Name  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|-------|------|------|------|------|------|------|------|------|
| 7F4B    | 0000 0000     | R/W | P2FSA | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

### 3.3.3.5 Port 2 function control register B (P2FSB)

1) This register is an 8-bit register that controls the functions of port 2.

| Address | Initial value | R/W | Name  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|-------|------|------|------|------|------|------|------|------|
| 7FF2    | 0000 0000     | R/W | P2FSB | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

# 3.3.4 Register Settings and Port States

Note: The pin data is taken into the multiplexed pins.

### 3.3.4.1 P20 states

|          | Regis    | ter Data |          |                       | Port P20 Stat                         | te                        |
|----------|----------|----------|----------|-----------------------|---------------------------------------|---------------------------|
| P2FSA<0> | P2FSB<0> | P2LAT<0> | P2DDR<0> | Pin Data<br>Read      | Multiplexed Pin<br>Input (INT4 Input) | Output                    |
| 0        | 0        | 0        | 0        | Enabled               | Enabled                               | Open                      |
| 0        | 0        | 1        | 0        | Enabled               | Enabled                               | Internal pull-up resistor |
| 0        | 0        | 0        | 1        | Enabled               | Enabled                               | Low                       |
| 0        | 0        | 1        | 1        | Enabled               | Enabled                               | High                      |
| 0        | 1        | 0        | 0        | Enabled               | Enabled                               | Low (slow change)         |
| 0        | 1        | 1        | 0        | Enabled               | Enabled                               | High (slow change)        |
| 0        | 1        | 0        | 1        | Enabled               | Enabled                               | Low                       |
| 0        | 1        | 1        | 1        | Enabled<br>(inverted) | Enabled (inverted)                    | Open                      |
| 1        | 0        | 0        | 0        | Enabled               | Enabled                               | Low                       |
| 1        | 0        | 1        | 0        | Enabled<br>(inverted) | Enabled (inverted)                    | Low                       |
| 1        | 0        | 0        | 1        | Enabled               | Enabled                               | High                      |
| 1        | 0        | 1        | 1        | Enabled               | Enabled                               | High                      |
| 1        | 1        | 0        | 0        | Enabled               | Enabled Low (slow change              |                           |
| 1        | 1        | 1        | 0        | Enabled               | Enabled High (slow chang              |                           |
| 1        | 1        | 0        | 1        | Enabled               | Enabled                               | Open                      |
| 1        | 1        | 1        | 1        | Enabled               | Enabled                               | Open                      |

# 3.3.4.2 P21 states

|          | Regis    | ter Data |          |                       | Port P21 Stat                         | te                        |
|----------|----------|----------|----------|-----------------------|---------------------------------------|---------------------------|
| P2FSA<1> | P2FSB<1> | P2LAT<1> | P2DDR<1> | Pin Data<br>Read      | Multiplexed Pin<br>Input (INT5 Input) | Output                    |
| 0        | 0        | 0        | 0        | Enabled               | Enabled                               | Open                      |
| 0        | 0        | 1        | 0        | Enabled               | Enabled                               | Internal pull-up resistor |
| 0        | 0        | 0        | 1        | Enabled               | Enabled                               | Low                       |
| 0        | 0        | 1        | 1        | Enabled               | Enabled                               | High                      |
| 0        | 1        | 0        | 0        | Enabled               | Enabled                               | Low (slow change)         |
| 0        | 1        | 1        | 0        | Enabled               | Enabled                               | High (slow change)        |
| 0        | 1        | 0        | 1        | Enabled               | Enabled                               | Low                       |
| 0        | 1        | 1        | 1        | Enabled<br>(inverted) | Enabled (inverted)                    | Open                      |
| 1        | 0        | 0        | 0        | Enabled               | Enabled                               | Low                       |
| 1        | 0        | 1        | 0        | Enabled<br>(inverted) | Enabled (inverted)                    | Low                       |
| 1        | 0        | 0        | 1        | Enabled               | Enabled                               | High                      |
| 1        | 0        | 1        | 1        | Enabled               | Enabled                               | High                      |
| 1        | 1        | 0        | 0        | Enabled               | Enabled                               | Low (slow change)         |
| 1        | 1        | 1        | 0        | Enabled               | Enabled                               | High (slow change)        |
| 1        | 1        | 0        | 1        | Enabled               | Enabled                               | Open                      |
| 1        | 1        | 1        | 1        | Enabled               | Enabled                               | Open                      |

# 3.3.4.3 P22 states

|          | Regis    | ter Data |          |                       | Port P22 Sta                              | ate                                          |
|----------|----------|----------|----------|-----------------------|-------------------------------------------|----------------------------------------------|
| P2FSA<2> | P2FSB<2> | P2LAT<2> | P2DDR<2> | Pin Data<br>Read      | Multiplexed Pin<br>Input<br>(SMIIC Clock) | Output                                       |
| 0        | 0        | 0        | 0        | Enabled               | Enabled                                   | Open                                         |
| 0        | 0        | 1        | 0        | Enabled               | Enabled                                   | Internal pull-up resistor                    |
| 0        | 0        | 0        | 1        | Enabled               | Enabled                                   | Low                                          |
| 0        | 0        | 1        | 1        | Enabled               | Enabled                                   | High                                         |
| 0        | 1        | 0        | 0        | Enabled               | Enabled                                   | Low (slow change)                            |
| 0        | 1        | 1        | 0        | Enabled               | Enabled                                   | High (slow change)                           |
| 0        | 1        | 0        | 1        | Enabled               | Enabled                                   | Low                                          |
| 0        | 1        | 1        | 1        | Enabled<br>(inverted) | Enabled (inverted)                        | Open                                         |
| 1        | 0        | 0        | 0        | Enabled               | Enabled                                   | Low                                          |
| 1        | 0        | 1        | 0        | Enabled<br>(inverted) | Enabled (inverted)                        | SMIIC clock output<br>(CMOS inverted)        |
| 1        | 0        | 0        | 1        | Enabled               | Enabled                                   | SMIIC clock output<br>(CMOS)                 |
| 1        | 0        | 1        | 1        | Enabled               | Enabled                                   | High                                         |
| 1        | 1        | 0        | 0        | Enabled               | Enabled                                   | Low (slow change)                            |
| 1        | 1        | 1        | 0        | Enabled               | Enabled                                   | SMIIC clock output<br>(slow CMOS change)     |
| 1        | 1        | 0        | 1        | Enabled               | Enabled                                   | SMIIC clock output<br>(N-channel open drain) |
| 1        | 1        | 1        | 1        | Enabled               | Enabled                                   | Open                                         |

## 3.3.4.4 P23 states

|          | Regis    | ter Data |          |                       | Port P23 Stat                         | e                                           |
|----------|----------|----------|----------|-----------------------|---------------------------------------|---------------------------------------------|
| P2FSA<3> | P2FSB<3> | P2LAT<3> | P2DDR<3> | Pin Data<br>Read      | Multiplexed Pin<br>Input (SMIIC Data) | Output                                      |
| 0        | 0        | 0        | 0        | Enabled               | Enabled                               | Open                                        |
| 0        | 0        | 1        | 0        | Enabled               | Enabled                               | Internal pull-up resistor                   |
| 0        | 0        | 0        | 1        | Enabled               | Enabled                               | Low                                         |
| 0        | 0        | 1        | 1        | Enabled               | Enabled                               | High                                        |
| 0        | 1        | 0        | 0        | Enabled               | Enabled                               | Low (slow change)                           |
| 0        | 1        | 1        | 0        | Enabled               | Enabled                               | High (slow change)                          |
| 0        | 1        | 0        | 1        | Enabled               | Enabled                               | Low                                         |
| 0        | 1        | 1        | 1        | Enabled<br>(inverted) | Enabled (inverted)                    | Open                                        |
| 1        | 0        | 0        | 0        | Enabled               | Enabled                               | Low                                         |
| 1        | 0        | 1        | 0        | Enabled<br>(inverted) | Enabled (inverted)                    | SMIIC data output<br>(CMOS inverted)        |
| 1        | 0        | 0        | 1        | Enabled               | Enabled                               | SMIIC data output<br>(CMOS)                 |
| 1        | 0        | 1        | 1        | Enabled               | Enabled                               | High                                        |
| 1        | 1        | 0        | 0        | Enabled               | Enabled                               | Low (slow change)                           |
| 1        | 1        | 1        | 0        | Enabled               | Enabled                               | SMIIC data output<br>(slow CMOS change)     |
| 1        | 1        | 0        | 1        | Enabled               | Enabled                               | SMIIC data output<br>(N-channel open drain) |
| 1        | 1        | 1        | 1        | Enabled               | Enabled                               | Open                                        |

# 3.3.4.5 P24 states

|          | Regis    | ter Data |          |                       | Port P24 Sta                    | te                                          |
|----------|----------|----------|----------|-----------------------|---------------------------------|---------------------------------------------|
| P2FSA<4> | P2FSB<4> | P2LAT<4> | P2DDR<4> | Pin Data<br>Read      | Multiplexed Pin<br>Input (None) | Output                                      |
| 0        | 0        | 0        | 0        | Enabled               | -                               | Open                                        |
| 0        | 0        | 1        | 0        | Enabled               | -                               | Internal pull-up resistor                   |
| 0        | 0        | 0        | 1        | Enabled               | _                               | Low                                         |
| 0        | 0        | 1        | 1        | Enabled               | _                               | High                                        |
| 0        | 1        | 0        | 0        | Enabled               | _                               | Low (slow change)                           |
| 0        | 1        | 1        | 0        | Enabled               | _                               | High (slow change)                          |
| 0        | 1        | 0        | 1        | Enabled               | _                               | Low                                         |
| 0        | 1        | 1        | 1        | Enabled<br>(inverted) | -                               | Open                                        |
| 1        | 0        | 0        | 0        | Enabled               | -                               | Low                                         |
| 1        | 0        | 1        | 0        | Enabled<br>(inverted) | _                               | SMIIC data output<br>(CMOS inverted)        |
| 1        | 0        | 0        | 1        | Enabled               | -                               | SMIIC data output<br>(CMOS)                 |
| 1        | 0        | 1        | 1        | Enabled               | -                               | High                                        |
| 1        | 1        | 0        | 0        | Enabled               | _                               | Low (slow change)                           |
| 1        | 1        | 1        | 0        | Enabled               | -                               | SMIIC data output<br>(slow CMOS change)     |
| 1        | 1        | 0        | 1        | Enabled               | -                               | SMIIC data output<br>(N-channel open drain) |
| 1        | 1        | 1        | 1        | Enabled               | -                               | Open                                        |

## 3.3.4.6 P25 states

|          | Regis    | ter Data |          |                       | Port P25 Sta                    | te                                       |
|----------|----------|----------|----------|-----------------------|---------------------------------|------------------------------------------|
| P2FSA<5> | P2FSB<5> | P2LAT<5> | P2DDR<5> | Pin Data<br>Read      | Multiplexed Pin<br>Input (None) | Output                                   |
| 0        | 0        | 0        | 0        | Enabled               | -                               | Open                                     |
| 0        | 0        | 1        | 0        | Enabled               | -                               | Internal pull-up resistor                |
| 0        | 0        | 0        | 1        | Enabled               | -                               | Low                                      |
| 0        | 0        | 1        | 1        | Enabled               | -                               | High                                     |
| 0        | 1        | 0        | 0        | Enabled               | -                               | Low (slow change)                        |
| 0        | 1        | 1        | 0        | Enabled               | -                               | High (slow change)                       |
| 0        | 1        | 0        | 1        | Enabled               | _                               | Low                                      |
| 0        | 1        | 1        | 1        | Enabled<br>(inverted) | -                               | Open                                     |
| 1        | 0        | 0        | 0        | Enabled               | _                               | Low                                      |
| 1        | 0        | 1        | 0        | Enabled<br>(inverted) | _                               | Timer 4 output<br>(CMOS inverted)        |
| 1        | 0        | 0        | 1        | Enabled               | -                               | Timer 4 output<br>(CMOS)                 |
| 1        | 0        | 1        | 1        | Enabled               | _                               | High                                     |
| 1        | 1        | 0        | 0        | Enabled               | -                               | Low (slow change)                        |
| 1        | 1        | 1        | 0        | Enabled               | -                               | Timer 4 output<br>(slow CMOS change)     |
| 1        | 1        | 0        | 1        | Enabled               | -                               | Timer 4 output<br>(N-channel open drain) |
| 1        | 1        | 1        | 1        | Enabled               | _                               | Open                                     |

### 3.3.4.7 P26 states

|          | Regis    | ter Data |          |                       | Port P26 Sta                    | te                                       |
|----------|----------|----------|----------|-----------------------|---------------------------------|------------------------------------------|
| P2FSA<6> | P2FSB<6> | P2LAT<6> | P2DDR<6> | Pin Data<br>Read      | Multiplexed Pin<br>Input (None) | Output                                   |
| 0        | 0        | 0        | 0        | Enabled               | -                               | Open                                     |
| 0        | 0        | 1        | 0        | Enabled               | -                               | Internal pull-up resistor                |
| 0        | 0        | 0        | 1        | Enabled               | -                               | Low                                      |
| 0        | 0        | 1        | 1        | Enabled               | -                               | High                                     |
| 0        | 1        | 0        | 0        | Enabled               | -                               | Low (slow change)                        |
| 0        | 1        | 1        | 0        | Enabled               | -                               | High (slow change)                       |
| 0        | 1        | 0        | 1        | Enabled               | _                               | Low                                      |
| 0        | 1        | 1        | 1        | Enabled<br>(inverted) | _                               | Open                                     |
| 1        | 0        | 0        | 0        | Enabled               | -                               | Low                                      |
| 1        | 0        | 1        | 0        | Enabled<br>(inverted) | _                               | Timer 5 output<br>(CMOS inverted)        |
| 1        | 0        | 0        | 1        | Enabled               | _                               | Timer 5 output<br>(CMOS)                 |
| 1        | 0        | 1        | 1        | Enabled               | -                               | High                                     |
| 1        | 1        | 0        | 0        | Enabled               | _                               | Low (slow change)                        |
| 1        | 1        | 1        | 0        | Enabled               | -                               | Timer 5 output<br>(slow CMOS change)     |
| 1        | 1        | 0        | 1        | Enabled               | _                               | Timer 5 output<br>(N-channel open drain) |
| 1        | 1        | 1        | 1        | Enabled               | -                               | Open                                     |

| 3.3.4.8  | P27 | states |
|----------|-----|--------|
| 0.01.110 |     | 014100 |

|          | Regis    | ter Data |          |                       | Input (None)     Output       d     –     Open       d     –     Internal pull-up r       d     –     Low       d     –     High       d     –     Low (slow changed) |                           |  |  |  |
|----------|----------|----------|----------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--|--|--|
| P2FSA<7> | P2FSB<7> | P2LAT<7> | P2DDR<7> | Pin Data<br>Read      |                                                                                                                                                                       | Output                    |  |  |  |
| 0        | 0        | 0        | 0        | Enabled               | -                                                                                                                                                                     | Open                      |  |  |  |
| 0        | 0        | 1        | 0        | Enabled               | -                                                                                                                                                                     | Internal pull-up resistor |  |  |  |
| 0        | 0        | 0        | 1        | Enabled               | -                                                                                                                                                                     | Low                       |  |  |  |
| 0        | 0        | 1        | 1        | Enabled               | -                                                                                                                                                                     | High                      |  |  |  |
| 0        | 1        | 0        | 0        | Enabled               | -                                                                                                                                                                     | Low (slow change)         |  |  |  |
| 0        | 1        | 1        | 0        | Enabled               | -                                                                                                                                                                     | High (slow change)        |  |  |  |
| 0        | 1        | 0        | 1        | Enabled               | -                                                                                                                                                                     | Low                       |  |  |  |
| 0        | 1        | 1        | 1        | Enabled<br>(inverted) | -                                                                                                                                                                     | Open                      |  |  |  |
| 1        | 0        | 0        | 0        | Enabled               | -                                                                                                                                                                     | Low                       |  |  |  |
| 1        | 0        | 1        | 0        | Enabled<br>(inverted) | -                                                                                                                                                                     | Low                       |  |  |  |
| 1        | 0        | 0        | 1        | Enabled               | -                                                                                                                                                                     | High                      |  |  |  |
| 1        | 0        | 1        | 1        | Enabled               | _                                                                                                                                                                     | High                      |  |  |  |
| 1        | 1        | 0        | 0        | Enabled               | -                                                                                                                                                                     | Low (slow change)         |  |  |  |
| 1        | 1        | 1        | 0        | Enabled               | -                                                                                                                                                                     | High (slow change)        |  |  |  |
| 1        | 1        | 0        | 1        | Enabled               | -                                                                                                                                                                     | Open                      |  |  |  |
| 1        | 1        | 1        | 1        | Enabled               | -                                                                                                                                                                     | Open                      |  |  |  |

# 3.3.5 HALT, HOLD, and HOLDX Mode Operation

When in HALT, HOLD, or HOLDX mode, port 2 retains the state that is established when HALT, HOLD, or HOLDX mode is entered.

# 3.4 Port 3

# 3.4.1 Overview

Port 3 is a 4-bit I/O port equipped with programmable pull-up resistors. It is made up of a data latch, a data direction register, function control registers A and B, and a control circuit. The I/O direction is set by the data direction register in 1-bit units.

# 3.4.2 Functions

- 1) I/O port (4 bits: P30 to P33)
  - The port output data is controlled by the port 3 data latch (P3LAT:7F4C) and the I/O direction is controlled by the port 3 data direction register (P3DDR:7F4E).
    - Each output mode can be set by controlling the port 3 function control registers A (P3FSA: 7F4F) and B (P3FSB:7FF3).
  - Each port bit is provided with a programmable pull-up resistor.
- 2) Multiplexed pins
  - P30 to P33 are multiplexed with the external interrupt inputs (INT0 to INT3).

| Address | Initial value | R/W | Name  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|-------|------|------|------|------|------|------|------|------|
| 7F4C    | LLLL 0000     | R/W | P3LAT | -    | -    | -    | -    | BIT3 | BIT2 | BIT1 | BIT0 |
| 7F4D    | LLLL XXXX     | R   | P3IN  | -    | -    | -    | -    | BIT3 | BIT2 | BIT1 | BIT0 |
| 7F4E    | LLLL 0000     | R/W | P3DDR | -    | -    | -    | -    | BIT3 | BIT2 | BIT1 | BIT0 |
| 7F4F    | LLLL 0000     | R/W | P3FSA | -    | -    | -    | -    | BIT3 | BIT2 | BIT1 | BIT0 |
| 7FF3    | LLLL 0000     | R/W | P3FSB | _    | _    | _    | _    | BIT3 | BIT2 | BIT1 | BIT0 |

# 3.4.3 Related Registers

# 3.4.3.1 Port 3 data latch (P3LAT)

1) This latch is a 4-bit register for controlling the port 3 output data and pull-up resistors.

| Address | Initial value | R/W | Name  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|-------|------|------|------|------|------|------|------|------|
| 7F4C    | LLLL 0000     | R/W | P3LAT | -    | -    | -    | -    | BIT3 | BIT2 | BIT1 | BIT0 |

# 3.4.3.2 Port 3 input address (P3IN)

- 1) The port 3 input address is used to read in data from the port 3 pins.
- 2) Inverted data is read from the port pins that are configured for inverted input.
- 3) Port 3 data can always be read regardless of the I/O state of the port.

| Address | Initial value | R/W | Name | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|------|------|------|------|------|------|------|------|------|
| 7F4D    | LLLL XXXX     | R   | P3IN | -    | -    | -    | -    | BIT3 | BIT2 | BIT1 | BIT0 |

### 3.4.3.3 Port 3 data direction register (P3DDR)

1) This register is a 4-bit register that controls the I/O direction of the port 3 data in 1-bit units.

| Address | Initial value | R/W | Name  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|-------|------|------|------|------|------|------|------|------|
| 7F4E    | LLLL 0000     | R/W | P3DDR | -    | -    | -    | -    | BIT3 | BIT2 | BIT1 | BIT0 |

### 3.4.3.4 Port 3 function control register A (P3FSA)

1) This register is a 4-bit register that controls the functions of port 3.

| Address | Initial value | R/W | Name  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|-------|------|------|------|------|------|------|------|------|
| 7F4F    | LLLL 0000     | R/W | P3FSA | -    | -    | -    | -    | BIT3 | BIT2 | BIT1 | BIT0 |

### 3.4.3.5 Port 3 function control register B (P3FSB)

1) This register is a 4-bit register that controls the functions of port 3.

| Address | Initial value | R/W | Name  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|-------|------|------|------|------|------|------|------|------|
| 7FF3    | LLLL 0000     | R/W | P3FSB | -    | -    | -    | -    | BIT3 | BIT2 | BIT1 | BIT0 |

# 3.4.4 Register Settings and Port States

Note: The pin data is taken into the multiplexed pins.

### 3.4.4.1 P30 states

|          | Regis    | ter Data |          |                       | Port P30 Stat                         | e                         |
|----------|----------|----------|----------|-----------------------|---------------------------------------|---------------------------|
| P3FSA<0> | P3FSB<0> | P3LAT<0> | P3DDR<0> | Pin Data<br>Read      | Multiplexed Pin<br>Input (INT0 Input) | Output                    |
| 0        | 0        | 0        | 0        | Enabled               | Enabled                               | Open                      |
| 0        | 0        | 1        | 0        | Enabled               | Enabled                               | Internal pull-up resistor |
| 0        | 0        | 0        | 1        | Enabled               | Enabled                               | Low                       |
| 0        | 0        | 1        | 1        | Enabled               | Enabled                               | High                      |
| 0        | 1        | 0        | 0        | Enabled               | Enabled                               | Low (slow change)         |
| 0        | 1        | 1        | 0        | Enabled               | Enabled                               | High (slow change)        |
| 0        | 1        | 0        | 1        | Enabled               | Enabled                               | Low                       |
| 0        | 1        | 1        | 1        | Enabled<br>(inverted) | Enabled (inverted)                    | Open                      |
| 1        | 0        | 0        | 0        | Enabled               | Enabled                               | Low                       |
| 1        | 0        | 1        | 0        | Enabled<br>(inverted) | Enabled (inverted)                    | Low                       |
| 1        | 0        | 0        | 1        | Enabled               | Enabled                               | High                      |
| 1        | 0        | 1        | 1        | Enabled               | Enabled                               | High                      |
| 1        | 1        | 0        | 0        | Enabled               | Enabled                               | Low (slow change)         |
| 1        | 1        | 1        | 0        | Enabled               | Enabled                               | High (slow change)        |
| 1        | 1        | 0        | 1        | Enabled               | Enabled                               | Open                      |
| 1        | 1        | 1        | 1        | Enabled               | Enabled                               | Open                      |

## 3.4.4.2 P31 states

|          | Regis    | ter Data |          |                       | Port P31 Stat                         | te                        |
|----------|----------|----------|----------|-----------------------|---------------------------------------|---------------------------|
| P3FSA<1> | P3FSB<1> | P3LAT<1> | P3DDR<1> | Pin Data<br>Read      | Multiplexed Pin<br>Input (INT1 Input) | Output                    |
| 0        | 0        | 0        | 0        | Enabled               | Enabled                               | Open                      |
| 0        | 0        | 1        | 0        | Enabled               | Enabled                               | Internal pull-up resistor |
| 0        | 0        | 0        | 1        | Enabled               | Enabled                               | Low                       |
| 0        | 0        | 1        | 1        | Enabled               | Enabled                               | High                      |
| 0        | 1        | 0        | 0        | Enabled               | Enabled                               | Low (slow change)         |
| 0        | 1        | 1        | 0        | Enabled               | Enabled                               | High (slow change)        |
| 0        | 1        | 0        | 1        | Enabled               | Enabled                               | Low                       |
| 0        | 1        | 1        | 1        | Enabled<br>(inverted) | Enabled (inverted)                    | Open                      |
| 1        | 0        | 0        | 0        | Enabled               | Enabled                               | Low                       |
| 1        | 0        | 1        | 0        | Enabled<br>(inverted) | Enabled (inverted)                    | Low                       |
| 1        | 0        | 0        | 1        | Enabled               | Enabled                               | High                      |
| 1        | 0        | 1        | 1        | Enabled               | Enabled                               | High                      |
| 1        | 1        | 0        | 0        | Enabled               | Enabled                               | Low (slow change)         |
| 1        | 1        | 1        | 0        | Enabled               | Enabled                               | High (slow change)        |
| 1        | 1        | 0        | 1        | Enabled               | Enabled                               | Open                      |
| 1        | 1        | 1        | 1        | Enabled               | Enabled                               | Open                      |

### 3.4.4.3 P32 states

|          | Regis    | ter Data |          |                       | Port P32 Stat                         | e                         |
|----------|----------|----------|----------|-----------------------|---------------------------------------|---------------------------|
| P3FSA<2> | P3FSB<2> | P3LAT<2> | P3DDR<2> | Pin Data<br>Read      | Multiplexed Pin<br>Input (INT2 Input) | Output                    |
| 0        | 0        | 0        | 0        | Enabled               | Enabled                               | Open                      |
| 0        | 0        | 1        | 0        | Enabled               | Enabled                               | Internal pull-up resistor |
| 0        | 0        | 0        | 1        | Enabled               | Enabled                               | Low                       |
| 0        | 0        | 1        | 1        | Enabled               | Enabled                               | High                      |
| 0        | 1        | 0        | 0        | Enabled               | Enabled                               | Low (slow change)         |
| 0        | 1        | 1        | 0        | Enabled               | Enabled                               | High (slow change)        |
| 0        | 1        | 0        | 1        | Enabled               | Enabled                               | Low                       |
| 0        | 1        | 1        | 1        | Enabled<br>(inverted) | Enabled (inverted)                    | Open                      |
| 1        | 0        | 0        | 0        | Enabled               | Enabled                               | Low                       |
| 1        | 0        | 1        | 0        | Enabled<br>(inverted) | Enabled (inverted)                    | Low                       |
| 1        | 0        | 0        | 1        | Enabled               | Enabled                               | High                      |
| 1        | 0        | 1        | 1        | Enabled               | Enabled                               | High                      |
| 1        | 1        | 0        | 0        | Enabled               | Enabled                               | Low (slow change)         |
| 1        | 1        | 1        | 0        | Enabled               | Enabled                               | High (slow change)        |
| 1        | 1        | 0        | 1        | Enabled               | Enabled                               | Open                      |
| 1        | 1        | 1        | 1        | Enabled               | Enabled                               | Open                      |

|          | Regis    | ter Data |          |                       | Port P33 Stat                         | te                        |
|----------|----------|----------|----------|-----------------------|---------------------------------------|---------------------------|
| P3FSA<3> | P3FSB<3> | P3LAT<3> | P3DDR<3> | Pin Data<br>Read      | Multiplexed Pin<br>Input (INT3 Input) | Output                    |
| 0        | 0        | 0        | 0        | Enabled               | Enabled                               | Open                      |
| 0        | 0        | 1        | 0        | Enabled               | Enabled                               | Internal pull-up resistor |
| 0        | 0        | 0        | 1        | Enabled               | Enabled                               | Low                       |
| 0        | 0        | 1        | 1        | Enabled               | Enabled                               | High                      |
| 0        | 1        | 0        | 0        | Enabled               | Enabled                               | Low (slow change)         |
| 0        | 1        | 1        | 0        | Enabled               | Enabled                               | High (slow change)        |
| 0        | 1        | 0        | 1        | Enabled               | Enabled                               | Low                       |
| 0        | 1        | 1        | 1        | Enabled<br>(inverted) | Enabled (inverted)                    | Open                      |
| 1        | 0        | 0        | 0        | Enabled               | Enabled                               | Low                       |
| 1        | 0        | 1        | 0        | Enabled<br>(inverted) | Enabled (inverted)                    | Low                       |
| 1        | 0        | 0        | 1        | Enabled               | Enabled                               | High                      |
| 1        | 0        | 1        | 1        | Enabled               | Enabled                               | High                      |
| 1        | 1        | 0        | 0        | Enabled               | Enabled                               | Low (slow change)         |
| 1        | 1        | 1        | 0        | Enabled               | Enabled                               | High (slow change)        |
| 1        | 1        | 0        | 1        | Enabled               | Enabled                               | Open                      |
| 1        | 1        | 1        | 1        | Enabled               | Enabled                               | Open                      |

### 3.4.4.4 P33 states

# 3.4.5 HALT, HOLD, and HOLDX Mode Operation

When in HALT, HOLD, or HOLDX mode, port 3 retains the state that is established when HALT, HOLD, or HOLDX mode is entered.

# 3.5 Port 4

# 3.5.1 Overview

Port 4 is an 8-bit I/O port equipped with programmable pull-up resistors. It is made up of a data latch, a data direction register, function control registers A and B, and a control circuit. The I/O direction is set by the data direction register in 1-bit units.

# 3.5.2 Functions

- 1) I/O port (8 bits: P40 to P47)
  - The port output data is controlled by the port 4 data latch (P4LAT:7F50) and the I/O direction is controlled by the port 4 data direction register (P4DDR:7F52).
     Each output mode can be set by controlling the port 4 function control registers A (P4FSA: 7F53) and B (P4FSB:7FF4).
  - Each port bit is provided with a programmable pull-up resistor.
- 2) Multiplexed pins
  - P40 and P41 are multiplexed with the external interrupt inputs (INT6 and INT7).
  - P43 to P45 are multiplexed with the SIO1 communication function.
  - P46 and P47 are multiplexed with the PWM0 outputs.

| Address | Initial value | R/W | Name  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|-------|------|------|------|------|------|------|------|------|
| 7F50    | 0000 0000     | R/W | P4LAT | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
| 7F51    | XXXX XXXX     | R   | P4IN  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
| 7F52    | 0000 0000     | R/W | P4DDR | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
| 7F53    | 0000 0000     | R/W | P4FSA | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
| 7FF4    | 0000 0000     | R/W | P4FSB | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

# 3.5.3 Related Registers

# 3.5.3.1 Port 4 data latch (P4LAT)

1) This latch is an 8-bit register for controlling the port 4 output data and pull-up resistors.

| Address | Initial value | R/W | Name  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|-------|------|------|------|------|------|------|------|------|
| 7F50    | 0000 0000     | R/W | P4LAT | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

### 3.5.3.2 Port 4 input address (P4IN)

- 1) The port 4 input address is used to read in data from the port 4 pins.
- 2) Inverted data is read from the port pins that are configured for inverted input.
- 3) Port 4 data can always be read regardless of the I/O state of the port.

| Address | Initial value | R/W | Name | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|------|------|------|------|------|------|------|------|------|
| 7F51    | XXXX XXXX     | R   | P4IN | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

# 3.5.3.3 Port 4 data direction register (P4DDR)

1) This register is an 8-bit register that controls the I/O direction of the port 4 data in 1-bit units.

| Address | Initial value | R/W | Name  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|-------|------|------|------|------|------|------|------|------|
| 7F52    | 0000 0000     | R/W | P4DDR | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

### 3.5.3.4 Port 4 function control register A (P4FSA)

| 1) This register is an o-bit register that controls the functions of port 4. |               |     |       |      |      |      |      |      |      |      |      |  |
|------------------------------------------------------------------------------|---------------|-----|-------|------|------|------|------|------|------|------|------|--|
| Address                                                                      | Initial value | R/W | Name  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |  |
| 7F53                                                                         | 0000 0000     | R/W | P4FSA | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |  |

# 1) This register is an 8-bit register that controls the functions of port 4.

# 3.5.3.5 Port 4 function control register B (P4FSB)

1) This register is an 8-bit register that controls the functions of port 4.

|         | =             |     |       |      |      |      | =    |      |      |      |      |
|---------|---------------|-----|-------|------|------|------|------|------|------|------|------|
| Address | Initial value | R/W | Name  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
| 7FF4    | 0000 0000     | R/W | P4FSB | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

# 3.5.4 Register Settings and Port States

Note: The pin data is taken into the multiplexed pins.

### 3.5.4.1 P40 states

|          | Regis    | ter Data |          |                       | Port P40 Stat                         | te                        |
|----------|----------|----------|----------|-----------------------|---------------------------------------|---------------------------|
| P4FSA<0> | P4FSB<0> | P4LAT<0> | P4DDR<0> | Pin Data<br>Read      | Multiplexed Pin<br>Input (INT6 Input) | Output                    |
| 0        | 0        | 0        | 0        | Enabled               | Enabled                               | Open                      |
| 0        | 0        | 1        | 0        | Enabled               | Enabled                               | Internal pull-up resistor |
| 0        | 0        | 0        | 1        | Enabled               | Enabled                               | Low                       |
| 0        | 0        | 1        | 1        | Enabled               | Enabled                               | High                      |
| 0        | 1        | 0        | 0        | Enabled               | Enabled                               | Low (slow change)         |
| 0        | 1        | 1        | 0        | Enabled               | Enabled                               | High (slow change)        |
| 0        | 1        | 0        | 1        | Enabled               | Enabled                               | Low                       |
| 0        | 1        | 1        | 1        | Enabled<br>(inverted) | Enabled (inverted)                    | Open                      |
| 1        | 0        | 0        | 0        | Enabled               | Enabled                               | Low                       |
| 1        | 0        | 1        | 0        | Enabled<br>(inverted) | Enabled (inverted)                    | Low                       |
| 1        | 0        | 0        | 1        | Enabled               | Enabled                               | High                      |
| 1        | 0        | 1        | 1        | Enabled               | Enabled                               | High                      |
| 1        | 1        | 0        | 0        | Enabled               | Enabled                               | Low (slow change)         |
| 1        | 1        | 1        | 0        | Enabled               | Enabled                               | High (slow change)        |
| 1        | 1        | 0        | 1        | Enabled               | Enabled                               | Open                      |
| 1        | 1        | 1        | 1        | Enabled               | Enabled                               | Open                      |

# 3.5.4.2 P41 states

|          | Regis    | ter Data |          |                       | Port P41 Sta                          | te                        |
|----------|----------|----------|----------|-----------------------|---------------------------------------|---------------------------|
| P4FSA<1> | P4FSB<1> | P4LAT<1> | P4DDR<1> | Pin Data<br>Read      | Multiplexed Pin<br>Input (INT7 Input) | Output                    |
| 0        | 0        | 0        | 0        | Enabled               | Enabled                               | Open                      |
| 0        | 0        | 1        | 0        | Enabled               | Enabled                               | Internal pull-up resistor |
| 0        | 0        | 0        | 1        | Enabled               | Enabled                               | Low                       |
| 0        | 0        | 1        | 1        | Enabled               | Enabled                               | High                      |
| 0        | 1        | 0        | 0        | Enabled               | Enabled                               | Low (slow change)         |
| 0        | 1        | 1        | 0        | Enabled               | Enabled                               | High (slow change)        |
| 0        | 1        | 0        | 1        | Enabled               | Enabled                               | Low                       |
| 0        | 1        | 1        | 1        | Enabled<br>(inverted) | Enabled (inverted)                    | Open                      |
| 1        | 0        | 0        | 0        | Enabled               | Enabled                               | Low                       |
| 1        | 0        | 1        | 0        | Enabled<br>(inverted) | Enabled (inverted)                    | Low                       |
| 1        | 0        | 0        | 1        | Enabled               | Enabled                               | High                      |
| 1        | 0        | 1        | 1        | Enabled               | Enabled                               | High                      |
| 1        | 1        | 0        | 0        | Enabled               | Enabled                               | Low (slow change)         |
| 1        | 1        | 1        | 0        | Enabled               | Enabled                               | High (slow change)        |
| 1        | 1        | 0        | 1        | Enabled               | Enabled                               | Open                      |
| 1        | 1        | 1        | 1        | Enabled               | Enabled                               | Open                      |

# 3.5.4.3 P42 states

|          | Regis    | ter Data |          |                       | Port P42 Sta                    | te                             |
|----------|----------|----------|----------|-----------------------|---------------------------------|--------------------------------|
| P4FSA<2> | P4FSB<2> | P4LAT<2> | P4DDR<2> | Pin Data<br>Read      | Multiplexed Pin<br>Input (None) | Output                         |
| 0        | 0        | 0        | 0        | Enabled               | -                               | Open                           |
| 0        | 0        | 1        | 0        | Enabled               | -                               | Internal pull-up resistor      |
| 0        | 0        | 0        | 1        | Enabled               | -                               | Low                            |
| 0        | 0        | 1        | 1        | Enabled               | -                               | High                           |
| 0        | 1        | 0        | 0        | Enabled               | -                               | Low (slow change)              |
| 0        | 1        | 1        | 0        | Enabled               | -                               | High (slow change)             |
| 0        | 1        | 0        | 1        | Enabled               | -                               | Low                            |
| 0        | 1        | 1        | 1        | Enabled<br>(inverted) | _                               | Open                           |
| 1        | 0        | 0        | 0        | Enabled               | -                               | Low                            |
| 1        | 0        | 1        | 0        | Enabled<br>(inverted) | _                               | Low                            |
| 1        | 0        | 0        | 1        | Enabled               | -                               | High                           |
| 1        | 0        | 1        | 1        | Enabled               | -                               | High                           |
| 1        | 1        | 0        | 0        | Enabled               | -                               | Low (slow change)              |
| 1        | 1        | 1        | 0        | Enabled               | _                               | High (slow change)             |
| 1        | 1        | 0        | 1        | Enabled               | _                               | Open<br>(N-channel open drain) |
| 1        | 1        | 1        | 1        | Enabled               | _                               | Open                           |

## 3.5.4.4 P43 states

|          | Regis    | ter Data |          |                       | Port P43 Sta                    | te                                  |
|----------|----------|----------|----------|-----------------------|---------------------------------|-------------------------------------|
| P4FSA<3> | P4FSB<3> | P4LAT<3> | P4DDR<3> | Pin Data<br>Read      | Multiplexed Pin<br>Input (None) | Output                              |
| 0        | 0        | 0        | 0        | Enabled               | -                               | Open                                |
| 0        | 0        | 1        | 0        | Enabled               | -                               | Internal pull-up resistor           |
| 0        | 0        | 0        | 1        | Enabled               | -                               | Low                                 |
| 0        | 0        | 1        | 1        | Enabled               | -                               | High                                |
| 0        | 1        | 0        | 0        | Enabled               | _                               | Low (slow change)                   |
| 0        | 1        | 1        | 0        | Enabled               | -                               | High (slow change)                  |
| 0        | 1        | 0        | 1        | Enabled               | _                               | Low                                 |
| 0        | 1        | 1        | 1        | Enabled<br>(inverted) | -                               | Open                                |
| 1        | 0        | 0        | 0        | Enabled               | -                               | Low                                 |
| 1        | 0        | 1        | 0        | Enabled<br>(inverted) | _                               | SIO1 data<br>(CMOS inverted)        |
| 1        | 0        | 0        | 1        | Enabled               | -                               | SIO1 data<br>(CMOS)                 |
| 1        | 0        | 1        | 1        | Enabled               | _                               | High                                |
| 1        | 1        | 0        | 0        | Enabled               | -                               | Low (slow change)                   |
| 1        | 1        | 1        | 0        | Enabled               | -                               | SIO1 data<br>(slow change)          |
| 1        | 1        | 0        | 1        | Enabled               | -                               | SIO1 data<br>(N-channel open drain) |
| 1        | 1        | 1        | 1        | Enabled               | -                               | Open                                |

### 3.5.4.5 P44 states

|          | Regis    | ter Data |          |                       | Port P44 Stat                        | te                           |
|----------|----------|----------|----------|-----------------------|--------------------------------------|------------------------------|
| P4FSA<4> | P4FSB<4> | P4LAT<4> | P4DDR<4> | Pin Data<br>Read      | Multiplexed Pin<br>Input (SIO1 Data) | Output                       |
| 0        | 0        | 0        | 0        | Enabled               | Enabled                              | Open                         |
| 0        | 0        | 1        | 0        | Enabled               | Enabled                              | Internal pull-up resistor    |
| 0        | 0        | 0        | 1        | Enabled               | Enabled                              | Low                          |
| 0        | 0        | 1        | 1        | Enabled               | Enabled                              | High                         |
| 0        | 1        | 0        | 0        | Enabled               | Enabled                              | Low (slow change)            |
| 0        | 1        | 1        | 0        | Enabled               | Enabled                              | High (slow change)           |
| 0        | 1        | 0        | 1        | Enabled               | Enabled                              | Low                          |
| 0        | 1        | 1        | 1        | Enabled<br>(inverted) | Enabled (inverted)                   | Open                         |
| 1        | 0        | 0        | 0        | Enabled               | Enabled                              | Low                          |
| 1        | 0        | 1        | 0        | Enabled<br>(inverted) | Enabled (inverted)                   | SIO1 data<br>(CMOS inverted) |
| 1        | 0        | 0        | 1        | Enabled               | Enabled                              | SIO1 data (CMOS)             |
| 1        | 0        | 1        | 1        | Enabled               | Enabled                              | High                         |
| 1        | 1        | 0        | 0        | Enabled               | Enabled                              | Low (slow change)            |
| 1        | 1        | 1        | 0        | Enabled               | Enabled                              | SIO1 data                    |
|          |          |          |          |                       |                                      | (slow change)                |
| 1        | 1        | 0        | 1        | Enabled               | Enabled                              | SIO1 data                    |
|          |          |          |          |                       |                                      | (N-channel open drain)       |
| 1        | 1        | 1        | 1        | Enabled               | Enabled                              | Open                         |

# 3.5.4.6 P45 states

|          | Regis    | ter Data |          |                       | Port P45 Stat                         | e                             |
|----------|----------|----------|----------|-----------------------|---------------------------------------|-------------------------------|
| P4FSA<5> | P4FSB<5> | P4LAT<5> | P4DDR<5> | Pin Data<br>Read      | Multiplexed Pin<br>Input (SIO1 Clock) | Output                        |
| 0        | 0        | 0        | 0        | Enabled               | Enabled                               | Open                          |
| 0        | 0        | 1        | 0        | Enabled               | Enabled                               | Internal pull-up resistor     |
| 0        | 0        | 0        | 1        | Enabled               | Enabled                               | Low                           |
| 0        | 0        | 1        | 1        | Enabled               | Enabled                               | High                          |
| 0        | 1        | 0        | 0        | Enabled               | Enabled                               | Low (slow change)             |
| 0        | 1        | 1        | 0        | Enabled               | Enabled                               | High (slow change)            |
| 0        | 1        | 0        | 1        | Enabled               | Enabled                               | Low                           |
| 0        | 1        | 1        | 1        | Enabled<br>(inverted) | Enabled (inverted)                    | Open                          |
| 1        | 0        | 0        | 0        | Enabled               | Enabled                               | Low                           |
| 1        | 0        | 1        | 0        | Enabled<br>(inverted) | Enabled (inverted)                    | SIO1 clock<br>(CMOS inverted) |
| 1        | 0        | 0        | 1        | Enabled               | Enabled                               | SIO1 clock (CMOS)             |
| 1        | 0        | 1        | 1        | Enabled               | Enabled                               | High                          |
| 1        | 1        | 0        | 0        | Enabled               | Enabled                               | Low (slow change)             |
| 1        | 1        | 1        | 0        | Enabled               | Enabled                               | SIO1 clock                    |
|          |          |          |          |                       |                                       | (slow change)                 |
| 1        | 1        | 0        | 1        | Enabled               | Enabled                               | SIO1 clock                    |
|          |          |          |          |                       |                                       | (N-channel open drain)        |
| 1        | 1        | 1        | 1        | Enabled               | Enabled                               | Open                          |

# 3.5.4.7 P46 states

|          | Regis    | ter Data |          |                       | Port P46 Sta                    | te                                     |
|----------|----------|----------|----------|-----------------------|---------------------------------|----------------------------------------|
| P4FSA<6> | P4FSB<6> | P4LAT<6> | P4DDR<6> | Pin Data<br>Read      | Multiplexed Pin<br>Input (None) | Output                                 |
| 0        | 0        | 0        | 0        | Enabled               | -                               | Open                                   |
| 0        | 0        | 1        | 0        | Enabled               | -                               | Internal pull-up resistor              |
| 0        | 0        | 0        | 1        | Enabled               | -                               | Low                                    |
| 0        | 0        | 1        | 1        | Enabled               | _                               | High                                   |
| 0        | 1        | 0        | 0        | Enabled               | -                               | Low (slow change)                      |
| 0        | 1        | 1        | 0        | Enabled               | _                               | High (slow change)                     |
| 0        | 1        | 0        | 1        | Enabled               | _                               | Low                                    |
| 0        | 1        | 1        | 1        | Enabled<br>(inverted) | -                               | Open                                   |
| 1        | 0        | 0        | 0        | Enabled               | -                               | Low                                    |
| 1        | 0        | 1        | 0        | Enabled<br>(inverted) | -                               | PWM00 output<br>(CMOS inverted)        |
| 1        | 0        | 0        | 1        | Enabled               | -                               | PWM00 output<br>(CMOS)                 |
| 1        | 0        | 1        | 1        | Enabled               | _                               | High                                   |
| 1        | 1        | 0        | 0        | Enabled               | -                               | Low (slow change)                      |
| 1        | 1        | 1        | 0        | Enabled               | -                               | PWM00 output<br>(slow CMOS change)     |
| 1        | 1        | 0        | 1        | Enabled               | -                               | PWM00 output<br>(N-channel open drain) |
| 1        | 1        | 1        | 1        | Enabled               | -                               | Open                                   |

| 3.5.4.8  | P47 | states |
|----------|-----|--------|
| 0.01.110 |     | 010100 |

|          | Regis    | ter Data |          |                       | Port P47 Sta                    | te                                     |
|----------|----------|----------|----------|-----------------------|---------------------------------|----------------------------------------|
| P4FSA<7> | P4FSB<7> | P4LAT<7> | P4DDR<7> | Pin Data<br>Read      | Multiplexed Pin<br>Input (None) | Output                                 |
| 0        | 0        | 0        | 0        | Enabled               | —                               | Open                                   |
| 0        | 0        | 1        | 0        | Enabled               | —                               | Internal pull-up resistor              |
| 0        | 0        | 0        | 1        | Enabled               | —                               | Low                                    |
| 0        | 0        | 1        | 1        | Enabled               | —                               | High                                   |
| 0        | 1        | 0        | 0        | Enabled               | —                               | Low (slow change)                      |
| 0        | 1        | 1        | 0        | Enabled               | —                               | High (slow change)                     |
| 0        | 1        | 0        | 1        | Enabled               | —                               | Low                                    |
| 0        | 1        | 1        | 1        | Enabled<br>(inverted) | _                               | Open                                   |
| 1        | 0        | 0        | 0        | Enabled               | _                               | Low                                    |
| 1        | 0        | 1        | 0        | Enabled<br>(inverted) | _                               | PWM01 output<br>(CMOS inverted)        |
| 1        | 0        | 0        | 1        | Enabled               | -                               | PWM01 output<br>(CMOS)                 |
| 1        | 0        | 1        | 1        | Enabled               | _                               | High                                   |
| 1        | 1        | 0        | 0        | Enabled               | —                               | Low (slow change)                      |
| 1        | 1        | 1        | 0        | Enabled               | -                               | PWM01 output<br>(slow CMOS change)     |
| 1        | 1        | 0        | 1        | Enabled               | -                               | PWM01 output<br>(N-channel open drain) |
| 1        | 1        | 1        | 1        | Enabled               | —                               | Open                                   |

# 3.5.5 HALT, HOLD, and HOLDX Mode Operation

When in HALT, HOLD, or HOLDX mode, port 4 retains the state that is established when HALT, HOLD, or HOLDX mode is entered.

# 3.6 Port 6

# 3.6.1 Overview

Port 6 is an 8-bit I/O port equipped with programmable pull-up resistors. It is made up of a data latch, a data direction register, function control register B, and a control circuit. The I/O direction is set by the data direction register in 1-bit units.

# 3.6.2 Functions

- 1) I/O port (8 bits: P60 to P67)
  - The port output data is controlled by the port 6 data latch (P6LAT:7F58) and the I/O direction is controlled by the port 6 data direction register (P6DDR:7F5A).

Each output mode can be set by controlling the port 6 function control register B (P6FSB:7FF6).

- Each port bit is provided with a programmable pull-up resistor.
- 2) Multiplexed pins
  - P60 to P67 are multiplexed with the AD converter analog input pins AN0 to AN7.

| Address | Initial value | R/W | Name  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|-------|------|------|------|------|------|------|------|------|
| 7F58    | 0000 0000     | R/W | P6LAT | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
| 7F59    | XXXX XXXX     | R   | P6IN  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
| 7F5A    | 0000 0000     | R/W | P6DDR | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
| 7FF6    | 0000 0000     | R/W | P6FSB | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

# 3.6.3 Related Registers

### 3.6.3.1 Port 6 data latch (P6LAT)

1) This latch is an 8-bit register for controlling the port 6 output data and pull-up resistors.

| Address | Initial value | R/W | Name  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|-------|------|------|------|------|------|------|------|------|
| 7F58    | 0000 0000     | R/W | P6LAT | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

### 3.6.3.2 Port 6 input address (P6IN)

- 1) The port 6 input address is used to read in data from the port 6 pins.
- 2) Inverted data is read from the port pins that are configured for inverted input.
- 3) Port 6 data can always be read regardless of the I/O state of the port.

| Address | Initial value | R/W | Name | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|------|------|------|------|------|------|------|------|------|
| 7F59    | XXXX XXXX     | R   | P6IN | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

# 3.6.3.3 Port 6 data direction register (P6DDR)

1) This register is an 8-bit register that controls the I/O direction of the port 6 data in 1-bit units.

| Address | Initial value | R/W | Name  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|-------|------|------|------|------|------|------|------|------|
| 7F5A    | 0000 0000     | R/W | P6DDR | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

### 3.6.3.4 Port 6 function control register B (P6FSB)

1) This register is an 8-bit register that controls the functions of port 6.

| Address | Initial value | R/W | Name  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|-------|------|------|------|------|------|------|------|------|
| 7FF6    | 0000 0000     | R/W | P6FSB | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

# 3.6.4 Register Settings and Port States

*Note: The pin level is taken into the multiplexed pins* ANn (n=0 to 7).

### 3.6.4.1 P60 states

| F        | Register Data |          |                    | Port P60 Stat                  | te                        |
|----------|---------------|----------|--------------------|--------------------------------|---------------------------|
| P6FSB<0> | P6LAT<0>      | P6DDR<0> | Pin Data Read      | Multiplexed Pin<br>Input (AN0) | Output                    |
| 0        | 0             | 0        | Enabled            | Enabled                        | Open                      |
| 0        | 1             | 0        | Enabled            | Enabled                        | Internal pull-up resistor |
| 0        | 0             | 1        | Enabled            | Enabled                        | Low                       |
| 0        | 1             | 1        | Enabled            | Enabled                        | High                      |
| 1        | 0             | 0        | Enabled            | Enabled                        | Low (slow change)         |
| 1        | 1             | 0        | Enabled            | Enabled                        | High (slow change)        |
| 1        | 0             | 1        | Enabled            | Enabled                        | Low                       |
| 1        | 1             | 1        | Enabled (inverted) | Enabled                        | Open                      |

### 3.6.4.2 P61 states

| F        | Register Data |          |                    | Port P61 Sta                   | te                        |
|----------|---------------|----------|--------------------|--------------------------------|---------------------------|
| P6FSB<1> | P6LAT<1>      | P6DDR<1> | Pin Data Read      | Multiplexed Pin<br>Input (AN1) | Output                    |
| 0        | 0             | 0        | Enabled            | Enabled                        | Open                      |
| 0        | 1             | 0        | Enabled            | Enabled                        | Internal pull-up resistor |
| 0        | 0             | 1        | Enabled            | Enabled                        | Low                       |
| 0        | 1             | 1        | Enabled            | Enabled                        | High                      |
| 1        | 0             | 0        | Enabled            | Enabled                        | Low (slow change)         |
| 1        | 1             | 0        | Enabled            | Enabled                        | High (slow change)        |
| 1        | 0             | 1        | Enabled            | Enabled                        | Low                       |
| 1        | 1             | 1        | Enabled (inverted) | Enabled                        | Open                      |

### 3.6.4.3 P62 states

| F        | Register Data |          |                    | Port P62 Stat                  | te                        |
|----------|---------------|----------|--------------------|--------------------------------|---------------------------|
| P6FSB<2> | P6LAT<2>      | P6DDR<2> | Pin Data Read      | Multiplexed Pin<br>Input (AN2) | Output                    |
| 0        | 0             | 0        | Enabled            | Enabled                        | Open                      |
| 0        | 1             | 0        | Enabled            | Enabled                        | Internal pull-up resistor |
| 0        | 0             | 1        | Enabled            | Enabled                        | Low                       |
| 0        | 1             | 1        | Enabled            | Enabled                        | High                      |
| 1        | 0             | 0        | Enabled            | Enabled                        | Low (slow change)         |
| 1        | 1             | 0        | Enabled            | Enabled                        | High (slow change)        |
| 1        | 0             | 1        | Enabled            | Enabled                        | Low                       |
| 1        | 1             | 1        | Enabled (inverted) | Enabled                        | Open                      |

### <u> PORT 6</u>

### 3.6.4.4 P63 states

| I        | Register Data |          |                    | Port P63 State                 |                           |  |  |  |  |
|----------|---------------|----------|--------------------|--------------------------------|---------------------------|--|--|--|--|
| P6FSB<3> | P6LAT<3>      | P6DDR<3> | Pin Data Read      | Multiplexed Pin<br>Input (AN3) | Output                    |  |  |  |  |
| 0        | 0             | 0        | Enabled            | Enabled                        | Open                      |  |  |  |  |
| 0        | 1             | 0        | Enabled            | Enabled                        | Internal pull-up resistor |  |  |  |  |
| 0        | 0             | 1        | Enabled            | Enabled                        | Low                       |  |  |  |  |
| 0        | 1             | 1        | Enabled            | Enabled                        | High                      |  |  |  |  |
| 1        | 0             | 0        | Enabled            | Enabled                        | Low (slow change)         |  |  |  |  |
| 1        | 1             | 0        | Enabled            | Enabled                        | High (slow change)        |  |  |  |  |
| 1        | 0             | 1        | Enabled            | Enabled                        | Low                       |  |  |  |  |
| 1        | 1             | 1        | Enabled (inverted) | Enabled                        | Open                      |  |  |  |  |

### 3.6.4.5 P64 states

| F        | Register Data |          |                    | Port P64 Stat                  | te                        |
|----------|---------------|----------|--------------------|--------------------------------|---------------------------|
| P6FSB<4> | P6LAT<4>      | P6DDR<4> | Pin Data Read      | Multiplexed Pin<br>Input (AN4) | Output                    |
| 0        | 0             | 0        | Enabled            | Enabled                        | Open                      |
| 0        | 1             | 0        | Enabled            | Enabled                        | Internal pull-up resistor |
| 0        | 0             | 1        | Enabled            | Enabled                        | Low                       |
| 0        | 1             | 1        | Enabled            | Enabled                        | High                      |
| 1        | 0             | 0        | Enabled            | Enabled                        | Low (slow change)         |
| 1        | 1             | 0        | Enabled            | Enabled                        | High (slow change)        |
| 1        | 0             | 1        | Enabled            | Enabled                        | Low                       |
| 1        | 1             | 1        | Enabled (inverted) | Enabled                        | Open                      |

### 3.6.4.6 P65 states

| F        | Register Data |          |                    | Port P65 Stat                  | te                        |
|----------|---------------|----------|--------------------|--------------------------------|---------------------------|
| P6FSB<5> | P6LAT<5>      | P6DDR<5> | Pin Data Read      | Multiplexed Pin<br>Input (AN5) | Output                    |
| 0        | 0             | 0        | Enabled            | Enabled                        | Open                      |
| 0        | 1             | 0        | Enabled            | Enabled                        | Internal pull-up resistor |
| 0        | 0             | 1        | Enabled            | Enabled                        | Low                       |
| 0        | 1             | 1        | Enabled            | Enabled                        | High                      |
| 1        | 0             | 0        | Enabled            | Enabled                        | Low (slow change)         |
| 1        | 1             | 0        | Enabled            | Enabled                        | High (slow change)        |
| 1        | 0             | 1        | Enabled            | Enabled                        | Low                       |
| 1        | 1             | 1        | Enabled (inverted) | Enabled                        | Open                      |

### 3.6.4.7 P66 states

| F        | Register Data |          |                    | Port P66 State                 |                           |  |  |  |  |
|----------|---------------|----------|--------------------|--------------------------------|---------------------------|--|--|--|--|
| P6FSB<6> | P6LAT<6>      | P6DDR<6> | Pin Data Read      | Multiplexed Pin<br>Input (AN6) | Output                    |  |  |  |  |
| 0        | 0             | 0        | Enabled            | Enabled                        | Open                      |  |  |  |  |
| 0        | 1             | 0        | Enabled            | Enabled                        | Internal pull-up resistor |  |  |  |  |
| 0        | 0             | 1        | Enabled            | Enabled                        | Low                       |  |  |  |  |
| 0        | 1             | 1        | Enabled            | Enabled                        | High                      |  |  |  |  |
| 1        | 0             | 0        | Enabled            | Enabled                        | Low (slow change)         |  |  |  |  |
| 1        | 1             | 0        | Enabled            | Enabled                        | High (slow change)        |  |  |  |  |
| 1        | 0             | 1        | Enabled            | Enabled                        | Low                       |  |  |  |  |
| 1        | 1             | 1        | Enabled (inverted) | Enabled                        | Open                      |  |  |  |  |

#### 3.6.4.8 P67 states

| F        | Register Data |          |                    | Port P67 State                 |                           |  |  |  |  |
|----------|---------------|----------|--------------------|--------------------------------|---------------------------|--|--|--|--|
| P6FSB<7> | P6LAT<7>      | P6DDR<7> | Pin Data Read      | Multiplexed Pin<br>Input (AN7) | Output                    |  |  |  |  |
| 0        | 0             | 0        | Enabled            | Enabled                        | Open                      |  |  |  |  |
| 0        | 1             | 0        | Enabled            | Enabled                        | Internal pull-up resistor |  |  |  |  |
| 0        | 0             | 1        | Enabled            | Enabled                        | Low                       |  |  |  |  |
| 0        | 1             | 1        | Enabled            | Enabled                        | High                      |  |  |  |  |
| 1        | 0             | 0        | Enabled            | Enabled                        | Low (slow change)         |  |  |  |  |
| 1        | 1             | 0        | Enabled            | Enabled                        | High (slow change)        |  |  |  |  |
| 1        | 0             | 1        | Enabled            | Enabled                        | Low                       |  |  |  |  |
| 1        | 1             | 1        | Enabled (inverted) | Enabled                        | Open                      |  |  |  |  |

# 3.6.5 HALT, HOLD, and HOLDX Mode Operation

When in HALT, HOLD, or HOLDX mode, port 6 retains the state that is established when HALT, HOLD, or HOLDX mode is entered.

# 3.7 Port 7

# 3.7.1 Overview

Port 7 is a 3-bit I/O port equipped with programmable pull-up resistors. It is made up of a data latch, a data direction register, function control registers B, and a control circuit. The I/O direction is set by the data direction register in 1-bit units.

# 3.7.2 Functions

- 1) I/O port (3 bits: P70 to P72)
  - The port output data is controlled by the port 7 data latch (P7LAT:7F5C) and the I/O direction is controlled by the port 7 data direction register (P7DDR:7F5E).
  - Each output mode can be set by controlling the port 7 function control register B (P7FSB:7FF7).
  - Each port bit is provided with a programmable pull-up resistor.
- 2) Multiplexed pins
  - P70 to P72 are multiplexed with the AD converter analog input pins AN8 to AN10.

| Address | Initial value | R/W | Name  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|-------|------|------|------|------|------|------|------|------|
| 7F5C    | LLLL L000     | R/W | P7LAT | -    | -    | -    | -    | -    | BIT2 | BIT1 | BIT0 |
| 7F5D    | LLLL LXXX     | R   | P7IN  | I    | I    | -    | -    | I    | BIT2 | BIT1 | BIT0 |
| 7F5E    | LLLL L000     | R/W | P7DDR | I    | I    | -    | -    | I    | BIT2 | BIT1 | BIT0 |
| 7FF7    | LLLL L000     | R/W | P7FSB | -    | -    | -    | -    | -    | BIT2 | BIT1 | BIT0 |

# 3.7.3 Related Registers

### 3.7.3.1 Port 7 data latch (P7LAT)

1) This latch is a 3-bit register for controlling the port 7 output data and pull-up resistors.

| Address | Initial value | R/W | Name  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|-------|------|------|------|------|------|------|------|------|
| 7F5C    | LLLL L000     | R/W | P7LAT | -    | -    | -    | -    | -    | BIT2 | BIT1 | BIT0 |

### 3.7.3.2 Port 7 input address (P7IN)

- 1) The port 7 input address is used to read in data from the port 7 pins.
- 2) Inverted data is read from the port pins that are configured for inverted input.
- 3) Port 7 data can always be read regardless of the I/O state of the port.

| Address | Initial value | R/W | Name | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|------|------|------|------|------|------|------|------|------|
| 7F5D    | LLLL LXXX     | R   | P7IN | -    | -    | -    | -    | -    | BIT2 | BIT1 | BIT0 |

# 3.7.3.3 Port 7 data direction register (P7DDR)

1) This register is a 3-bit register that controls the I/O direction of port 7 data in 1-bit units.

| Address | Initial value | R/W | Name  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|-------|------|------|------|------|------|------|------|------|
| 7F5E    | LLLL L000     | R/W | P7DDR | -    | -    | -    | _    | -    | BIT2 | BIT1 | BIT0 |

### 3.7.3.4 Port 7 function control register B (P7FSB)

1) This register is a 3-bit register that controls the functions of port 7.

| Address | Initial value | R/W | Name  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|-------|------|------|------|------|------|------|------|------|
| 7FF7    | LLLL L000     | R/W | P7FSB | -    | -    | -    | -    | -    | BIT2 | BIT1 | BIT0 |

# 3.7.4 Register Settings and Port States

Note: The pin level is taken into the multiplexed pins ANn (n=8 to 10).

### 3.7.4.1 P70 states

| F        | Register Data |          |                    | Port P70 Stat                  | te                        |
|----------|---------------|----------|--------------------|--------------------------------|---------------------------|
| P7FSB<0> | P7LAT<0>      | P7DDR<0> | Pin Data Read      | Multiplexed Pin<br>Input (AN8) | Output                    |
| 0        | 0             | 0        | Enabled            | Enabled                        | Open                      |
| 0        | 1             | 0        | Enabled            | Enabled                        | Internal pull-up resistor |
| 0        | 0             | 1        | Enabled            | Enabled                        | Low                       |
| 0        | 1             | 1        | Enabled            | Enabled                        | High                      |
| 1        | 0             | 0        | Enabled            | Enabled                        | Low (slow change)         |
| 1        | 1             | 0        | Enabled            | Enabled                        | High (slow change)        |
| 1        | 0             | 1        | Enabled            | Enabled                        | Low                       |
| 1        | 1             | 1        | Enabled (inverted) | Enabled                        | Open                      |

## 3.7.4.2 P71 states

| F        | Register Data |          |                    | Port P71 Stat                  | te                        |
|----------|---------------|----------|--------------------|--------------------------------|---------------------------|
| P7FSB<1> | P7LAT<1>      | P7DDR<1> | Pin Data Read      | Multiplexed Pin<br>Input (AN9) | Output                    |
| 0        | 0             | 0        | Enabled            | Enabled                        | Open                      |
| 0        | 1             | 0        | Enabled            | Enabled                        | Internal pull-up resistor |
| 0        | 0             | 1        | Enabled            | Enabled                        | Low                       |
| 0        | 1             | 1        | Enabled            | Enabled                        | High                      |
| 1        | 0             | 0        | Enabled            | Enabled                        | Low (slow change)         |
| 1        | 1             | 0        | Enabled            | Enabled                        | High (slow change)        |
| 1        | 0             | 1        | Enabled            | Enabled                        | Low                       |
| 1        | 1             | 1        | Enabled (inverted) | Enabled                        | Open                      |

### 3.7.4.3 P72 states

|          | Register | Data     |                    | Port P72 Stat                   | te                        |
|----------|----------|----------|--------------------|---------------------------------|---------------------------|
| P7FSB<2> | P7LAT<2> | P7DDR<2> | Pin Data Read      | Multiplexed Pin<br>Input (AN10) | Output                    |
| 0        | 0        | 0        | Enabled            | Enabled                         | Open                      |
| 0        | 1        | 0        | Enabled            | Enabled                         | Internal pull-up resistor |
| 0        | 0        | 1        | Enabled            | Enabled                         | Low                       |
| 0        | 1        | 1        | Enabled            | Enabled                         | High                      |
| 1        | 0        | 0        | Enabled            | Enabled                         | Low (slow change)         |
| 1        | 1        | 0        | Enabled            | Enabled                         | High (slow change)        |
| 1        | 0        | 1        | Enabled            | Enabled                         | Low                       |
| 1        | 1        | 1        | Enabled (inverted) | Enabled                         | Open                      |

# 3.7.5 HALT, HOLD, and HOLDX Mode Operation

When in HALT, HOLD, or HOLDX mode, port 7 retains the state that is established when HALT, HOLD, or HOLDX mode is entered.

# 3.8 Port A

# 3.8.1 Overview

Port A is a 4-bit I/O port equipped with programmable pull-up resistors. It is made up of a data latch, a data direction register, function control registers A and B, and a control circuit. The I/O direction is set by the data direction register in 1-bit units.

# 3.8.2 Functions

- 1) I/O port (4 bits: PA0 to PA3)
  - The port output data is controlled by the port A data latch (PALAT:7FC8) and the I/O direction is controlled by the port A data direction register (PADDR:7FCA).
    - Each output mode can be set by controlling the port A function control registers A (PAFSA: 7FCB) and B (PAFSB:7FFA).
  - Each port bit is provided with a programmable pull-up resistor.

### 2) Multiplexed pins

• PA0 to PA3 are multiplexed with the USM0 output.

| Address | Initial value | R/W | Name  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|-------|------|------|------|------|------|------|------|------|
| 7FC8    | 0000 0000     | R/W | PALAT | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
| 7FC9    | XXXX XXXX     | R   | PAIN  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
| 7FCA    | 0000 0000     | R/W | PADDR | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
| 7FCB    | 0000 0000     | R/W | PAFSA | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
| 7FFA    | 0000 0000     | R/W | PAFSB | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

# 3.8.3 Related Registers

### 3.8.3.1 Port A data latch (PALAT)

1) This latch is an 8-bit register for controlling the port A output data and pull-up resistors.

| Address | Initial value | R/W | Name  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|-------|------|------|------|------|------|------|------|------|
| 7FC8    | 0000 0000     | R/W | PALAT | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

### 3.8.3.2 Port A input address (PAIN)

- 1) The port A input address is used to read in data from the port A pins.
- 2) Inverted data is read from the port pins that are configured for inverted input.
- 3) Port A data can always be read regardless of the I/O state of the port.

| Address | Initial value | R/W | Name | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|------|------|------|------|------|------|------|------|------|
| 7FC9    | XXXX XXXX     | R   | PAIN | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

# 3.8.3.3 Port A data direction register (PADDR)

1) This register is an 8-bit register that controls the I/O direction of port A data in 1-bit units.

| Address | Initial value | R/W | Name  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|-------|------|------|------|------|------|------|------|------|
| 7FCA    | 0000 0000     | R/W | PADDR | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

# 3.8.3.4 Port A function control register A (PAFSA)

| 1) | This register A | is an 8-bit register that | t controls the functions of port A. |  |
|----|-----------------|---------------------------|-------------------------------------|--|
|    |                 |                           |                                     |  |

| Address | Initial value | R/W | Name  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|-------|------|------|------|------|------|------|------|------|
| 7FCB    | 0000 0000     | R/W | PAFSA | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

Bit 7 to bit 4 must be set to 0.

## 3.8.3.5 Port A function control register B (PAFSB)

1) This register is an 8-bit register that controls the functions of port A.

| Address | Initial value | R/W | Name  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|-------|------|------|------|------|------|------|------|------|
| 7FFA    | 0000 0000     | R/W | PAFSB | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

# 3.8.4 Register Settings and Port States

Note: The pin data is taken into the multiplexed pins.

### 3.8.4.1 PA0 states

|          | Registe  | er Data  |          |                       | Port PA0 S                      | itate                                   |
|----------|----------|----------|----------|-----------------------|---------------------------------|-----------------------------------------|
| PAFSA<0> | PAFSB<0> | PALAT<0> | PADDR<0> | Pin Data<br>Read      | Multiplexed Pin<br>Input (None) | Output                                  |
| 0        | 0        | 0        | 0        | Enabled               | -                               | Open                                    |
| 0        | 0        | 1        | 0        | Enabled               | -                               | Internal pull-up resistor               |
| 0        | 0        | 0        | 1        | Enabled               | -                               | Low                                     |
| 0        | 0        | 1        | 1        | Enabled               | -                               | High                                    |
| 0        | 1        | 0        | 0        | Enabled               | -                               | Low (slow change)                       |
| 0        | 1        | 1        | 0        | Enabled               | -                               | High (slow change)                      |
| 0        | 1        | 0        | 1        | Enabled               |                                 | Low                                     |
| 0        | 1        | 1        | 1        | Enabled<br>(inverted) | -                               | Open                                    |
| 1        | 0        | 0        | 0        | Enabled               | -                               | Low                                     |
| 1        | 0        | 1        | 0        | Enabled<br>(inverted) | _                               | USM000 output<br>(CMOS inverted)        |
| 1        | 0        | 0        | 1        | Enabled               | _                               | USM000 output<br>(CMOS)                 |
| 1        | 0        | 1        | 1        | Enabled               | _                               | High                                    |
| 1        | 1        | 0        | 0        | Enabled               | -                               | Low (slow change)                       |
| 1        | 1        | 1        | 0        | Enabled               | _                               | USM000 output<br>(slow CMOS change)     |
| 1        | 1        | 0        | 1        | Enabled               | _                               | USM000 output<br>(N-channel open drain) |
| 1        | 1        | 1        | 1        | Enabled               | -                               | Open                                    |

# 3.8.4.2 PA1 states

|          | Regist   | er Data  |          |                       | Port PA1 S                      | itate                                   |
|----------|----------|----------|----------|-----------------------|---------------------------------|-----------------------------------------|
| PAFSA<1> | PAFSB<1> | PALAT<1> | PADDR<1> | Pin Data<br>Read      | Multiplexed Pin<br>Input (None) | Output                                  |
| 0        | 0        | 0        | 0        | Enabled               | _                               | Open                                    |
| 0        | 0        | 1        | 0        | Enabled               | _                               | Internal pull-up resistor               |
| 0        | 0        | 0        | 1        | Enabled               | _                               | Low                                     |
| 0        | 0        | 1        | 1        | Enabled               | _                               | High                                    |
| 0        | 1        | 0        | 0        | Enabled               | _                               | Low (slow change)                       |
| 0        | 1        | 1        | 0        | Enabled               | _                               | High (slow change)                      |
| 0        | 1        | 0        | 1        | Enabled               |                                 | Low                                     |
| 0        | 1        | 1        | 1        | Enabled<br>(inverted) | -                               | Open                                    |
| 1        | 0        | 0        | 0        | Enabled               | _                               | Low                                     |
| 1        | 0        | 1        | 0        | Enabled<br>(inverted) | -                               | USM0O1 output<br>(CMOS inverted)        |
| 1        | 0        | 0        | 1        | Enabled               | -                               | USM001 output<br>(CMOS)                 |
| 1        | 0        | 1        | 1        | Enabled               | _                               | High                                    |
| 1        | 1        | 0        | 0        | Enabled               | _                               | Low (slow change)                       |
| 1        | 1        | 1        | 0        | Enabled               | -                               | USM001 output<br>(slow CMOS change)     |
| 1        | 1        | 0        | 1        | Enabled               | -                               | USM0O1 output<br>(N-channel open drain) |
| 1        | 1        | 1        | 1        | Enabled               | _                               | Open                                    |

## 3.8.4.3 PA2 states

|          | Regis    | ter Data |          |                       | Port PA2 S                      | State                                   |
|----------|----------|----------|----------|-----------------------|---------------------------------|-----------------------------------------|
| PAFSA<2> | PAFSB<2> | PALAT<2> | PADDR<2> | Pin Data<br>Read      | Multiplexed Pin<br>Input (None) | Output                                  |
| 0        | 0        | 0        | 0        | Enabled               | -                               | Open                                    |
| 0        | 0        | 1        | 0        | Enabled               | -                               | Internal pull-up resistor               |
| 0        | 0        | 0        | 1        | Enabled               | -                               | Low                                     |
| 0        | 0        | 1        | 1        | Enabled               | -                               | High                                    |
| 0        | 1        | 0        | 0        | Enabled               | -                               | Low (slow change)                       |
| 0        | 1        | 1        | 0        | Enabled               | -                               | High (slow change)                      |
| 0        | 1        | 0        | 1        | Enabled               |                                 | Low                                     |
| 0        | 1        | 1        | 1        | Enabled<br>(inverted) | -                               | Open                                    |
| 1        | 0        | 0        | 0        | Enabled               | -                               | Low                                     |
| 1        | 0        | 1        | 0        | Enabled<br>(inverted) | _                               | USM0O2 output<br>(CMOS inverted)        |
| 1        | 0        | 0        | 1        | Enabled               | _                               | USM0O2 output<br>(CMOS)                 |
| 1        | 0        | 1        | 1        | Enabled               | -                               | High                                    |
| 1        | 1        | 0        | 0        | Enabled               | -                               | Low (slow change)                       |
| 1        | 1        | 1        | 0        | Enabled               | -                               | USM0O2 output<br>(slow CMOS change)     |
| 1        | 1        | 0        | 1        | Enabled               | _                               | USM0O2 output<br>(N-channel open drain) |
| 1        | 1        | 1        | 1        | Enabled               | -                               | Open                                    |

|          | Regist   | er Data  |          |                       | Port PA3 Sta                    | ate                                     |
|----------|----------|----------|----------|-----------------------|---------------------------------|-----------------------------------------|
| PAFSA<3> | PAFSB<3> | PALAT<3> | PADDR<3> | Pin Data<br>Read      | Multiplexed Pin<br>Input (None) | Output                                  |
| 0        | 0        | 0        | 0        | Enabled               | -                               | Open                                    |
| 0        | 0        | 1        | 0        | Enabled               | -                               | Internal pull-up resistor               |
| 0        | 0        | 0        | 1        | Enabled               | -                               | Low                                     |
| 0        | 0        | 1        | 1        | Enabled               | -                               | High                                    |
| 0        | 1        | 0        | 0        | Enabled               | -                               | Low (slow change)                       |
| 0        | 1        | 1        | 0        | Enabled               | -                               | High (slow change)                      |
| 0        | 1        | 0        | 1        | Enabled               |                                 | Low                                     |
| 0        | 1        | 1        | 1        | Enabled<br>(inverted) | -                               | Open                                    |
| 1        | 0        | 0        | 0        | Enabled               | -                               | Low                                     |
| 1        | 0        | 1        | 0        | Enabled<br>(inverted) | _                               | USM0O3 output<br>(CMOS inverted)        |
| 1        | 0        | 0        | 1        | Enabled               | _                               | USM0O3 output<br>(CMOS)                 |
| 1        | 0        | 1        | 1        | Enabled               | -                               | High                                    |
| 1        | 1        | 0        | 0        | Enabled               | -                               | Low (slow change)                       |
| 1        | 1        | 1        | 0        | Enabled               | _                               | USM0O3 output<br>(slow CMOS change)     |
| 1        | 1        | 0        | 1        | Enabled               | _                               | USM0O3 output<br>(N-channel open drain) |
| 1        | 1        | 1        | 1        | Enabled               | _                               | Open                                    |

# 3.8.4.4 PA3 states

# 3.8.5 HALT, HOLD, and HOLDX Mode Operation

When in HALT, HOLD, or HOLDX mode, port A retains the state that is established when HALT, HOLD, or HOLDX mode is entered.

# 3.9 Port C

# 3.9.1 Overview

Port C is a 2-bit N-channel open drain output port that is multiplexed with the OSC0 oscillator pins and a 1-bit CMOS output port that is multiplexed with the FILT pins. It is made up of a data latch, a data direction register, and a control circuit. For PC0 and PC1, their outputs can be configured through the data direction register in 1-bit units when the OSC0 is not enabled for oscillation.

# 3.9.2 Functions

- 1) I/O port (3 bits: PC0 to PC2)
  - The port output data is controlled by the port C data latch (PCLAT:7FD0) and the I/O direction is controlled by the port C data direction register (PCDDR:7FD2).

Note: The settings for OSC0 oscillation take precedence.

- 2) Multiplexed pins
  - PC0 and PC1 are multiplexed with the OSC0 oscillator pins.
  - PC2 is multiplexed with FILT pins.

| Address | Initial value | R/W | Name  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|-------|------|------|------|------|------|------|------|------|
| 7FD0    | LLLL L000     | R/W | PCLAT | -    | -    | -    | -    | -    | BIT2 | BIT1 | BIT0 |
| 7FD1    | LLLL LXXX     | R   | PCIN  | -    | -    | -    | -    | -    | BIT2 | BIT1 | BIT0 |
| 7FD2    | LLLL L000     | R/W | PCDDR | -    | -    | -    | -    | -    | BIT2 | BIT1 | BIT0 |

# 3.9.3 Related Registers

### 3.9.3.1 Port C data latch (PCLAT)

1) This latch is a 3-bit register for controlling port C output data.

| Address | Initial value | R/W | Name  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|-------|------|------|------|------|------|------|------|------|
| 7FD0    | LLLL LL00     | R/W | PCLAT | -    | -    | -    | -    | -    | BIT2 | BIT1 | BIT0 |

## 3.9.3.2 Port C input address (PCIN)

- 1) The port C input address is used to read in data from the port C pins.
- 2) Port C data can always be read regardless of the I/O state of the port.

| Address | Initial value | R/W | Name | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|------|------|------|------|------|------|------|------|------|
| 7FD1    | LLLL LXXX     | R   | PCIN | -    | -    | -    | -    | -    | BIT2 | BIT1 | BIT0 |

### 3.9.3.3 Port C data direction register (PCDDR)

1) This register is a 3-bit register that controls the I/O direction of port C data in 1-bit units.

| Address | Initial value | R/W | Name  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|-------|------|------|------|------|------|------|------|------|
| 7FD2    | LLLL L000     | R/W | PCDDR | -    | -    | -    | -    | -    | BIT2 | BIT1 | BIT0 |

# 3.9.4 Register Settings and Port States

### 3.9.4.1 PC0 states

|               | Reg           | ister Data |          | Port P           | C0 State |  |  |
|---------------|---------------|------------|----------|------------------|----------|--|--|
| OCR0<br>Bit 2 | OCR0<br>Bit 0 | PCLAT<0>   | PCDDR<0> | Pin Data Read    | Output   |  |  |
| 1             | 1             | Х          | Х        | Oscillation mode |          |  |  |
| 0             | Х             | 0          | 0        | Enabled          | Open     |  |  |
| 0             | Х             | 1          | 0        | Enabled          | Open     |  |  |
| 0             | Х             | 0          | 1        | Enabled          | Low      |  |  |
| 0             | Х             | 1          | 1        | Enabled          | Open     |  |  |

### 3.9.4.2 PC1 states

|               | Reg           | ister Data |          | Port P        | C1 State |
|---------------|---------------|------------|----------|---------------|----------|
| OCR0<br>Bit 2 | OCR0<br>Bit 0 | PCLAT<1>   | PCDDR<1> | Pin Data Read | Output   |
| 1             | 1             | Х          | Х        | Oscillat      | ion mode |
| 0             | X             | 0          | 0        | Enabled       | Open     |
| 0             | X             | 1          | 0        | Enabled       | Open     |
| 0             | X             | 0          | 1        | Enabled       | Low      |
| 0             | Х             | 1          | 1        | Enabled       | Open     |

## 3.9.4.3 PC2 states

| Regist   | er Data           |         | Port PC2 State                   | 9                         |
|----------|-------------------|---------|----------------------------------|---------------------------|
| PCLAT<2> | PCLAT<2> PCDDR<2> |         | Multiplexed Pin<br>Function FILT | Output                    |
| 0        | 0 0               |         | Enabled                          | Open                      |
| 1        | 0                 | Enabled | -                                | Internal pull-up resistor |
| 0        | 1                 | Enabled | -                                | Low                       |
| 1        | 1                 | Enabled | -                                | High                      |

# 3.9.5 HALT, HOLD, and HOLDX Mode Operation

### 3.9.5.1 HALT and HOLDX mode operation

When in HALT or HOLDX mode, port C retains the state that is established when HALT or HOLDX mode is entered whether it is configured for general-purpose output or OSC0 oscillation.

# 3.9.5.2 HOLD mode operation

- 1) Port C retains the state that is established when HOLD mode is entered if it is configured for general-purpose output.
- 2) When configured for OSC0 oscillation, PC0 and PC1 switch into the general-purpose output mode.

# 3.10 External Interrupt Functions (INTn)

## 3.10.1 Overview

This series of microcontrollers has external interrupt input pins INTn (n = 0 to 7). INTn (n = 0 to 7) detect the low level, high level, low edge, high edge, or both edges of the interrupt request signal they receive and set the corresponding interrupt request flag. The pins can also be used for timer 2 count clock input, capture signal input, timer 3 count clock input, and HOLD/HOLDX mode release signal input.

# 3.10.2 Functions

1) Interrupt input function

INTn (n = 0 to 7) detect the low level, high level, low edge, high edge, or both edges of the interrupt request signal they receive and set the corresponding interrupt request flag.

2) Timer 2 count input function

A count signal is sent to time 2 each time a signal change that sets an interrupt flag is supplied to a port selected from INT2 and INT3.

If a selected level of signal is input when a level interrupt is specified, a count signal is sent to timer 2 every 2 Tcyc for the duration of the input signal.

3) Timer 2L capture input function

A timer 2L capture signal is generated each time a signal change that sets an interrupt flag is supplied to a port selected from INT0, INT2, INT4, and INT5.

If a selected level of signal is input when a level interrupt is specified, a timer 2L capture request signal is generated every 2 Tcyc for the duration of the input signal.

4) Timer 2H capture input function

A timer 2H capture signal is generated each time a signal change that sets an interrupt flag is supplied to a port selected from INT1, INT3, INT4, and INT5.

If a signal of a selected level is input when a level interrupt is specified, a timer 2H capture request signal is generated every 2 Tcyc for the duration of the input signal.

5) Timer 3 count input function

A count signal is sent to timer 3 each time a signal change that sets an interrupt flag is supplied to a port selected from INT4 and INT5.

If a signal of a selected level is input when a level interrupt is specified, a count signal is sent to timer 3 every 2 Tcyc for the duration of the input signal.

- 6) HOLD mode release function
  - When the interrupt flag and interrupt enable flag are set by INTn (n = 0 to 7), a HOLD mode release signal is generated, causing the CPU to switch from HOLD mode to HALT mode (main oscillation source set to internal RC oscillator). If the interrupt request is accepted, the CPU switches from HALT mode to normal operating mode.
  - When a signal change that sets an interrupt flag is input to INTn (n = 0 to 7) that is configured for level interrupt in HOLD mode, the interrupt flag is set. In this case, the CPU exits HOLD mode if the corresponding interrupt enable flag is set.
  - When a signal change that sets an interrupt request flag is input to INTn (n = 0 to 7) that is configured for edge interrupt in HOLD mode, the interrupt flag is set. In this case, the CPU exits HOLD mode if the corresponding interrupt enable flag is set. The interrupt flag, however, cannot be set by a rising edge occurring when INTn (n = 0 to 7) data which is established when HOLD mode is entered is in the high state, or by a falling edge occurring when INTn (n = 0 to 7) data which is established when HOLD mode is entered is in the high state, or by a falling edge occurring when INTn (n = 0 to 7) data which is established when HOLD mode is entered is in the low state. Consequently, to release HOLD mode with INTn (n = 0 to 7), INTn (n = 0 to 7) must be used in both-edge interrupt mode.

- 7) HOLDX mode release function
  - When the interrupt flag and interrupt enable flag are set by INTn (n = 0 to 7), a HOLD mode release signal is generated, causing the CPU to switch from HOLDX mode to HALT mode (main oscillation source set to the oscillator that is active when HOLDX mode is entered). If the interrupt request is accepted, the CPU switches from HALT mode to normal operating mode.
  - When a signal change that sets an interrupt flag is input to INTn (n = 0 to 7) that is configured for level interrupt in HOLDX mode, the interrupt flag is set. In this case, the CPU exits HOLDX mode if the corresponding interrupt enable flag is set.
  - When a signal change that sets an interrupt flag is input to INTn (n = 0 to 7) that is configured for edge interrupt in HOLDX mode, the interrupt flag is set. In this case, the CPU exits HOLDX mode if the corresponding interrupt enable flag is set. The interrupt flag, however, cannot be set by a rising edge occurring when INTn (n = 0 to 7) data which is established when HOLDX mode is entered is in the high state, or by a falling edge occurring when INTn (n = 0 to 7) data which is established when HOLDX mode is entered is in the low state. Consequently, to release HOLDX mode with INTn (n = 0 to 7), INTn (n = 0 to 7) must be used in both-edge interrupt mode.

|      | Interrupt Input<br>Signal Detection | Timer Count<br>Input | Capture Input | HOLD Mode/<br>HOLDX Mode Release |
|------|-------------------------------------|----------------------|---------------|----------------------------------|
| INT0 | L level, H level                    | _                    | Timer 2L      | Enabled                          |
| INT1 | L edge, H edge,                     | _                    | Timer 2H      | Enabled                          |
| INT2 | both edges                          | Timer 2              | Timer 2L      | Enabled                          |
| INT3 |                                     | Timer 2              | Timer 2H      | Enabled                          |
| INT4 |                                     | Timer 3              | Timer 2       | Enabled                          |
| INT5 |                                     | Timer 3              | Timer 2       | Enabled                          |
| INT6 |                                     | _                    | _             | Enabled                          |
| INT7 |                                     | _                    | _             | Enabled                          |

| Address | Initial value | R/W | Name    | BIT7   | BIT6 | BIT5   | BIT4   | BIT3 | BIT2 | BIT1   | BIT0   |
|---------|---------------|-----|---------|--------|------|--------|--------|------|------|--------|--------|
| 7FD8    | 0000 0000     | R/W | INT01CR | INT1MD |      | INT1IF | INT1IE | INT  | 0MD  | INT0IF | INT0IE |
| 7FD9    | 0000 0000     | R/W | INT23CR | INT3MD |      | INT3IF | INT3IE | INT  | 2MD  | INT2IF | INT2IE |
| 7FDA    | 0000 0000     | R/W | INT45CR | INT5MD |      | INT5IF | INT5IE | INT  | 4MD  | INT4IF | INT4IE |
| 7FDB    | 0000 0000     | R/W | INT67CR | INT7MD |      | INT7IF | INT7IE | INT  | 6MD  | INT6IF | INT6IE |

### 3.10.3 Related Registers

#### 3.10.3.1 External interrupt 0/1 control register (INT01CR)

1) This register is an 8-bit register for controlling external interrupts 0 and 1.

| Address | Initial value | R/W | Name    | BIT7 | BIT6 | BIT5   | BIT4   | BIT3 | BIT2 | BIT1   | BIT0   |
|---------|---------------|-----|---------|------|------|--------|--------|------|------|--------|--------|
| 7FD8    | 0000 0000     | R/W | INT01CR | INT  | IMD  | INT1IF | INT1IE | INT  | )MD  | INT0IF | INT0IE |

#### INT1MD (bits 7and 6): INT1 detection mode select

These two bits and the port input polarity select bit determine the interrupt detection mode as follows:

| Corresponding<br>Port Input Polarity | INT1MD | INT1 Interrupt Conditions |  |  |
|--------------------------------------|--------|---------------------------|--|--|
| -                                    | 00     | Not detected              |  |  |
| Normal                               | 01     | L level detected          |  |  |
| Inverted                             | 01     | H level detected          |  |  |
| Normal                               | 10     | Falling edge detected     |  |  |
| Inverted                             | 10     | Rising edge detected      |  |  |
| _                                    | 11     | Both edges detected       |  |  |

#### INT1IF (bit 5): INT1 interrupt source flag

This bit is set when the conditions specified by the detection mode select bits are satisfied. When this bit and the INT1 interrupt request enable bit (INT1IE) are set to 1, a HOLD/HOLDX mode release signal and an interrupt request to vector address 8014H are generated.

This bit must be cleared with an instruction as it is not cleared automatically.

#### INT1IE (bit 4): INT1 interrupt request enable

When this bit and INT1IF are set to 1, a HOLD/HOLDX mode release signal and an interrupt request to vector address 8014H are generated.

#### INT0MD (bits 3 and 2): INT0 detection mode select

These two bits and the port input polarity select bit determine the interrupt detection mode as follows:

| Corresponding<br>Port Input Polarity | INT0MD | INT0 Interrupt Conditions |
|--------------------------------------|--------|---------------------------|
| _                                    | 00     | Not detected              |
| Normal                               | 01     | L level detected          |
| Inverted                             | 01     | H level detected          |
| Normal                               | 10     | Falling edge detected     |
| Inverted                             | 10     | Rising edge detected      |
| _                                    | 11     | Both edges detected       |

#### INT0IF (bit 1): INT0 interrupt source flag

This bit is set when the conditions specified by the detection mode select bits are satisfied. When this bit and the INTO interrupt request enable bit (INTOIE) are set to 1, a HOLD/HOLDX mode release signal and an interrupt request to vector address 800CH are generated.

This bit must be cleared with an instruction as it is not cleared automatically.

#### INTOIE (bit 0): INTO interrupt request enable

When this bit and INT0IF are set to 1, a HOLD/HOLDX mode release signal and an interrupt request to vector address 800CH are generated.

### 3.10.3.2 External interrupt 2/3 control register (INT23CR)

1) This register is an 8-bit register for controlling external interrupts 2 and 3.

| l | Address | Initial value | R/W | Name    | BIT7 | BIT6 | BIT5   | BIT4   | BIT3 | BIT2 | BIT1   | BIT0   |
|---|---------|---------------|-----|---------|------|------|--------|--------|------|------|--------|--------|
| ſ | 7FD9    | 0000 0000     | R/W | INT23CR | INT3 | MD   | INT3IF | INT3IE | INT  | 2MD  | INT2IF | INT2IE |

### INT3MD (bits 7 and 6): INT3 detection mode select

These two bits and the port input polarity select bit determine the interrupt detection mode as follows:

| Corresponding<br>Port Input Polarity | INT3MD | INT3 Interrupt Conditions |
|--------------------------------------|--------|---------------------------|
| _                                    | 00     | Not detected              |
| Normal                               | 01     | L level detected          |
| Inverted                             | 01     | H level detected          |
| Normal                               | 10     | Falling edge detected     |
| Inverted                             | 10     | Rising edge detected      |
| _                                    | 11     | Both edges detected       |

#### INT3IF (bit 5): INT3 interrupt source flag

This bit is set when the conditions specified by the detection mode select bits are satisfied. When this bit and the INT3 interrupt request enable bit (INT3IE) are set to 1, a HOLD/HOLDX mode release signal and an interrupt request to vector address 801CH are generated.

This bit must be cleared with an instruction as it is not cleared automatically.

#### INT3IE (bit 4): INT3 interrupt request enable

When this bit and INT3IF are set to 1, a HOLD/HOLDX mode release signal and an interrupt request to vector address 801CH are generated.

#### INT2MD (bits 3 and 2): INT2 detection mode select

These two bits and the port input polarity select bit determine the interrupt detection mode as follows:

| Corresponding<br>Port Input Polarity | INT2MD | INT2 Interrupt Conditions |
|--------------------------------------|--------|---------------------------|
| _                                    | 00     | Not detected              |
| Normal                               | 01     | L level detected          |
| Inverted                             | 01     | H level detected          |
| Normal                               | 10     | Falling edge detected     |
| Inverted                             | 10     | Rising edge detected      |
| _                                    | 11     | Both edges detected       |

### INT2IF (bit 1): INT2 interrupt source flag

This bit is set when the conditions specified by the detection mode select bits are satisfied. When this bit and the INT2 interrupt request enable bit (INT2IE) are set to 1, a HOLD/HOLDX mode release signal and an interrupt request to vector address 8018H are generated.

This bit must be cleared with an instruction as it is not cleared automatically.

#### INT2IE (bit 0): INT2 interrupt request enable

When this bit and INT2IF are set to 1, a HOLD/HOLDX mode release signal and an interrupt request to vector address 8018H are generated.

#### 3.10.3.3 External interrupt 4/5 control register (INT45CR)

1) This register is an 8-bit register for controlling external interrupts 4 and 5.

| Address | Initial value | R/W | Name    | BIT7 | BIT6 | BIT5   | BIT4   | BIT3 | BIT2 | BIT1   | BIT0   |
|---------|---------------|-----|---------|------|------|--------|--------|------|------|--------|--------|
| 7FDA    | 0000 0000     | R/W | INT45CR | INT  | 5MD  | INT5IF | INT5IE | INT4 | AMD  | INT4IF | INT4IE |

#### INT5MD (bits 7 and 6): INT5 detection mode select

These two bits and the port input polarity select bit determine the interrupt detection mode as follows:

| Corresponding<br>Port Input Polarity | INT5MD | INT5 Interrupt Conditions |
|--------------------------------------|--------|---------------------------|
| _                                    | 00     | Not detected              |
| Normal                               | 01     | L level detected          |
| Inverted                             | 01     | H level detected          |
| Normal                               | 10     | Falling edge detected     |
| Inverted                             | 10     | Rising edge detected      |
| _                                    | 11     | Both edge detected        |

#### INT5IF (bit 5): INT5 interrupt source flag

This bit is set when the conditions specified by the detection mode select bits are satisfied. When this bit and the INT5 interrupt request enable bit (INT5IE) are set to 1, a HOLD/HOLDX mode release signal and an interrupt request to vector address 8024H are generated.

This bit must be cleared with an instruction as it is not cleared automatically.

#### INT5IE (bit 4): INT5 interrupt request enable

When this bit and INT5IF are set to 1, a HOLD/HOLDX mode release signal and an interrupt request to vector address 8024H are generated.

#### INT4MD (bits 3 and 2): INT4 detection mode select

These two bits and the port input polarity select bit determine the interrupt detection mode as follows:

| Corresponding<br>Port Input Polarity | INT4MD | INT4 Interrupt Conditions |
|--------------------------------------|--------|---------------------------|
| _                                    | 00     | Not detected              |
| Normal                               | 01     | L level detected          |
| Inverted                             | 01     | H level detected          |
| Normal                               | 10     | Falling edge detected     |
| Inverted                             | 10     | Rising edge detected      |
| _                                    | 11     | Both edges detected       |

#### INT4IF (bit 1): INT4 interrupt source flag

This bit is set when the conditions specified by the detection mode select bits are satisfied. When this bit and the INT4 interrupt request enable bit (INT4IE) are set to 1, a HOLD/HOLDX mode release signal and an interrupt request to vector address 8020H are generated.

This bit must be cleared with an instruction as it is not cleared automatically.

#### INT4IE (bit 0): INT4 interrupt request enable

When this bit and INT4IF are set to 1, a HOLD/HOLDX mode release signal and an interrupt request to vector address 8020H are generated.

## 3.10.3.4 External interrupt 6/7 control register (INT67CR)

1) This register is an 8-bit register for controlling external interrupts 6 and 7.

| Add | dress | Initial value | R/W | Name    | BIT7   | BIT6 | BIT5   | BIT4   | BIT3 | BIT2 | BIT1   | BIT0   |
|-----|-------|---------------|-----|---------|--------|------|--------|--------|------|------|--------|--------|
| 7F  | FDB   | 0000 0000     | R/W | INT67CR | INT7MD |      | INT7IF | INT7IE | INT  | 6MD  | INT6IF | INT6IE |

#### INT7MD (bits 7 and 6): INT7 detection mode select

These two bits and the port input polarity select bit determine the interrupt detection mode as follows:

| Corresponding<br>Port Input Polarity | INT7MD | INT7 Interrupt Conditions |
|--------------------------------------|--------|---------------------------|
| _                                    | 00     | Not detected              |
| Normal                               | 01     | L level detected          |
| Inverted                             | 01     | H level detected          |
| Normal                               | 10     | Falling edge detected     |
| Inverted                             | 10     | Rising edge detected      |
| _                                    | 11     | Both edges detected       |

#### INT7IF (bit 5): INT7 interrupt source flag

This bit is set when the conditions specified by the detection mode select bits are satisfied. When this bit and the INT7 interrupt request enable bit (INT7IE) are set to 1, a HOLD/HOLDX mode release signal and an interrupt request to vector address 8038H are generated.

This bit must be cleared with an instruction as it is not cleared automatically.

#### INT7IE (bit 4): INT7 interrupt request enable

When this bit and INT7IF are set to 1, a HOLD/HOLDX mode release signal and an interrupt request to vector address 8038H are generated.

#### INT6MD (bits 3 and 2): INT6 detection mode select

These two bits and the port input polarity select bit determine the interrupt detection mode as follows:

| Corresponding<br>Port Input Polarity | INT6MD | INT6 Interrupt Conditions |  |
|--------------------------------------|--------|---------------------------|--|
| _                                    | 00     | Not detected              |  |
| Normal                               | 01     | L level detected          |  |
| Inverted                             | 01     | H level detected          |  |
| Normal                               | 10     | Falling edge detected     |  |
| Inverted                             | 10     | Rising edge detected      |  |
| _                                    | 11     | Both edges detected       |  |

#### INT6IF (bit 1): INT6 interrupt source flag

This bit is set when the conditions specified by the detection mode select bits are satisfied. When this bit and the INT6 interrupt request enable bit (INT6IE) are set to 1, a HOLD/HOLDX mode release signal and an interrupt request to vector address 8034H are generated.

This bit must be cleared with an instruction as it is not cleared automatically.

#### INT6IE (bit 0): INT6 interrupt request enable

When this bit and INT6IF are set to 1, a HOLD/HOLDX mode release signal and an interrupt request to vector address 8034H are generated.

# 3.10.4 INTn Input Mode Port Settings

## 3.10.4.1 INT0 input mode port settings

|          | Regist   | er Data  |          | Port P30 State                 |
|----------|----------|----------|----------|--------------------------------|
| P3FSA<0> | P3FSB<0> | P3LAT<0> | P3DDR<0> | Input                          |
| 0        | 0        | 0        | 0        | INT0 input                     |
| 0        | 1        | 1        | 1        | INT0 input (polarity reversed) |
| 1        | 1        | 1        | 1        | INT0 input                     |

## 3.10.4.2 INT1 input mode port settings

|          | Regist   | er Data  |          | Port P31 State                 |
|----------|----------|----------|----------|--------------------------------|
| P3FSA<1> | P3FSB<1> | P3LAT<1> | P3DDR<1> | Input                          |
| 0        | 0        | 0        | 0        | INT1 input                     |
| 0        | 1        | 1        | 1        | INT1 input (polarity reversed) |
| 1        | 1        | 1        | 1        | INT1 input                     |

# 3.10.4.3 INT2 input mode port settings

|          | Regist   | er Data  |          | Port P32 State                 |
|----------|----------|----------|----------|--------------------------------|
| P3FSA<2> | P3FSB<2> | P3LAT<2> | P3DDR<2> | Input                          |
| 0        | 0        | 0        | 0        | INT2 input                     |
| 0        | 1        | 1        | 1        | INT2 input (polarity reversed) |
| 1        | 1        | 1        | 1        | INT2 input                     |

## 3.10.4.4 INT3 input mode port settings

|          | Regist   | er Data  |          | Port P33 State                 |
|----------|----------|----------|----------|--------------------------------|
| P3FSA<3> | P3FSB<3> | P3LAT<3> | P3DDR<3> | Input                          |
| 0        | 0        | 0        | 0        | INT3 input                     |
| 0        | 1        | 1        | 1        | INT3 input (polarity reversed) |
| 1        | 1        | 1        | 1        | INT3 input                     |

## 3.10.4.5 INT4 input mode port settings

|          | Regist   | er Data  |          | Port P20 State                 |
|----------|----------|----------|----------|--------------------------------|
| P2FSA<0> | P2FSB<0> | P2LAT<0> | P2DDR<0> | Input                          |
| 0        | 0        | 0        | 0        | INT4 input                     |
| 0        | 1        | 1        | 1        | INT4 input (polarity reversed) |
| 1        | 1        | 1        | 1        | INT4 input                     |

|          | Regist   | er Data  |          | Port P21 State                 |
|----------|----------|----------|----------|--------------------------------|
| P2FSA<1> | P2FSB<1> | P2LAT<1> | P2DDR<1> | Input                          |
| 0        | 0        | 0        | 0        | INT5 input                     |
| 0        | 1        | 1        | 1        | INT5 input (polarity reversed) |
| 1        | 1        | 1        | 1        | INT5 input                     |

# 3.10.4.6 INT5 input mode port settings

# 3.10.4.7 INT6 input mode port settings

|          | Regist   | er Data  |          | Port P40 State                 |
|----------|----------|----------|----------|--------------------------------|
| P4FSA<0> | P4FSB<0> | P4LAT<0> | P4DDR<0> | Input                          |
| 0        | 0        | 0        | 0        | INT6 input                     |
| 0        | 1        | 1        | 1        | INT6 input (polarity reversed) |
| 1        | 1        | 1        | 1        | INT6 input                     |

# 3.10.4.8 INT7 input mode port settings

|          | Regist   | er Data  |          | Port P41 State                 |
|----------|----------|----------|----------|--------------------------------|
| P4FSA<1> | P4FSB<1> | P4LAT<1> | P4DDR<1> | Input                          |
| 0        | 0        | 0        | 0        | INT7 input                     |
| 0        | 1        | 1        | 1        | INT7 input (polarity reversed) |
| 1        | 1        | 1        | 1        | INT7 input                     |

# 3.11 Port 0 Interrupt Functions

# 3.11.1 Overview

Port 0 (P00 to P05) of this series of microcontrollers has the capability to detect input signals from digital I/O and other external devices and to perform interrupt operation or to release HOLD or HOLDX mode.

# 3.11.2 Functions

- 1) Interrupt flag setting
  - POFLG (POFSA:7F43, bit 1) is set when a low level is applied to one of the pins P00 to P03 that are set to interrupt pins.
  - P04FLG (P0FSA:7F43, bit 3) is set to 1 if a signal of the level defined by P04IL (P0FSA:7F43, bit 4) is applied to pin P04 when P04IE (P0FSA:7F43, bit 2) is set to 1.
  - P05FLG (P0FSA:7F43, bit 6) is set to 1 if a signal of the level defined by P05IL (P0FSA:7F43, bit 7) is applied to pin P05 when P05IE (P0FSA:7F43, bit 5) is set to 1.
- 2) HOLD mode release
  - When an interrupt flag is set, a HOLD mode release signal is generated and the CPU switches from HOLD mode to HALT mode (main oscillation source set to internal RC oscillator). If the interrupt request is accepted, the CPU switches from HALT mode to normal operating mode.
  - When a signal change that sets an interrupt flag is input in HOLD mode, the interrupt flag is set.
- 3) HOLDX mode release
  - When an interrupt flag is set, a HOLDX mode release signal is generated and the CPU switches from HOLDX mode to HALT mode (main oscillation source set to the oscillator that is active when HOLDX mode is entered). If the interrupt request is accepted, the CPU switches from HALT mode to normal operating mode.
  - When a signal change that sets an interrupt flag is input in HOLDX mode, the interrupt flag is set.

| Address | Initial value | R/W | Name  | BIT7  | BIT6   | BIT5  | BIT4  | BIT3   | BIT2  | BIT1  | BIT0 |
|---------|---------------|-----|-------|-------|--------|-------|-------|--------|-------|-------|------|
| 7F40    | 0000 0000     | R/W | POLAT | BIT7  | BIT6   | BIT5  | BIT4  | BIT3   | BIT2  | BIT1  | BIT0 |
| 7F41    | XXXX XXXX     | R   | POIN  | BIT7  | BIT6   | BIT5  | BIT4  | BIT3   | BIT2  | BIT1  | BIT0 |
| 7F42    | 0000 0000     | R/W | P0DDR | BIT7  | BIT6   | BIT5  | BIT4  | BIT3   | BIT2  | BIT1  | BIT0 |
| 7F43    | 0000 0000     | R/W | P0FSA | P05IL | P05FLG | P05IE | P04IL | P04FLG | P04IE | P0FLG | POIE |

# 3.11.3 Related Registers

#### 3.11.3.1 Port 0 data latch (P0LAT)

| Address | Initial value | R/W | Name  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|-------|------|------|------|------|------|------|------|------|
| 7F40    | 0000 0000     | R/W | POLAT | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

#### 3.11.3.2 Port 0 input address (P0IN)

| Address | Initial value | R/W | Name | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|------|------|------|------|------|------|------|------|------|
| 7F41    | XXXX XXXX     | R   | P0IN | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

#### 3.11.3.3 Port 0 data direction register (P0DDR)

| Address | Initial value | R/W | Name  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|-------|------|------|------|------|------|------|------|------|
| 7F42    | 0000 0000     | R/W | P0DDR | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

#### 3.11.3.4 Port 0 function control register A (P0FSA)

1) This register is an 8-bit register for controlling port 0 interrupts.

| Address | Initial value | R/W | Name  | BIT7  | BIT6   | BIT5  | BIT4  | BIT3   | BIT2  | BIT1  | BIT0 |
|---------|---------------|-----|-------|-------|--------|-------|-------|--------|-------|-------|------|
| 7F43    | 0000 0000     | R/W | P0FSA | P05IL | P05FLG | P05IE | P04IL | P04FLG | P04IE | P0FLG | POIE |

#### P05IL (bit 7): P05 interrupt detection mode

When this bit is set to 1, high levels are detected.

When this bit is set to 0, low levels are detected.

#### P05FLG (bit 6): P05 interrupt detection flag

This bit is set to 1 when P05 interrupt conditions are met.

This bit is automatically set to 0 when the POFSA register is written.

#### P05IE (bit 5): P05 interrupt operation control

When this bit is set to 1, P05 interrupt operation is enabled.

When this bit and P05FLG are set to 1, a HOLD/HOLDX mode release signal and an interrupt request to vector address 803CH are generated.

#### P04IL (bit 4): P04 interrupt detection mode

When this bit is set to 1, high levels are detected. When this bit is set to 0, low levels are detected.

#### P04FLG (bit 3): P04 interrupt detection flag

This bit is set to 1 if P04 interrupt conditions are met. This bit is automatically set to 0 when the P0FSA register is written.

#### P04IE (bit 2): P04 interrupt operation control

When this bit is set to 1, P04 interrupt operation is enabled.

When this bit and P04FLG are set to 1, a HOLD/HOLDX mode release signal and an interrupt request to vector address 803CH are generated.

#### P0FLG (bit 1): P0L interrupt detection flag

This bit is set to 1 if POL interrupt conditions are met.

This bit is automatically set to 0 when the POFSA register is written.

#### P0IE (bit 0): P0L interrupt operation control

When this bit to 1, POL interrupt detection is enabled for POn (n = 0 to 3) for which the corresponding bit in PODDR<n> is set to 0.

When this bit and P0FLG are set to 1, a HOLD/HOLDX mode release signal and an interrupt request to vector address 803CH are generated.

# 3.11.4 Port 0 Interrupt Settings

# 3.11.4.1 POL interrupt settings

| Regi | ster Data (n = | 0 to 3)       | Port P0n State (n = 0 to 3) | Detection Level |
|------|----------------|---------------|-----------------------------|-----------------|
| POIE | P0LAT <n></n>  | P0DDR <n></n> | Output                      |                 |
| 1    | 0              | 0             | Internally pulled up        | Low             |
| 1    | 1              | 0             | Open                        | Low             |

## 3.11.4.2 P04 interrupt settings

|       | Regis | ster Data |          | Port P04 State       | Detection Level |
|-------|-------|-----------|----------|----------------------|-----------------|
| P04IL | P04IE | P0LAT<4>  | P0DDR<4> | Output               |                 |
| 0     | 1     | 1         | 0        | Internally pulled up | Low             |
| 0     | 1     | 0         | 0        | Open                 | Low             |
| 1     | 1     | 1         | 0        | Internally pulled up | High            |
| 1     | 1     | 0         | 0        | Open                 | High            |

# 3.11.4.3 P05 interrupt settings

|       | Regi  | ster Data |          | Port P05 State       | <b>Detection Level</b> |
|-------|-------|-----------|----------|----------------------|------------------------|
| P05IL | P05IE | P0LAT<5>  | P0DDR<5> | Output               |                        |
| 0     | 1     | 1         | 0        | Internally pulled up | Low                    |
| 0     | 1     | 0         | 0        | Open                 | Low                    |
| 1     | 1     | 1         | 0        | Internally pulled up | High                   |
| 1     | 1     | 0         | 0        | Open                 | High                   |

# 3.12 Timer 0 (T0)

# 3.12.1 Overview

The timer 0 (T0) incorporated in this series of microcontrollers is a 16-bit timer with a prescaler that provides the following eight functions:

- 1) Mode 0: 16-bit timer with a 5-bit prescaler
- 2) Mode 1: 8-bit timer with a 5-bit prescaler (with toggle output) + 8-bit PWM
- 3) Mode 2: 8-bit PWM with a 5-bit prescaler
- 4) Mode 3: 8-bit timer with a 5-bit prescaler (with toggle output)
- 5) Mode 4: 8-bit timer with a 5-bit prescaler + 8-bit PWM
- 6) Mode 5: 8-bit timer with a 5-bit prescaler + 8-bit toggle output
- 7) Mode 6: 8-bit PWM with a 5-bit prescaler + 8-bit PWM
- 8) Mode 7: 8-bit timer with a 5-bit prescaler (with toggle output) + toggle output

# 3.12.2 Functions

- 1) Mode 0: 16-bit timer with a 5-bit prescaler
  - Timer 0 (T0) functions as a 16-bit programmable timer that counts the system clocks or clocks from the OSC0, OSC1, or internal RC oscillator.

T0 period =  $([(T0HR << 8) + T0LR] + 1) \times (PR + 1) \times \text{count clock period}$ 

- T0PWML and T0PWMH output 0.
- 2) Mode 1: 8-bit timer with a 5-bit prescaler (with toggle output) + 8-bit PWM
  - T0L functions as an 8-bit programmable timer that counts the system clocks or clocks from the OSC0, OSC1, or internal RC oscillator. T0H functions as an 8-bit PWM that counts the system clocks.
  - T0PWML outputs a signal that toggles at the period of T0L.
  - T0PWMH functions as a PWM with a period of 256 Tcyc.
  - T0 period

T0L period =  $(T0LR + 1) \times (PR + 1) \times count clock period$ T0PWML period = T0L period  $\times$  2 T0H period = 256 Tcyc T0PWMH H period =  $(T0HR + 1) \times Tcyc$ 

- 3) Mode 2: 8-bit PWM with a 5-bit prescaler
  - T0L functions as an 8-bit PWM that counts the system clocks or clocks from the OSC0, OSC1, or internal RC oscillator. T0H is stopped.
  - T0PWML functions as a PWM with a clock period of  $256 \times (PR + 1) \times count clock period.$
  - T0PWMH outputs 0.

T0PWML period =  $256 \times (PR + 1) \times \text{count clock period}$ 

T0PWML H period =  $(T0LR + 1) \times (PR + 1) \times count clock period$ 

- 4) Mode 3: 8-bit timer with a 5-bit prescaler
  - T0L functions as an 8-bit timer that counts the system clocks or clocks from the OSC0, OSC1, or internal RC oscillator. T0H is stopped.
  - T0PWML outputs a signal that toggles at the period of T0L.
  - T0PWMH outputs 0.

T0L period =  $(T0LR + 1) \times (PR + 1) \times \text{count clock period}$ T0PWML period = T0L period  $\times 2$ 

- 5) Mode 4: 8-bit timer with a 5-bit prescaler + 8-bit PWM
  - TOL functions as an 8-bit timer that counts the system clocks or clocks from the OSC0, OSC1, or internal RC oscillator. TOH functions as an 8-bit PWM that counts the system clocks.
  - TOPWML outputs 0.
  - T0PWMH functions as a PWM with a clock period of 256 Tcyc.

T0H period = 256Tcyc T0PWMH H period =  $(T0HR + 1) \times Tcyc$ 

- 6) Mode 5: 8-bit timer with a 5-bit prescaler + 8-bit toggle output
  - T0L functions as an 8-bit timer that counts the system clocks or clocks from the OSC0, OSC1, or internal RC oscillator. T0H functions as a match counter for toggle output that counts the system clocks.
  - T0PWML outputs 0.
  - T0PWMH outputs a signal that toggles at the period of T0H.

T0H period =  $(T0HR + 1) \times Tcyc$ T0PWMH period = T0H period  $\times 2$ 

- 7) Mode 6: 8-bit PWM with a 5-bit prescaler + 8-bit PWM
  - T0L functions as an 8-bit PWM that counts the system clocks or clocks from the OSC0, OSC1, or internal RC oscillator. T0H functions as an 8-bit PWM that counts the system clocks.
  - T0PWML functions as a PWM with a clock period of  $256 \times (PR + 1) \times count clock period$ .
  - T0PWMH functions as a PWM with a clock period of 256 Tcyc.

T0PWML period =  $256 \times (PR + 1) \times \text{count clock period}$ T0PWML H period =  $(T0LR + 1) \times (PR + 1) \times \text{count clock period}$ T0H period = 256 TcycT0PWMH H period =  $(T0HR + 1) \times \text{Tcyc}$ 

- 8) Mode 7: 8-bit timer with a 5-bit prescaler (with toggle output) + toggle output
  - TOL functions as an 8-bit programmable timer that counts the system clocks or clocks from the OSC0, OSC1, or internal RC oscillator. TOH functions as a match counter for toggle output that counts the system clocks.
  - T0PWML outputs a signal that toggles at the period of T0L.
  - T0PWMH outputs a signal that toggles at the period of T0H.

T0L period =  $(T0LR + 1) \times (PR + 1) \times count clock period$ T0H period =  $(T0HR + 1) \times Tcyc$ 

## Timer 0

- 9) Interrupt generation
  - T0 interrupt request is generated at a period of T0L or T0PWML if the timer 0 interrupt request enable bit is set.
  - T0 interrupt request is generated under timer 0 software interrupt control.
- 10) It is necessary to manipulate the following special function registers (SFRs) to control timer 0 (T0).
  - TOLR, TOHR, TOCNT, TOPR
  - POLAT, PODDR

| Address | Initial value | R/W | Name  | BIT7  | BIT6  | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|-------|-------|-------|------|------|------|------|------|------|
| 7F10    | 0000 0000     | R/W | TOLR  | BIT7  | BIT6  | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
| 7F11    | 0000 0000     | R/W | T0HR  | BIT7  | BIT6  | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
| 7F12    | 0000 0000     | R/W | T0CNT | SISTS | SIFLG | SIIE | CKS  | SEL  | RUN  | FLG  | IE   |
| 7F13    | 0000 0000     | R/W | TOPR  |       | MODE  |      |      |      | PR   |      |      |

# 3.12.3 Circuit Configuration

#### 3.12.3.1 Timer 0 control register (T0CNT) (8-bit register)

1) This register controls the operation and interrupts of timer 0.

#### 3.12.3.2 Timer 0 prescaler control register (T0PR) (8-bit register)

1) This register is used to set the T0 prescaler period and select one of the 8 operating modes of timer 0.

## 3.12.3.3 Timer 0 prescaler (5-bit counter)

- 1) Start/stop: Stop/start is controlled by the 0/1 value of RUN (T0CNT, bit 2).
- 2) Count clock: Varies with the selected operating mode.

| Mode | CKSEL | T0 Prescaler Count Clock |
|------|-------|--------------------------|
| 0    | 00    | System clock             |
| 1    | 01    | Internal RC              |
| 2    | 10    | OSC0                     |
| 3    | 11    | OSC1                     |

- 3) Match signal: Match signal is generated when the count value matches the value of the 5-bit register PR.
- 4) Reset: When operation is stopped or a match signal is generated.

#### 3.12.3.4 Timer 0 low byte (T0L) (8-bit counter)

- 1) Start/stop: Stop/start is controlled by the 0/1 value of RUN (T0CNT, bit 2).
- 2) Count clock: Match signal from the T0 prescaler
- Match signal: Match signal is generated when the count value matches the value of the match buffer register (16 bits of data needs to match in 16-bit mode).
- 4) Reset: When operation is stopped or a match signal is generated.

## 3.12.3.5 Timer 0 high byte (T0H) (8-bit counter)

1) Start/stop: Stopped when the RUN bit (T0CNT, bit 2) is set to 0. Operation varies with the selected operating mode when set to 1.

| Mode | MODE | T0H Operation |
|------|------|---------------|
| 0    | 000  | Run           |
| 1    | 001  | Run           |
| 2    | 010  | Stopped       |
| 3    | 011  | Stopped       |
| 4    | 100  | Run           |
| 5    | 101  | Run           |
| 6    | 110  | Run           |
| 7    | 111  | Run           |

2) Count clock: Varies with the selected operating mode.

| Mode | MODE | T0H Count Clock |
|------|------|-----------------|
| 0    | 000  | T0L overflow    |
| 1    | 001  | System clock    |
| 2    | 010  | -               |
| 3    | 011  | -               |
| 4    | 100  | System clock    |
| 5    | 101  | System clock    |
| 6    | 110  | System clock    |
| 7    | 111  | System clock    |

 Match signal: Match signal is generated when the count value matches the value of the match buffer register (16 bits of data needs to match in 16-bit mode).

4) Reset: When operation is stopped or a match signal is generated.

#### 3.12.3.6 Timer 0 match data register low byte (T0LR) (8-bit register with a match buffer register)

- 1) This register is used to store the match data for T0L. It has an 8-bit match buffer register. A match signal is generated when the value of this match buffer register matches the value of the timer 0 low byte (T0L).
- 2) The match buffer register is updated as follows:

When it is not running, the value of the match buffer register matches the value of TOLR.

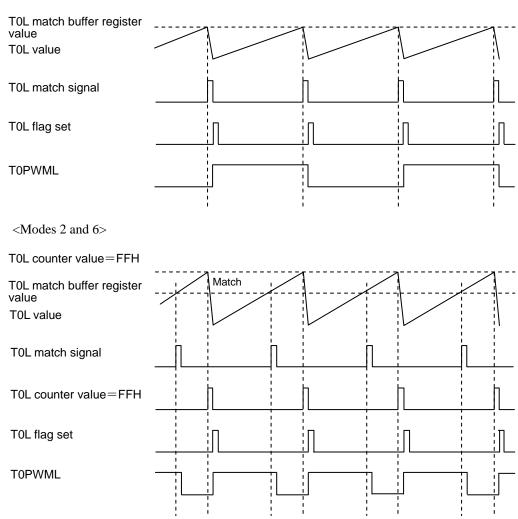
When it is running, it is loaded with the contents of TOLR when the value of TOL reaches 0.

3) If a clock other than the system clock is specified as the T0L count clock source, make sure that only one T0LR update occurs during the period from the generation of a T0L match signal until the generation of the next match signal while T0L is running.

#### 3.12.3.7 Timer 0 match data register high byte (T0HR) (8-bit register with a match buffer register)

- 1) This register is used to store the match data for T0H. It has an 8-bit match buffer register. A match signal is generated when the value of this match buffer register matches the value of the timer 0 high byte (T0H).
- 2) The match buffer register is updated as follows:

When it is not running, the value of the match buffer register matches the value of TOHR.

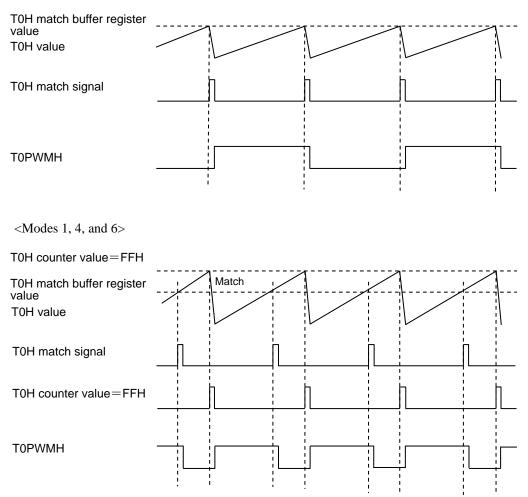

When it is running, it is loaded with the contents of T0HR when the value of T0H reaches 0.

3) If a clock other than the system clock is specified as the T0H count clock source, make sure that only one T0HR update occurs during the period from the generation of a T0H match signal until the generation of the next match signal while T0H is running.

#### Timer 0

# 3.12.3.8 Timer 0 output low byte (T0PWML)

- 1) The output of T0PWML is fixed low when T0L is stopped.
- 2) The output of T0PWML is fixed low in modes 0, 4, and 5.
- 3) Outputs a signal that toggles on TOL match signal in modes 1, 3, and 7.
- 4) Outputs a PWM signal that is set on T0L overflow and reset on T0L match signal in modes 2 and 6.




<Modes 1, 3, and 7>

## 3.12.3.9 Timer 0 output high byte (T0PWMH)

- 1) The output of T0PWMH is fixed low when T0H is stopped.
- 2) The output of T0PWMH is fixed low in modes 0, 2, and 3.
- 3) Outputs a signal that toggles on TOH match signal in modes 5 and 7.
- 4) Outputs a PWM signal that is set on T0H overflow and reset on T0H match signal in modes 1, 4, and 6.

<Modes 5 and 7>



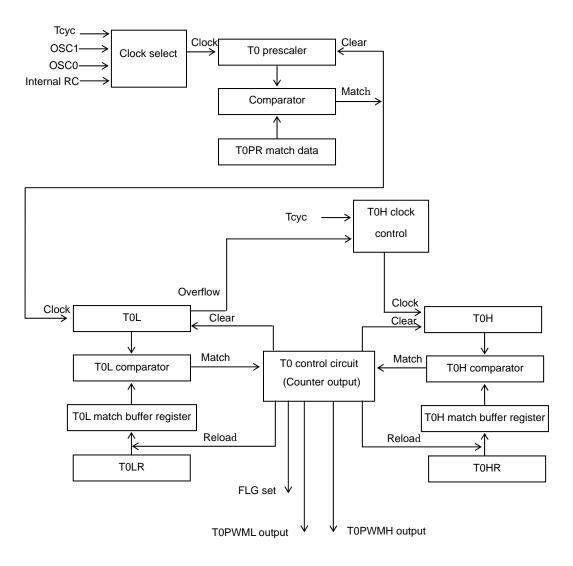



Figure 3.12.1 Timer 0 Block Diagram

# 3.12.4 Related Registers

# 3.12.4.1 Timer 0 match data register low byte (T0LR)

- 1) This register is used to store the match data for T0L. It has an 8-bit match buffer register. A match signal is generated when the value of this match buffer register matches the value of the timer 0 low byte.
- 2) The match buffer register is updated as follows:When it is not running, the value of the match buffer register matches the value of T0LR.When it is running, it is loaded with the contents of T0LR when the value of T0L reaches 0.

| Address | Initial value | R/W | Name | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|------|------|------|------|------|------|------|------|------|
| 7F10    | 0000 0000     | R/W | T0LR | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

## 3.12.4.2 Timer 0 match data register high byte (T0HR)

- 1) This register is used to store the match data for T0H. It has an 8-bit match buffer register. A match signal is generated when the value of this match buffer register matches the value of the timer 0 high byte.
- 2) The match buffer register is updated as follows:

When it is not running, the value of the match buffer register matches the value of T0HR.

When it is running, it is loaded with the contents of TOHR when the value of TOH reaches 0.

| Address | Initial value | R/W | Name | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|------|------|------|------|------|------|------|------|------|
| 7F11    | 0000 0000     | R/W | T0HR | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

# 3.12.4.3 Timer 0 control register (T0CNT)

1) This register is an 8-bit register that controls the operation and interrupts of T0.

| Address | Initial value | R/W | Name  | BIT7  | BIT6  | BIT5 | BIT4  | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|-------|-------|-------|------|-------|------|------|------|------|
| 7F12    | 0000 0000     | R/W | T0CNT | SISTS | SIFLG | SIIE | CKSEL |      | RUN  | FLG  | IE   |

## SISTS (bit 7): Software interrupt state

This bit enables the AND data of SIFLG and SIIE to be read.

This bit is read-only.

## SIFLG (bit 6): Software interrupt flag

#### SIIE (bit 5): Software interrupt enable control

When bits 5 and 6 are set to 1, an interrupt request to vector address 8008H is generated.

## CKSEL (bits 4, 3): T0 count clock select

These two bits select the count clock source for timer 0.

| Mode | CKSEL | T0 Prescaler Count Clock |
|------|-------|--------------------------|
| 0    | 00    | System clock             |
| 1    | 01    | Internal RC              |
| 2    | 10    | OSC0                     |
| 3    | 11    | OSC1                     |

#### RUN (bit 2): T0 count control

When this bit is set to 0, timer 0 (T0) stops on a count value of 0. The match buffer register of T0 then has the same value as T0R.

When this bit is set to 1, timer 0 (T0) performs the preset counting operation.

## FLG (bit 1): T0 match flag

This bit is set when T0 is running (RUN=1) and its value turns to 0. This flag must be cleared with an instruction.

# IE (bit 0): T0 interrupt request enable control

When this bit and FLG are set to 1, an interrupt request to vector address 8008H is generated.

# 3.12.4.4 Timer 0 prescaler control register (T0PR)

- 1) Bits 0 to 4 are used to set the count value for the timer 0 prescaler.
- 2) Bits 5 to 7 are used to select the operating mode of timer 0.

| Address | Initial value | R/W | Name | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|------|------|------|------|------|------|------|------|------|
| 7F13    | 0000 0000     | R/W | TOPR |      | MODE |      |      |      | PR   |      |      |

#### MODE (bits 7 to 5): Timer 0 mode select

These 3 bits select the operating mode of timer 0.

| Mode | MODE | T0L Operation               | T0H Operation                 |  |  |  |  |
|------|------|-----------------------------|-------------------------------|--|--|--|--|
| 0    | 000  | 16-b                        | it timer                      |  |  |  |  |
| 1    | 001  | 8-bit timer (toggle output) | 8-bit PWM                     |  |  |  |  |
| 2    | 010  | 8-bit PWM                   | Stopped                       |  |  |  |  |
| 3    | 011  | 8-bit timer (toggle output) | Stopped                       |  |  |  |  |
| 4    | 100  | 8-bit timer                 | 8-bit PWM                     |  |  |  |  |
| 5    | 101  | 8-bit timer                 | Match counter (toggle output) |  |  |  |  |
| 6    | 110  | 8-bit PWM                   | 8-bit PWM                     |  |  |  |  |
| 7    | 111  | 8-bit timer (toggle output) | Match counter (toggle output) |  |  |  |  |

# PR (bits 4 to 0): Timer 0 prescaler control

These 5 bits set the period of the timer 0 prescaler.

T0PR period =  $(PR + 1) \times \text{count clock}$ 

# 3.12.5 Timer 0 Output Port Settings

| 1) | T0PWML (P06) |
|----|--------------|
|----|--------------|

| Regis    | ster Data | Dart DOC State                                      |  |  |  |
|----------|-----------|-----------------------------------------------------|--|--|--|
| P0LAT<6> | P0DDR<6>  | Port P06 State                                      |  |  |  |
| 1        | 0         | Internally pulled up                                |  |  |  |
| 0        | 0         | OR of T0PWML and P06LAT (internally pulled up/open) |  |  |  |
| 1        | 1         | High output                                         |  |  |  |
| 0        | 1         | OR of T0PWML and P06LAT (high output/low output)    |  |  |  |

#### 2) T0PWMH (P07)

| Regis    | ster Data | Dort D07 State                                      |  |  |  |  |
|----------|-----------|-----------------------------------------------------|--|--|--|--|
| P0LAT<7> | P0DDR<7>  | Port P07 State                                      |  |  |  |  |
| 1        | 0         | Internally pulled up                                |  |  |  |  |
| 0        | 0         | OR of T0PWMH and P07LAT (Internally pulled up/open) |  |  |  |  |
| 1        | 1         | High output                                         |  |  |  |  |
| 0        | 1         | OR of T0PWMH and P07LAT (high output/low output)    |  |  |  |  |

# 3.13 Timer 1 (T1)

#### 3.13.1 Overview

The timer 1 (T1) incorporated in this series of microcontrollers is a 16-bit timer with a prescaler that provides the following two functions:

- 1) Mode 0: 16-bit programmable timer with a 5-bit prescaler (with a 16-bit capture register)
- 2) Mode 1: 8-bit timer with a 5-bit prescaler (with an 8-bit capture register)  $\times$  2 channels

# 3.13.2 Functions

- 1) Mode 0: 16-bit programmable timer with a 5-bit prescaler (with a 16-bit capture register)
  - Timer 1 (T1) functions as a 16-bit programmable timer that counts the system clocks or clocks from the OSC0, OSC1, or internal RC oscillator.
  - The contents of T1L and T1H are captured into T1CAPL and T1CAPH at the same time when HFLG is set to 1 with an instruction if capturing is enabled.
  - T1 period

T1 period = ([(T1HR << 8) + T1LR] + 1)  $\times$  (PR + 1)  $\times$  count clock period

- 2) Mode 1: 8-bit timer with a 5-bit prescaler (with an 8-bit capture register) × 2 channels
  - Timer 1 (T1) functions as an 8-bit timer that counts the system clocks or clocks from the OSC0, OSC1, or internal RC oscillator and as an 8-bit timer that counts the system clocks.
  - The contents of T1L are captured into T1CAPL when HFLG is set to 1 if capturing is enabled.
  - The contents of T1H are captured into T1CAPH when FLG is set to 1 if capturing is enabled.
  - T1 period

T1L period =  $(T1LR + 1) \times (PR + 1) \times \text{count clock period}$ T1H period =  $(T1HR + 1) \times \text{Tcyc}$ 

#### 3) Interrupt generation

- T1L or T1H interrupt request is generated at the counter period of T1L or T1H if the timer interrupt request enable bit is set.
- 4) It is necessary to manipulate the following special function registers (SFRs) to control timer 1 (T1).
  - T1LR, T1HR, T1CNT, T1PR

| Address | Initial value | R/W | Name  | BIT7    | BIT6     | BIT5    | BIT4  | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|-------|---------|----------|---------|-------|------|------|------|------|
| 7F14    | 0000 0000     | R/W | T1LR  | BIT7    | BIT6     | BIT5    | BIT4  | BIT3 | BIT2 | BIT1 | BIT0 |
| 7F15    | 0000 0000     | R/W | T1HR  | BIT7    | BIT6     | BIT5    | BIT4  | BIT3 | BIT2 | BIT1 | BIT0 |
| 7F16    | 0000 0000     | R/W | T1CNT | HRUN    | HFLG     | HIE     | CKSEL |      | RUN  | FLG  | IE   |
| 7F17    | 0000 0000     | R/W | T1PR  | MDSELRD | MDSELBIT | MDSELCP |       |      | PR   |      |      |

# 3.13.3 Circuit Configuration

## 3.13.3.1 Timer 1 control register (T1CNT) (8-bit register)

1) This register controls the operation and interrupts of T1L and T1H.

# 3.13.3.2 Timer 1 prescaler control register (T1PR) (8-bit register)

1) This register is used to set the prescaler and to select the operating mode.

#### 3.13.3.3 Timer 1 prescaler (5-bit counter)

- 1) Start/stop: Stop/start is controlled by the 0/1 value of RUN (T1CNT, bit 2).
- 2) Count clock: Varies with the selected operating mode.

| Mode | CKSEL | T1 Prescaler Count Clock |
|------|-------|--------------------------|
| 0    | 00    | System clock             |
| 1    | 01    | Internal RC              |
| 2    | 10    | OSC0                     |
| 3    | 11    | OSC1                     |

- 3) Match signal: Match signal is generated when the count value matches the value of the 5-bit register PR.
- 4) Reset: When operation is stopped or a match signal is generated.

## 3.13.3.4 Timer 1 low byte (T1L) (8-bit counter)

- 1) Start/stop: Stop/start is controlled by the 0/1 value of RUN (T1CNT, bit 2).
- 2) Count clock: Match signal from the T1 prescaler
- 3) Match signal: Match signal is generated when the count value matches the value of the match buffer register (16 bits of data needs to match in 16-bit mode).
- 4) Reset: When operation is stopped or a match signal is generated.

#### 3.13.3.5 Timer 1 high byte (T1H) (8-bit counter)

1) Start/stop: Varies with the selected operating mode.

| Mode | MDSELBIT | HRUN | RUN | T1H Operation |
|------|----------|------|-----|---------------|
| 0    | 0        | 0    | 0   | Stopped       |
| 1    | 0        | 0    | 1   | Run           |
| 2    | 0        | 1    | 0   | Stopped       |
| 3    | 0        | 1    | 1   | Run           |
| 4    | 1        | 0    | 0   | Stopped       |
| 5    | 1        | 0    | 1   | Stopped       |
| 6    | 1        | 1    | 0   | Run           |
| 7    | 1        | 1    | 1   | Run           |

2) Count clock: Varies with the selected operating mode.

| Mode | MDSELBIT | T1H Count Clock     |
|------|----------|---------------------|
| 0    | 0        | T1L overflow signal |
| 1    | 1        | System clock        |

- Match signal: Match signal is generated when the count value matches the value of the match buffer register (16 bits of data needs to match in 16-bit mode).
- 4) Reset: When operation is stopped or a match signal is generated.

#### 3.13.3.6 Timer 1 match data register low byte (T1LR) (8-bit register with a match buffer register)

- 1) This register is used to store the match data for T1L. It has an 8-bit match buffer register. A match signal is generated when the value of this match buffer register matches the value of the timer 1 low byte (T1L).
- 2) The match buffer register is updated as follows:When it is not running, the value of the match buffer register matches the value of T1LR.When it is running, it is loaded with the contents of T1LR when the value of T1L reaches 0.
- 3) If a clock other than the system clock is specified as the T1L count clock source, make sure that only one T1LR update occurs during the period from the generation of a T1L match signal until the generation of the next match signal while T1L is running.

#### 3.13.3.7 Timer 1 match data register high byte (T1HR) (8-bit register with a match buffer register)

- 1) This register is used to store the match data for T1H. It has an 8-bit match buffer register. A match signal is generated when the value of this match buffer register matches the value of the timer 1 high byte (T1H).
- 2) The match buffer register is updated as follows:

When it is not running, the value of the match buffer register matches the value of T1HR.

When it is running, it is loaded with the contents of T1HR when the value of T1H reaches 0.

3) If a clock other than the system clock is specified as the T1H count clock source, make sure that only one T1HR update occurs during the period from the generation of a T1H match signal until the generation of the next match signal while T1H is running.

#### 3.13.3.8 Timer 1 capture register low byte (T1CAPL) (8-bit register)

This register retains the value of T1L if the following condition is established when MDSELCP is set to 1.

1) The counter value of T1L that is established when HFLG is set to 1

#### 3.13.3.9 Timer 1 capture register high byte (T1CAPH) (8-bit register)

This register retains the value of T1H if one of the following conditions is established when MDSELCP is set to 1.

- 1) The counter value of T1H that is established when HFLG is set to 1 in 16-bit timer mode
- 2) The counter value of T1H that is established when FLG is set to 1 in 8-bit timer mode.

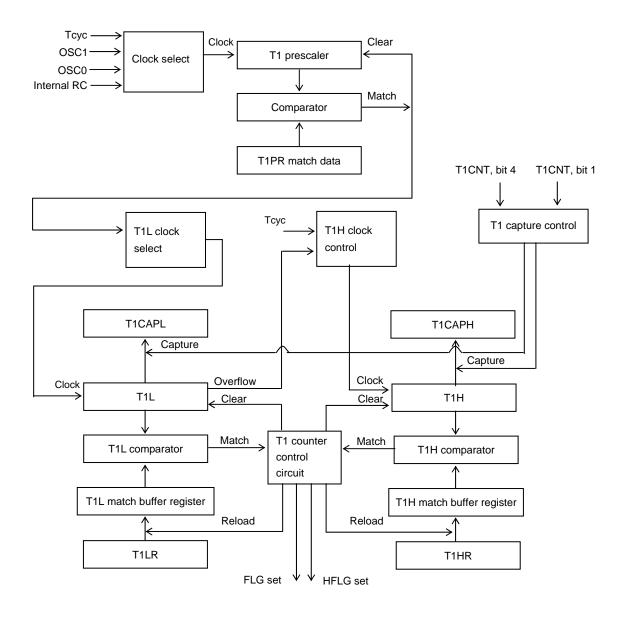



Figure 3.13.1 Timer 1 Block Diagram

# 3.13.4 Related Registers

#### 3.13.4.1 Timer 1 match data register low byte (T1LR)

- 1) This register is used to store the match data for T1L.
- 2) The contents of T1CAPL can be read out when the MDSELRD is set to 1.

| Address | Initial value | R/W | Name | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|------|------|------|------|------|------|------|------|------|
| 7E14    | 0000 0000     | R/W | T1LR | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

#### 3.13.4.2 Timer 1 match data register high byte (T1HR)

- 1) This register is used to store the match data for T1H.
- 2) The contents of T1CAPH can be read out when the MDSELRD is set to 1.

| Address | Initial value | R/W | Name | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|------|------|------|------|------|------|------|------|------|
| 7E15    | 0000 0000     | R/W | T1HR | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

#### 3.13.4.3 Timer 1 control register (T1CNT)

1) This 8-bit register controls the operation and interrupts of T1L and T1H.

| Address | Initial value | R/W | Name  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|-------|------|------|------|------|------|------|------|------|
| 7F16    | 0000 0000     | R/W | T1CNT | HRUN | HFLG | HIE  | CKS  | SEL  | RUN  | FLG  | IE   |

#### HRUN (bit 7): T1H count control

This bit is used to control the T1H counting operation in 8-bit timer mode.

When this bit is set to 0, timer 1 high byte (T1H) stops on a count value of 0. The match buffer register of T1H then has the same value as T1HR.

When this bit is set to 1, timer 1 high byte (T1H) performs the preset counting operation.

#### HFLG (bit 6): T1H match flag

This bit is used as the T1H match flag in 8-bit timer mode.

This bit is set when T1H is running (HRUN = 1) and its value turns to 0.

This bit must be cleared with an instruction.

This bit serves as the capture trigger signal.

#### HIE (bit 5): T1H interrupt request enable control

This bit is used to control T1H interrupts in 8-bit timer mode.

When this bit and HFLG are set to 1, an interrupt request to vector address 8018H is generated.

#### CKSEL (bits 4, 3): T1 count clock select

These two bits select the count clock for timer 1.

| Mode | CKSEL | T1 Prescaler Count Clock |
|------|-------|--------------------------|
| 0    | 00    | System clock             |
| 1    | 01    | Internal RC              |
| 2    | 10    | OSC0                     |
| 3    | 11    | OSC1                     |

## Timer 1

#### RUN (bit 2): T1 count control

When this bit is set to 0, timer 1 (T1) stops on a count value of 0. The match buffer register of T1 then has the same value as T1R.

When this bit is set to 1, Timer 1 (T1) performs the preset counting operation.

This bit is used to control T1L in 8-bit timer mode.

## FLG (bit 1): T1 match flag

This bit is set when T1 is running (RUN = 1) and its value turns to 0.

This bit must be cleared with an instruction.

This bit is used as the T1L match flag in 8-bit timer mode.

This bit serves as the capture trigger signal.

#### IE (bit 0): T1 interrupt request enable control

When this bit and FLG are set to 1, an interrupt request to vector address 8018H is generated.

This bit is used to control T1L interrupts in 8-bit timer mode.

Note: FLG and HFLG must be cleared to 0 with an instruction.

## 3.13.4.4 Timer 1 prescaler control register (T1PR)

1) This register sets the timer 1 count clock and its operating mode.

| Address | Initial value | R/W | Name | BIT7    | BIT6     | BIT5    | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|------|---------|----------|---------|------|------|------|------|------|
| 7F17    | 0000 0000     | R/W | T1PR | MDSELRD | MDSELBIT | MDSELCP |      |      | PR   |      |      |

#### MDSELRD (bit 7): Register read select

This bit is used to select the read register.

When this bit is set to 1, the values of T1CAPL and T1CAPH can be read through the addresses of T1LR and T1HR.

When this bit set to 0, the values of T1LR and TIHR can be read directly.

#### MDSELBIT (bit 6): Timer 1 counter length select

Timer 1 runs in 8-bit timer mode when this bit is set to 1.

Timer 1 runs in 16-bit timer mode when this bit is set to 0.

#### MDSELCP (bit 5): Timer 1 capture enable

When this bit is set to 1, the timer 1 counter data is placed and held in the capture register when the capture conditions are met.

When this bit is set to 0, the capture function is disabled.

| MDSELBIT | T1L Capture Conditions | T1H Capture Conditions |  |  |
|----------|------------------------|------------------------|--|--|
| 0        | HFLG set to 1          | HFLG set to 1          |  |  |
| 1        | HFLG set to 1          | FLG set to 1           |  |  |

\* Since the capture register retains the data while the capture conditions are met, the register should be read while the capture conditions remain established.

#### PR (bits 4 to 0): Timer 1 prescaler control

These 5 bits set the period of the timer 1 prescaler.

T1PR period =  $(PR + 1) \times \text{count clock}$ 

# 3.14 Timer 2 (T2)

#### 3.14.1 Overview

The timer 2 (T2) incorporated in this series of microcontrollers is a 16-bit timer with a prescaler that provides the following two functions:

- 1) Mode 0: 16-bit programmable timer with a 4-bit prescaler (with a 16-bit capture register)
- 2) Mode 1: 8-bit programmable timer with a 4-bit prescaler (with an 8-bit capture register) × 2 channels

## 3.14.2 Functions

- 1) Mode 0: 16-bit programmable timer with a 4-bit prescaler (with a 16-bit capture register)
  - Timer 2 (T2) functions as a 16-bit programmable timer that counts the system clocks or clocks from the OSC0 or OSC1, or external events.
  - The detection signal from the INT2 or INT3 pin can be selected as an external event.
  - The signal from the INT0 or INT2 pin causes the contents of T2L and T2H to be captured into T2CP0L and T2CP0H at the same time.
  - T2 period

T2 period =  $([(T2HR <<\!\!<\!\!8) + T2LR] + 1) \times (PR+1) \times \text{count clock period}$ 

- 2) Mode 1: 8-bit programmable timer with a 4-bit prescaler (with an 8-bit capture register) × 2 channels
  - Timer 2 (T2) functions as two independent 8-bit programmable timers that count the system clocks or clocks from the OSC0 or OSC1, or external events.
  - The detection signal from the INT2 or INT3 pin can be selected as an external event.
  - The detection signal from the INT0 or INT2 pin causes the contents of T2L to be captured into T2CP0L.
  - The detection signal from the INT1 or INT3 pin causes the contents of T2H to be captured into T2CP0H.
  - T2 period (clock source: when external event is not selected)

T2L period =  $(T2LR + 1) \times (PR + 1) \times \text{count clock period}$ 

T2H period =  $(T2HR + 1) \times (PR + 1) \times count clock period$ 

• T2 period (clock source: when external event is selected)

T2L period =  $(T2LR + 1) \times external events$ 

T2H period =  $(T2HR + 1) \times (PR + 1) \times (system clock period or external events)$ 

- 3) Interrupt generation
  - T2L or T2H interrupt request is generated at the counter period of T2L or T2H if the timer interrupt request enable bit is set.

An interrupt request is generated when the capture register is updated if the capture interrupt request bit is set.

#### Timer 2

- 4) It is necessary to manipulate the following special function registers (SFRs) to control timer 2 (T2).
  - T2LR, T2HR, T2L, T2H, T2CNT0, T2CNT1, T2CNT2

| Address | Initial value | R/W | Name   | BIT7 | BIT6 | BIT5  | BIT4 | BIT3   | BIT2    | BIT1    | BIT0 |
|---------|---------------|-----|--------|------|------|-------|------|--------|---------|---------|------|
| 7E18    | 0000 0000     | R/W | T2LR   | BIT7 | BIT6 | BIT5  | BIT4 | BIT3   | BIT2    | BIT1    | BIT0 |
| 7E19    | 0000 0000     | R/W | T2HR   | BIT7 | BIT6 | BIT5  | BIT4 | BIT3   | BIT2    | BIT1    | BIT0 |
| 7F1A    | 0000 0000     | R   | T2L    | BIT7 | BIT6 | BIT5  | BIT4 | BIT3   | BIT2    | BIT1    | BIT0 |
| 7F1B    | 0000 0000     | R   | T2H    | BIT7 | BIT6 | BIT5  | BIT4 | BIT3   | BIT2    | BIT1    | BIT0 |
| 7F1C    | 0000 0000     | R/W | T2CNT0 | HRUN | HFLG | HIE   | CTR8 | SLCPRD | RUN     | FLG     | IE   |
| 7F1D    | LLL0 0000     | R/W | T2CNT1 | -    | -    | -     | CP   | OSL    | CP0HFLG | CP0LFLG | CPIE |
| 7F1E    | 000L 0000     | R/W | T2CNT2 | СК   | SL   | EXISL | -    |        | Р       | R       |      |

# 3.14.3 Circuit Configuration

# 3.14.3.1 Timer 2 control register 0 (T2CNT0) (8-bit register)

1) This register controls the operation and interrupts of T2L and T2H.

# 3.14.3.2 Timer 2 control register 1 (T2CNT1) (8-bit register)

1) This register is used to set the count clock for T2L and T2H.

# 3.14.3.3 Timer 2 control register 2 (T2CNT2) (8-bit register)

1) This register controls the capture operation of T2L and T2H.

#### 3.14.3.4 Timer 2 prescaler (4-bit counter)

| Mode | CTR8 | HRUN | RUN | T2 Prescaler Operation |
|------|------|------|-----|------------------------|
| 0    | 0    | 0    | 0   | Stopped                |
| 1    | 0    | 0    | 1   | Run                    |
| 2    | 0    | 1    | 0   | Stopped                |
| 3    | 0    | 1    | 1   | Run                    |
| 4    | 1    | 0    | 0   | Stopped                |
| 5    | 1    | 0    | 1   | Run                    |
| 6    | 1    | 1    | 0   | Run                    |
| 7    | 1    | 1    | 1   | Run                    |

1) Start/stop: Varies with the selected operating mode.

2) Count clock: Varies with the selected operating mode

| Mode | CTR8 | EXISL | CKSL | T2 Prescaler Count Clock |
|------|------|-------|------|--------------------------|
| 0    | _    | _     | 00   | System clock             |
| 1    | 0    | 0     | 01   | Event input from INT2    |
| 2    | 1    | 0     | 01   | System clock             |
| 3    | _    | 1     | 01   | Event input from INT3    |
| 4    | _    | _     | 10   | OSC0                     |
| 5    | _    | _     | 11   | OSC1                     |

- 3) Match signal: Match signal is generated when the count value matches the value of PR (T2CNT2 register, bits 3 to 0).
- 4) Reset: When operation is stopped or a match signal is generated.

#### 3.14.3.5 Timer 2 low byte (T2L) (8-bit counter)

1) Start/stop: Varies with the selected operating mode

| Mode | CTR8 | HRUN | RUN | T2L Operation |
|------|------|------|-----|---------------|
| 0    | 0    | 0    | 0   | Stopped       |
| 1    | 0    | 0    | 1   | Run           |
| 2    | 0    | 1    | 0   | Stopped       |
| 3    | 0    | 1    | 1   | Run           |
| 4    | 1    | 0    | 0   | Stopped       |
| 5    | 1    | 0    | 1   | Run           |
| 6    | 1    | 1    | 0   | Stopped       |
| 7    | 1    | 1    | 1   | Run           |

2) Count clock: Varies with the selected operating mode

| Mode | CTR8 | CKSL | T2L Count Clock           |
|------|------|------|---------------------------|
| 0    | _    | 00   | T2 prescaler match signal |
| 1    | 0    | 01   | T2 prescaler match signal |
| 2    | 1    | 01   | Event input from INT2     |
| 3    | _    | 10   | T2 prescaler match signal |
| 4    | _    | 11   | T2 prescaler match signal |

- 3) Match signal: Match signal is generated when the count value matches the value of the match buffer register (16 bits of data needs to match in 16-bit mode).
- 4) Reset: When operation is stopped or a match signal is generated.

## 3.14.3.6 Timer 2 high byte (T2H) (8-bit counter)

1) Start/stop: Varies with the selected operating mode

| Mode | CTR8 | HRUN | RUN | T2H Operation |
|------|------|------|-----|---------------|
| 0    | 0    | 0    | 0   | Stopped       |
| 1    | 0    | 0    | 1   | Run           |
| 2    | 0    | 1    | 0   | Stopped       |
| 3    | 0    | 1    | 1   | Run           |
| 4    | 1    | 0    | 0   | Stopped       |
| 5    | 1    | 0    | 1   | Stopped       |
| 6    | 1    | 1    | 0   | Run           |
| 7    | 1    | 1    | 1   | Run           |

2) Count clock: Varies with the operating mode

| Mode | CTR8 | T2H Count Clock           |
|------|------|---------------------------|
| 0    | 0    | T2L overflow signal       |
| 1    | 1    | T2 prescaler match signal |

- 3) Match signal: Match signal is generated when the count value matches the value of the match buffer register (16 bits of data needs to match in 16-bit mode).
- 4) Reset: When operation is stopped or a match signal is generated.

#### 3.14.3.7 Timer 2 match data register low byte (T2LR) (8-bit register with a match buffer register)

- 1) This register is used to store the match data for T2L. It has an 8-bit match buffer register. A match signal is generated when the value of this match buffer register matches the value of timer 2 low byte (T2L).
- 2) The match buffer register is updated as follows:When it is not running, the value of the match buffer register matches the value of T2LR.When it is running it is loaded with the contents of T2LR when the value of T2L reaches 0.
- 3) If a clock other than the system clock is specified as the T2L count clock source, make sure that no more than one T2LR update occurs during the period from the generation of a T2L match signal until the generation of the next match signal while T2L is running.

#### 3.14.3.8 Timer 2 match data register high byte (T2HR) (8-bit register with a match buffer register)

- 1) This register is used to store the match data for T2H. It has an 8-bit match buffer register. A match signal is generated when the value of this match buffer register matches the value of timer 2 high byte (T2H).
- 2) The match buffer register is updated as follows:When it is not running, the value of the match buffer register matches the value of T2HR.When it is running, it is loaded with the contents of T2HR when the value of T2H reaches 0.
- 3) If a clock other than the system clock is specified as the T2H count clock source, make sure that no more than one T2HR update occurs during the period from the generation of a T2H match signal until the generation of the next match signal while T2H is running.

#### 3.14.3.9 Timer 2 capture register low byte (T2CP0L) (8-bit register)

1) Capture request: Varies with the selected operating mode.

| Mode | CP0SL | T2CP0L Capture Request |
|------|-------|------------------------|
| 0    | 00    | Event input from INT0  |
| 1    | 01    | Event input from INT2  |
| 2    | 10    | Event input from INT4  |
| 3    | 11    | Event input from INT5  |

2) Capture data: Contents of timer 2 low byte (T2L)

# 3.14.3.10 Timer 2 capture register high byte (T0CP0H) (8-bit register)

- **CP0SL** Mode CTR8 **T2CP0H Capture Request** 0 0 00 Event input from INT0 1 0 01 Event input from INT2 2 0 10 Event input from INT4 3 0 11 Event input from INT5 4 1 00 Event input from INT1 5 1 01 Event input from INT3 6 1 10 Event input from INT5 7 11 Event input from INT4 1
- 1) Capture request: Varies with the selected operating mode.

2) Capture data: Contents of timer 2 high byte (T2H)

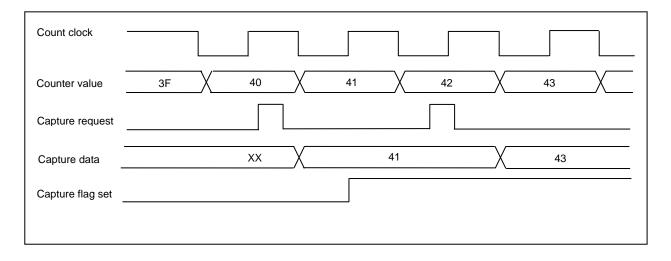



Figure 3.14.1 Capture Timing

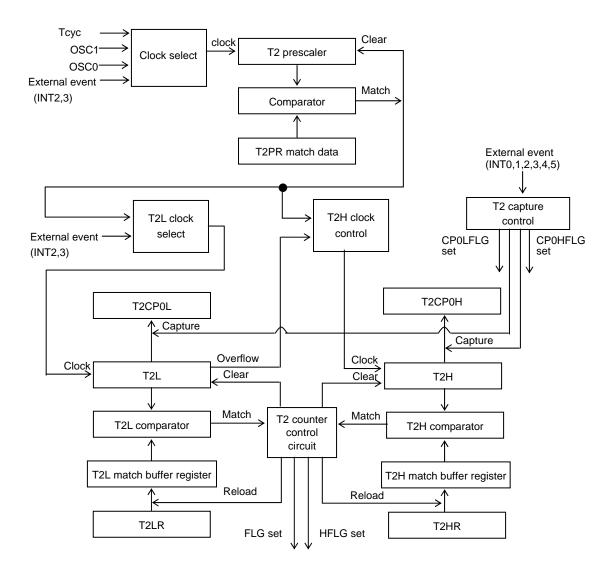



Figure 3.14.2 Timer 2 Block Diagram

## 3.14.4 Related Registers

#### 3.14.4.1 Timer 2 match data register low byte (T2LR)

- 1) This register is used to store the match data for T2L. It has an 8-bit match buffer register. A match signal is generated when the value of this match buffer register matches the value of timer 2 low byte (T2L).
- 2) The match buffer register is updated as follows:

When it is not running, the value of the match buffer register matches the value of T2LR. When it is running, it is loaded with the contents of T2LR when the value of T2L reaches 0.

| Address | Initial value | R/W | Name | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|------|------|------|------|------|------|------|------|------|
| 7F18    | 0000 0000     | R/W | T2LR | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

#### 3.14.4.2 Timer 2 match data register high byte (T2HR)

- 1) This register is used to store the match data for T2H. It has an 8-bit match buffer register. A match signal is generated when the value of this match buffer register matches the value of timer 2 high byte (T2H).
- 2) The match buffer register is updated as follows:

When it is not running, the value of the match buffer register matches the value of T2HR. When it is running, it is loaded with the contents of T2HR when the value of T2H reaches 0.

| Address | Initial value | R/W | Name | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|------|------|------|------|------|------|------|------|------|
| 7F19    | 0000 0000     | R/W | T2HR | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

#### 3.14.4.3 Timer 2 low byte (T2L)

- 1) The timer 2 low byte is an 8-bit read-only timer. It counts up on the T2 prescaler match signal.
- 2) The data of the timer 2 capture register low byte (T2CP0L) can be read out when bit 3 of the timer 2 control register 0 (T2CNT0) is set to 1.

| Address | Initial value | R/W | Name | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|------|------|------|------|------|------|------|------|------|
| 7F1A    | 0000 0000     | R   | T2L  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

#### 3.14.4.4 Timer 2 high byte (T2H)

- 1) The timer 2 high byte is an 8-bit read-only timer. It counts up on the T2L overflow or T2 prescaler match signal.
- 2) The data of the timer 2 capture register high byte (T2CP0H) can be read out when bit 3 of the timer 2 control register 0 (T2CNT0) is set to 1.

| Address | Initial value | R/W | Name | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|------|------|------|------|------|------|------|------|------|
| 7F1B    | 0000 0000     | R   | T2H  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

#### 3.14.4.5 Timer 2 control register 0 (T2CNT0)

1) This register is an 8-bit register that controls the operation and interrupts of T2L and T2H.

| Address | Initial value | R/W | Name   | BIT7 | BIT6 | BIT5 | BIT4 | BIT3   | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|--------|------|------|------|------|--------|------|------|------|
| 7F1C    | 0000 0000     | R/W | T2CNT0 | HRUN | HFLG | HIE  | CTR8 | SLCPRD | RUN  | FLG  | IE   |

#### HRUN (bit 7): T2H count control

This bit is used to control the T2H count operation in 8-bit timer mode.

When this bit is set to 0, timer 2 high byte (T2H) stops on a count value of 0. The match buffer register for T2H then has the same value as T2HR.

When this bit is set to 1, timer 2 high byte (T2H) performs the preset counting operation.

#### Timer 2

#### HFLG (bit 6): T2H match flag

This bit is used as the T2H match flag in 8-bit timer mode. This bit is set when T2H is running (HRUN=1) and its value turns to 0. This bit must be cleared with an instruction.

#### HIE (bit 5): T2H interrupt request enable control

This bit is used to control T2H interrupts in 8-bit timer mode.

When this bit and HFLG are set to 1, an interrupt request to vector address 801CH is generated.

#### CTR8 (bit 4): Timer 2 mode select

When this bit is set to 0, timer 2 functions as a 16-bit timer.

When this bit is set to 1, timer 2 functions as two independent 8-bit timers.

#### SLCPRD (bit 3): Capture register read select

When this bit is set to 0, the values of T2L and T2H are read from addresses 7F1A and 7F1B. When this bit is set to 1, the values of T2CP0L and T2CP0H are read from addresses 7F1A and 7F1B.

#### RUN (bit 2): T2 count control

When this bit is set to 0, timer 2 (T2) stops on a count value of 0. The match buffer register for T2 then has the same value as T2R.

When this bit is set to 1, timer 2 (T2) performs the preset counting operation.

This bit is used to control T2L in 8-bit timer mode.

#### FLG (bit 1): T2 match flag

This bit is set when T2 is running (RUN = 1) and its value turns to 0.

This bit must be cleared with an instruction.

This bit is used as the T2L match flag in 8-bit timer mode.

#### IE (bit 0): T2 interrupt request enable control

When this bit and FLG are set to 1, an interrupt request to vector address 801CH is generated. This bit is used to control T2L interrupts in 8-bit timer mode

This bit is used to control 12L interrupts in 8-bit timer mode

Note: FLG and HFLG must be cleared to 0 with an instruction.

#### 3.14.4.6 Timer 2 control register 1 (T2CNT1)

1) This register sets the timer 2 capture operation.

| Address | Initial value | R/W | Name   | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2    | BIT1    | BIT0 |
|---------|---------------|-----|--------|------|------|------|------|------|---------|---------|------|
| 7F1D    | LLL0 0000     | R/W | T2CNT1 | -    | -    | -    | CPO  | OSL  | CP0HFLG | CP0LFLG | CPIE |

## CP0SL (bits 4, 3): Timer 2 capture request input select

These two bits are used to select the input source of the timer 2 capture request.

| Mode | CTR8 | CP0SL | T2CP0H Capture Request |
|------|------|-------|------------------------|
| 0    | 0    | 00    | Event input from INT0  |
| 1    | 0    | 01    | Event input from INT2  |
| 2    | 0    | 10    | Event input from INT4  |
| 3    | 0    | 11    | Event input from INT5  |
| 4    | 1    | 00    | Event input from INT1  |
| 5    | 1    | 01    | Event input from INT3  |
| 6    | 1    | 10    | Event input from INT5  |
| 7    | 1    | 11    | Event input from INT4  |

| Mode | CP0SL | T2CP0L Capture Request |
|------|-------|------------------------|
| 0    | 00    | Event input from INT0  |
| 1    | 01    | Event input from INT2  |
| 2    | 10    | Event input from INT4  |
| 3    | 11    | Event input from INT5  |

#### CP0HFLG (bit 2): Timer 2 capture 0H flag

This bit is set to 1 when the T2CP0H register is updated in 8-bit mode.

This bit remains unchanged when the T2CP0H register is updated in 16-bit mode.

This register must be set to 0 after the T2CP0H register is read.

#### CP0LFLG (bit 1): Timer 2 capture 0L flag

This bit is set to 1 when the T2CP0L register is updated in 8-bit mode.

In 16-bit mode, this bit is set to 1 when both the T2CP0H and T2CP0L registers are updated at the same time.

This register must be set to 0 after the T2CP0L register is read.

#### CPIE (bit 0): T2 capture interrupt request enable control

When this bit and CP0LFLG or CP0HFLG are set to 1, an interrupt request to vector address 801CH is generated.

Note: CP0LFLG and CP0HFLG must be cleared to 0 with an instruction.

#### 3.14.4.7 Timer 2 control register 2 (T2CNT2)

1) This register sets the count clock for timer 2.

| Address | Initial value | R/W | Name   | BIT7 | BIT6 | BIT5  | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|--------|------|------|-------|------|------|------|------|------|
| 7F1E    | 000L 0000     | R/W | T2CNT2 | CKSL |      | EXISL | -    |      | Р    | R    |      |

#### CKSL (bits 7, 6): Timer 2 count clock select

These two bits are used to select the count clock for timer 2.

| Mode | CKSL | T2 Prescaler Count Clock |
|------|------|--------------------------|
| 0    | 00   | System clock             |
| 1    | 01   | Event input              |
| 2    | 10   | O SC0                    |
| 3    | 11   | OSC1                     |

### EXISL (bit 5): Timer 2 event count input select

When this bit is set to 0, INT2 is selected as the source of event inputs.

When this bit is set to 1, INT3 is selected as the source of event inputs.

#### PR (bits 3 to 0): Timer 2 prescaler control

These 4 bits are used to set the period of the timer 2 prescaler.

T2PR period =  $(PR + 1) \times count clock$ 

# 3.15 Timer 3 (T3)

# 3.15.1 Overview

The timer 3 (T3) incorporated in this series of microcontrollers is a 16-bit timer with a prescaler that provides the following four functions:

- 1) Mode 0: 16-bit programmable timer with an 8-bit prescaler (with toggle output)
- 2) Mode 1: 8-bit programmable timer with an 8-bit prescaler (with toggle output)  $\times$  2 channels
- Mode 2: 8-bit PWM with an 8-bit prescaler × 1 channel + 8-bit timer (with toggle output) that counts PWM period.
- 4) Mode 3: 8-bit PWM with an 8-bit prescaler × 2 channels

# 3.15.2 Functions

- 1) Mode 0: 16-bit programmable timer with an 8-bit prescaler (with toggle output)
  - Timer 3 (T3) functions as a 16-bit programmable timer that counts the system clocks or clocks from the OSC0 or OSC1, or external events.
  - The detection signal from the INT4 or INT5 pin can be selected as an external event.
  - T3OH outputs a signal that toggles at the period of T3.

T3 period = ([(T3HR<<8) + T3LR] + 1)  $\times$  (PR + 1)  $\times$  count clock period T3OH period = T3 period  $\times$  2

- 2) Mode 1: 8-bit programmable timer with an 8-bit prescaler (with toggle output)  $\times$  2 channels
  - Timer 3 (T3) functions as two independent 8-bit programmable timers that count the system clocks or clocks from the OSC0 or OSC1, or external events.
  - The detection signal from the INT4 or INT5 pin can be selected as an external event.
  - T3OL and T3OH output signals that toggle at the period of T3L and T3H, respectively.
  - T3 period (clock source: when external event is not selected)

T3L period =  $(T3LR + 1) \times (PR + 1) \times \text{count clock period}$ T3H period =  $(T3HR + 1) \times (PR + 1) \times \text{count clock period}$ 

• T3 period (clock source: when external event is selected)

T3L period =  $(T3LR + 1) \times$  external events T3H period =  $(T3HR + 1) \times (PR + 1) \times (system clock period or external events)$ T3OL period = T3L period  $\times 2$ T3OH period = T3H period  $\times 2$ 

- 3) Mode 2: 8-bit PWM with an 8-bit prescaler × 1 channel + 8-bit programmable timer (with toggle output) that counts PWM period
  - T3L functions as an 8-bit PWM that counts the system clocks or clocks from the OSC0 or OSC1, or external events.
  - T3H functions as an 8-bit timer that counts T3L clocks.
  - The detection signal from the INT4 or INT5 pin can be selected as an external event.
  - T3OL functions as a PWM that has a period of  $256 \times (PR + 1) \times \text{count clock period}$
  - T3OH outputs a signal that toggles at the period of T3H.

T3OL period = $256 \times (PR + 1) \times \text{count clock period}$ T3OL H period = (T3LR + 1) × (PR + 1) × count clock period T3H period = (T3HR + 1) × T3PWML period T3OH period =T3 period × 2

- 4) Mode 3: 8-bit PWM with an 8-bit prescaler  $\times$  2 channels
  - Timer 3 (T3) functions as two independent 8-bit PWMs that count the system clocks or clocks from the OSC0 or OSC1, or external events.
  - The detection signal from the INT4 or INT5 pin can be selected as an external event.
  - T3OL and T3OH function as PWMs that have a period of  $256 \times (PR + 1) \times count clock period.$

T3OL period =  $256 \times (PR + 1) \times \text{count clock period}$ T3OL H period =  $(T3LR + 1) \times (PR+1) \times \text{count clock period}$ T3OH period =  $256 \times (PR + 1) \times \text{count clock period}$ T3OH H period =  $(T3HR + 1) \times (PR + 1) \times \text{count clock period}$ 

5) Interrupt generation

Timer 3 generates timer T3L or T3H interrupt request at the counter period of T3L or T3H if the timer interrupt request enable bit is set.

- 6) It is necessary to manipulate the following special function registers (SFRs) to control timer 3 (T3).
  - T3LR, T3HR, T3L, T3H, T3CNT0, T3CNT1, T3PR
  - P1LAT, P1DDR, P1FSA, P1FSB

| Address | Initial value | R/W | Name   | BIT7     | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|--------|----------|------|------|------|------|------|------|------|
| 7F28    | 0000 0000     | R/W | T3LR   | BIT7     | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
| 7F29    | 0000 0000     | R/W | T3HR   | BIT7     | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
| 7F2A    | 0000 0000     | R   | T3L    | BIT7     | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
| 7F2B    | 0000 0000     | R   | Т3Н    | BIT7     | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
| 7F2C    | 0000 0000     | R/W | T3CNT0 | HRUN     | HFLG | HIE  | СК   | SL   | RUN  | FLG  | IE   |
| 7F2D    | LLLL L000     | R/W | T3CNT1 | EXISL MD |      |      |      | D    |      |      |      |
| 7F2E    | 0000 0000     | R/W | T3PR   | PR       |      |      |      |      |      |      |      |

# 3.15.3 Circuit Configuration

#### 3.15.3.1 Timer 3 control register 0 (T3CNT0) (8-bit register)

1) This register controls the operation and interrupts of T3L and T3H.

## 3.15.3.2 Timer 3 control register 1 (T3CNT1) (3-bit register)

1) This register controls the operation of T3L and T3H.

# 3.15.3.3 Timer 3 prescaler control register (T3PR) (8-bit register)

1) This register is used to set the clock for T3L and T3H.

#### 3.15.3.4 Timer 3 prescaler (8-bit counter)

1) Start/stop: Varies with the operating mode.

| Mode | MD<0> | HRUN | RUN | T3 Prescaler Operation |
|------|-------|------|-----|------------------------|
| 0    | 0     | 0    | 0   | Stopped                |
| 1    | 0     | 0    | 1   | Run                    |
| 2    | 0     | 1    | 0   | Stopped                |
| 3    | 0     | 1    | 1   | Run                    |
| 4    | 1     | 0    | 0   | Stopped                |
| 5    | 1     | 0    | 1   | Run                    |
| 6    | 1     | 1    | 0   | Run                    |
| 7    | 1     | 1    | 1   | Run                    |

2) Count clock: Varies with the operating mode.

| Mode | EXISL | MD | CKSL | T3 Prescaler Count Clock |
|------|-------|----|------|--------------------------|
| 0    | _     |    | 00   | System clock             |
| 1    | 0     | 1– | 01   | Event input from INT4    |
| 2    | 0     | 01 | 01   | System clock             |
| 3    | 1     | -0 | 01   | Event input from INT5    |
| 4    | _     |    | 10   | OSC0                     |
| 5    | _     |    | 11   | OSC1                     |

- Match signal: Match signal is generated when the count value matches the value of PR (T3PR register, bits 7 to 0).
- 4) Reset: When operation is stopped or a match signal is generated.

# 3.15.3.5 Timer 3 low byte (T3L) (8-bit counter)

1) Start/stop: Varies with the operating mode.

| Mode | MD<0> | HRUN | RUN | T3L Operation |
|------|-------|------|-----|---------------|
| 0    | 0     | 0    | 0   | Stopped       |
| 1    | 0     | 0    | 1   | Run           |
| 2    | 0     | 1    | 0   | Stopped       |
| 3    | 0     | 1    | 1   | Run           |
| 4    | 1     | 0    | 0   | Stopped       |
| 5    | 1     | 0    | 1   | Run           |
| 6    | 1     | 1    | 0   | Stopped       |
| 7    | 1     | 1    | 1   | Run           |

2) Count clock: Varies with the operating mode.

| Mode | MD | CKSL | T3L Count Clock           |
|------|----|------|---------------------------|
| 0    | _  | 00   | T3 prescaler match signal |
| 1    | -0 | 01   | T3 prescaler match signal |
| 2    | 01 | 01   | Event input from INT4     |
| 3    | _  | 10   | T3 prescaler match signal |
| 4    |    | 11   | T3 prescaler match signal |

- 3) Match signal: Match signal is generated when the count value matches the value of the match buffer register (16 bits of data needs to match in 16-bit mode).
- 4) Reset: When operation is stopped or a match signal is generated.

#### 3.15.3.6 Timer 3 high byte (T3H) (8-bit counter)

1) Start/stop: Varies with the operating mode.

| Mode | MD<0> | HRUN RUN |   | T3H Operation |
|------|-------|----------|---|---------------|
| 0    | 0     | 0        | 0 | Stopped       |
| 1    | 0     | 0        | 1 | Run           |
| 2    | 0     | 1        | 0 | Stopped       |
| 3    | 0     | 1        | 1 | Run           |
| 4    | 1     | 0        | 0 | Stopped       |
| 5    | 1     | 0        | 1 | Stopped       |
| 6    | 1     | 1        | 0 | Run           |
| 7    | 1     | 1        | 1 | Run           |

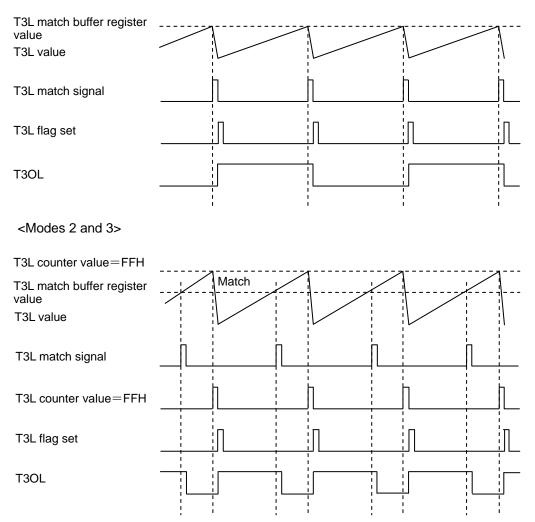
2) Count clock: Varies with the operating mode.

| Mode | MD | T3H Count Clock           |  |  |  |  |
|------|----|---------------------------|--|--|--|--|
| 0    | -0 | T3L overflow signal       |  |  |  |  |
| 1    | -1 | T3 prescaler match signal |  |  |  |  |

- Match signal: Match signal is generated when the count value matches the value of the match buffer register (16 bits of data needs to match in 16-bit mode).
- 4) Reset: When operation is stopped or a match signal is generated.

#### 3.15.3.7 Timer 3 match data register low byte (T3LR) (8-bit register with a match buffer register)

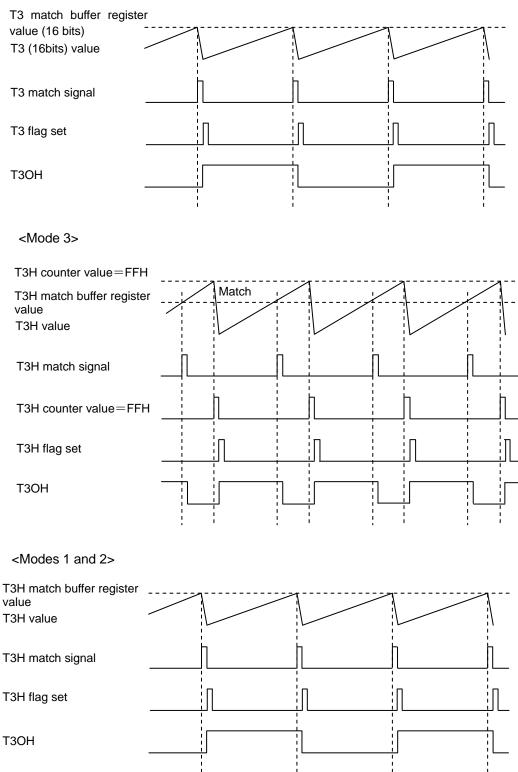
- 1) This register is used to store the match data for T3L. It has an 8-bit match buffer register. A match signal is generated when the value of this match buffer register matches the value of the timer 3 low byte (T3L).
- 2) The match buffer register is updated as follows:When it is not running, the value of the match buffer register matches the value of T3LR.When it is running,, it is loaded with the contents of T3LR when the value of T3L reaches 0.
- 3) If a clock other than the system clock is specified as the T3L count clock source, make sure that no more than one T3LR update occurs during the period from the generation of a T3L match signal till the generation of the next match signal while T3L is running.


## 3.15.3.8 Timer 3 match data register high byte (T3HR) (8-bit register with a match buffer register)

- 1) This register is used to store the match data for T3H. It has an 8-bit match buffer register. A match signal is generated when the value of this match buffer register matches the value of the timer 3 high byte (T3H).
- 2) The match buffer register is updated as follows:When it is not running, the value of the match buffer register matches the value of T3HR.When it is running, it is loaded with the contents of T3HR when the value of T3H reaches 0.
- 3) If a clock other than the system clock is specified as the T3H count clock source, make sure that no more than one T3HR update occurs during the period from the generation of a T3H match signal till the generation of the next match signal while T3H is running.

## 3.15.3.9 Timer 3 output low byte (T3OL)

- 1) The output of T3OL is fixed high when T3L is stopped.
- 2) The output of T3OL is fixed high in mode 0.
- 3) Outputs a signal that toggles on T3L match signals in mode 1.
- 4) Outputs a PWM signal that is set on a T3L overflow and reset on a T3L match signal in modes 2 and 3.


<Mode 1>



## 3.15.3.10 Timer 3 output high byte (T3OH)

- 1) The output of T3OH is fixed high when T3H is stopped.
- 2) Outputs a signal that toggles on T3 match signals in mode 0.
- 3) Outputs a signal that toggles on T3H match signals in modes 1 and 3.
- 4) Outputs a PWM signal that is set on a T3H overflow and reset on a T3H match signal in mode 2.

## <Mode 0>



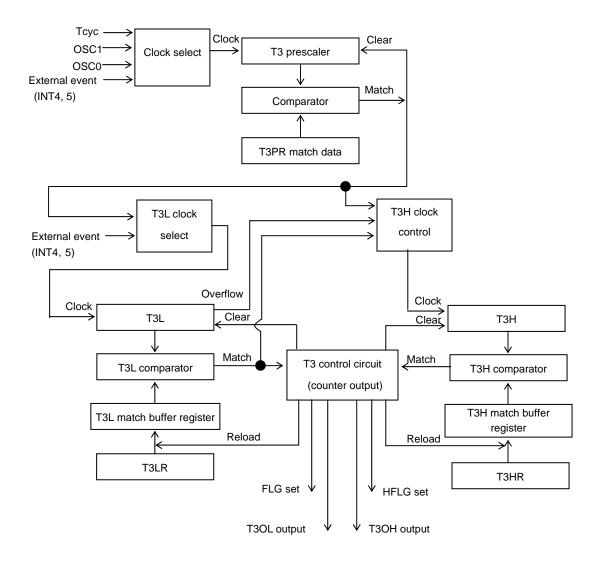



Figure 3.15.1 Timer 3 Block Diagram

## 3.15.4 Related Registers

## 3.15.4.1 Timer 3 match data register low byte (T3LR)

- 1) This register is used to store the match data for T3L. It has an 8-bit match buffer register. A match signal is generated when the value of this match buffer register matches the value of the timer 3 low byte.
- 2) The match buffer register is updated as follows: When it is not running, the value of the match buffer register matches the value of T3LR. When it is running, it is loaded with the contents of T3LR when the value of T3L reaches 0.

| Address | Initial value | R/W | Name | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|------|------|------|------|------|------|------|------|------|
| 7F28    | 0000 0000     | R/W | T3LR | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

## 3.15.4.2 Timer 3 match data register high byte (T3HR)

- 1) This register is used to store the match data for T3H. It has an 8-bit match buffer register. A match signal is generated when the value of this match buffer register matches the value of the timer 3 high byte.
- 2) The match buffer register is updated as follows:

When it is not running, the value of the match buffer register matches the value of T3HR.

When it is running, it is loaded with the contents of T3HR when the value of T3H reaches 0.

| Address | Initial value | R/W | Name | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|------|------|------|------|------|------|------|------|------|
| 7F29    | 0000 0000     | R/W | T3HR | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

## 3.15.4.3 Timer 3 low byte (T3L)

1) The timer 3 low byte is an 8-bit read-only timer. It counts up on the T3 prescaler match signal.

| Address | Initial value | R/W | Name | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|------|------|------|------|------|------|------|------|------|
| 7F2A    | 0000 0000     | R   | T3L  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

## 3.15.4.4 Timer 3 high byte (T3H)

1) The timer 3 high byte is an 8-bit read-only timer. It counts up on the T3L overflow or T3 prescaler match signal.

| Address | Initial value | R/W | Name | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|------|------|------|------|------|------|------|------|------|
| 7F2B    | 0000 0000     | R   | ТЗН  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

## 3.15.4.5 Timer 3 control register 0 (T3CNT0)

1) This register is an 8-bit register that controls the operation and interrupts of T3L and T3H.

| Address | Initial value | R/W | Name   | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|--------|------|------|------|------|------|------|------|------|
| 7F2C    | 0000 0000     | R/W | T3CNT0 | HRUN | HFLG | HIE  | СК   | SL   | RUN  | FLG  | IE   |

## HRUN (bit 7): T3H count control

This bit is used to control the T3H count operation in 8-bit timer mode.

When this bit is set to 0, timer 3 high byte (T3H) stops on a count value of 0. The match buffer register of T3H then has the same value as T3HR.

When this bit is set to 1, timer 3 high byte (T3H) performs the preset counting operation.

## HFLG (bit 6): T3H match flag

This bit is used as the T3H match flag in 8-bit timer mode.

This bit is set when T3H is running (HRUN = 1) and its value turns to 0.

This bit must be cleared with an instruction.

## HIE (bit 5): T3H interrupt request enable control

This bit is used to control T3H interrupts in 8-bit timer mode.

When this bit and HFLG are set to 1, an interrupt request to vector address 8020H is generated.

## CKSL (bits 4, 3): T3 count clock select

These 2 bits are used to select the count clock for timer 3.

| Mode | CKSL | T3 Prescaler Count clock |
|------|------|--------------------------|
| 0    | 00   | System clock             |
| 1    | 01   | Event input              |
| 2    | 10   | OSC0                     |
| 3    | 11   | OSC1                     |

#### RUN (bit 2): T3 count control

When this bit is set to 0, timer 3 (T3) stops on a count value of 0. The match buffer register of T3 then has the same value as T3R.

When this bit is set to 1, timer 3 (T3) performs the preset counting operation.

This bit is used to control T3L in 8-bit timer mode.

## FLG (bit 1): T3 match flag

This bit is set when T3 is running (RUN=1) and its value turns to 0.

This bit must be cleared with an instruction.

This bit is used as the T3L match flag in 8-bit timer mode.

#### IE (bit 0):T3 interrupt request enable control

When this bit and FLG are set to 1, an interrupt request to vector address 8020H is generated.

This bit is used to control T3L interrupts in 8-bit timer mode

Note: FLG and HFLG must be cleared to 0 with an instruction.

#### 3.15.4.6 Timer 3 control register 1 (T3CNT1)

1) This register is a 3-bit register that controls the operation of T3L and T3H.

| Address | Initial value | R/W | Name   | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2  | BIT1 | BIT0 |
|---------|---------------|-----|--------|------|------|------|------|------|-------|------|------|
| 7F2D    | LLLL L000     | R/W | T3CNT1 | -    | -    | -    | -    | -    | EXISL | М    | D    |

#### EXISL (bit 2): Timer 3 event count input select

A 0 in this bit selects INT4 as the source of event inputs.

A 1 in this bit selects INT5 as the source of event inputs.

#### MD (bits 1, 0): Timer 3 mode select

These two bits are used to select the operating mode of timer 3.

| Mode | MD | Timer 3 Operating Mode  |
|------|----|-------------------------|
| 0    | 00 | 16-bit timer            |
| 1    | 01 | 8-bit timer $\times 2$  |
| 2    | 10 | 8-bit PWM + 8-bit timer |
| 3    | 11 | 8-bit PWM × 2           |

#### 3.15.4.7 Timer 3 prescaler control register (T3PR)

1) Bits 0 to 7 are used to set the count value of the timer 3 prescaler.

| Address | Initial value | R/W | Name | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|------|------|------|------|------|------|------|------|------|
| 7F2E    | 0000 0000     | R/W | T3PR | PR   |      |      |      |      |      |      |      |

## PR (bits 7 to 0): Timer 3 prescaler control

These 8 bits set the period of the timer 3 prescaler.

T3PR period =  $(PR + 1) \times \text{count clock}$ 

# 3.15.5 Timer 3 Output Port Settings

1) T3OL (P14)

|          | Regist   | er Data  |          | Port P14 State                         |
|----------|----------|----------|----------|----------------------------------------|
| P1FSA<4> | P1FSB<4> | P1LAT<4> | P1DDR<4> | Output                                 |
| 1        | 0        | 1        | 0        | Timer 3L output (CMOS inverted)        |
| 1        | 0        | 0        | 1        | Timer 3L output (CMOS)                 |
| 1        | 1        | 1        | 0        | Timer 3L output (slow CMOS change)     |
| 1        | 1        | 0        | 1        | Timer 3L output (N-channel open drain) |

## 2) T3OH (P15)

|          | Regist   | er Data  |          | Port P15 State                         |
|----------|----------|----------|----------|----------------------------------------|
| P1FSA<5> | P1FSB<5> | P1LAT<5> | P1DDR<5> | Output                                 |
| 1        | 0        | 1        | 0        | Timer 3H output (CMOS inverted)        |
| 1        | 0        | 0        | 1        | Timer 3H output (CMOS)                 |
| 1        | 1        | 1        | 0        | Timer 3H output (slow CMOS change)     |
| 1        | 1        | 0        | 1        | Timer 3H output (N-channel open drain) |

## 3.16 Timer 4 and Timer 5 (T4, T5)

## 3.16.1 Overview

The timer 4 (T4) and timer 5 (T5) incorporated in this series of microcontrollers are 16-bit timers that are controlled independently.

## 3.16.2 Functions

1) Timer 4 (T4)

Timer 4 (T4) functions as a 16-bit programmable timer that counts the system clocks or match signals from prescaler 0. It can also output toggle waveforms to the pin T4O at the period of T4.

T4 period =  $([(T4HR << 8) + T4LR] + 1) \times \text{count clock period}$ T4O period = T4 period  $\times 2$ 

2) Timer 5 (T5)

Timer5 (T5) functions as a 16-bit programmable timer that counts the system clocks or match signals from prescaler 0. It can also output toggle waveforms to the pin T5O at the period of T5.

T5 period =  $([(T5HR << 8) + T5LR] + 1) \times \text{count clock period}$ T5O period = T5 period  $\times 2$ 

3) Interrupt generation

T4 and T5 interrupt requests are generated at the counter period of T4 and T5, respectively, if the corresponding interrupt enable control bits are set.

- 4) It is necessary to manipulate the following special function registers (SFRs) to control timer 4 (T4) and timer 5 (T5).
  - T4LR, T4HR, T5LR, T5HR, T45CNT, TMCLK0
  - P2LAT, P2DDR, P2FSA, P2FSB

| Address | Initial value | R/W | Name   | BIT7  | BIT6   | BIT5  | BIT4 | BIT3  | BIT2   | BIT1  | BIT0   |
|---------|---------------|-----|--------|-------|--------|-------|------|-------|--------|-------|--------|
| 7FA0    | 0000 0000     | R/W | T4LR   | BIT7  | BIT6   | BIT5  | BIT4 | BIT3  | BIT2   | BIT1  | BIT0   |
| 7FA1    | 0000 0000     | R/W | T4HR   | BIT7  | BIT6   | BIT5  | BIT4 | BIT3  | BIT2   | BIT1  | BIT0   |
| 7FA2    | 0000 0000     | R/W | T5LR   | BIT7  | BIT6   | BIT5  | BIT4 | BIT3  | BIT2   | BIT1  | BIT0   |
| 7FA3    | 0000 0000     | R/W | T5HR   | BIT7  | BIT6   | BIT5  | BIT4 | BIT3  | BIT2   | BIT1  | BIT0   |
| 7FA4    | 0000 0000     | R/W | T45CNT | T5RUN | T5CKSL | T5FLG | T5IE | T4RUN | T4CKSL | T4FLG | T4IE   |
| 7FB6    | 0000 00L0     | R/W | TMCLK0 | PR0   |        |       |      | PR    | )CK    | -     | PWM0CK |

## 3.16.3 Circuit Configuration

## 3.16.3.1 Timer 4/5 control register (T45CNT) (7-bit register)

1) This register controls the operation and interrupts of T4 and T5.

## 3.16.3.2 Timer 4 (T4) (16-bit counter)

- 1) Start/stop: Stop/start is controlled by the 0/1 value of T4RUN (T45CNT, bit 3).
- 2) Count clock: Selected by the 0/1 value of T4CKSL (T45CNT, bit 2).

| Mode | T4CKSL | Count Clock              |
|------|--------|--------------------------|
| 0    | 0      | System clock             |
| 1    | 1      | Prescaler 0 match signal |

- 3) Match signal: Match signal is generated when the count value matches the value of the match buffer register.
- 4) Reset: When operation is stopped or a match signal is generated.

## 3.16.3.3 Timer 5 (T5) (16-bit counter)

- 1) Start/stop: Stop/start is controlled by the 0/1value of T5RUN (T45CNT, bit 7).
- 2) Count clock: Selected by the 0/1 value of T5CKSL (T45CNT, bit 6).

| Mode | T5CKSL | Count Clock              |
|------|--------|--------------------------|
| 0    | 0      | System clock             |
| 1    | 1      | Prescaler 0 match signal |

- 3) Match signal: Match signal is generated when the count value matches the value of the match buffer register.
- 4) Reset: When operation is stopped or a match signal is generated.

## 3.16.3.4 Timer 4 match data register (T4HR, T4LR) (16-bit register with a match buffer register)

- 1) This register is used to store the match data for T4. It has a match buffer register. A match signal is generated when the value of this match buffer register matches the value of timer 4 (T4).
- 2) The match buffer register is updated as follows:

When it is not running (T4RUN = 0), the value of the match buffer register matches the value of (T4HR, T4LR).

When it is running (T4RUN = 1), the match buffer register is loaded with the contents of (T4HR, T4LR) when a match signal is generated.

3) If a clock other than the system clock is specified as the T4 count clock source, make sure that only one T4LR/T4HR update occurs during the period from the generation of a T4 match signal until the generation of the next match signal while T4 is running.

## 3.16.3.5 Timer 5 match data register (T5HR, T5LR) (16-bit register with a match buffer register)

- 1) This register is used to store the match data for T5. It has a match buffer register. A match signal is generated when the value of this match buffer register matches the value of timer 5 (T5).
- 2) The match buffer register is updated as follows:

When it is not running (T5RUN = 0), the value of the match buffer register matches the value of (T5HR and T5LR).

When it is running (T5RUN = 1), the match buffer register is loaded with the contents of (T5HR and T5LR) when a match signal is generated.

3) If a clock other than the system clock is specified as the T5 count clock source, make sure that only one T5LR/T5HR update occurs during the period from the generation of a T5 match signal until the generation of the next match signal while T5 is running.

#### 3.16.3.6 Timer clock setting register 0 (TMCLK0)

1) This register is used to set the clock and to store match data for prescaler 0.

#### 3.16.3.7 Prescaler 0 (4-bit counter)

- 1) Start/stop: Stop/start is controlled by the 0/1 value of T4CKSL or T5CKSL (T45CNT, bit 2 or 6).
- 2) Count clock: Selected by the 0/1 value of PR0CK (TMCLK0, bits 3 and 2).

| Mode | PROCK | Prescaler 0 Count Clock |
|------|-------|-------------------------|
| 0    | 00    | System clock            |
| 1    | 01    | Inhibited               |
| 2    | 10    | OSC0                    |
| 3    | 11    | OSC1                    |

- 3) Match signal: Match signal is generated when the count value matches the value of the match buffer register.
- 4) Reset: When operation is stopped or a match signal is generated.

## 3.16.3.8 Timer 4 output (T4O)

1) The output of T4O is fixed high when timer 4 is stopped. When timer 4 is running, the output of T4O toggles on each timer 4 match signal.

## 3.16.3.9 Timer 5 output (T5O)

1) The output of T5O is fixed high when timer 5 is stopped. When timer 5 is running, the output of T5O toggles on each timer 5 match signal.

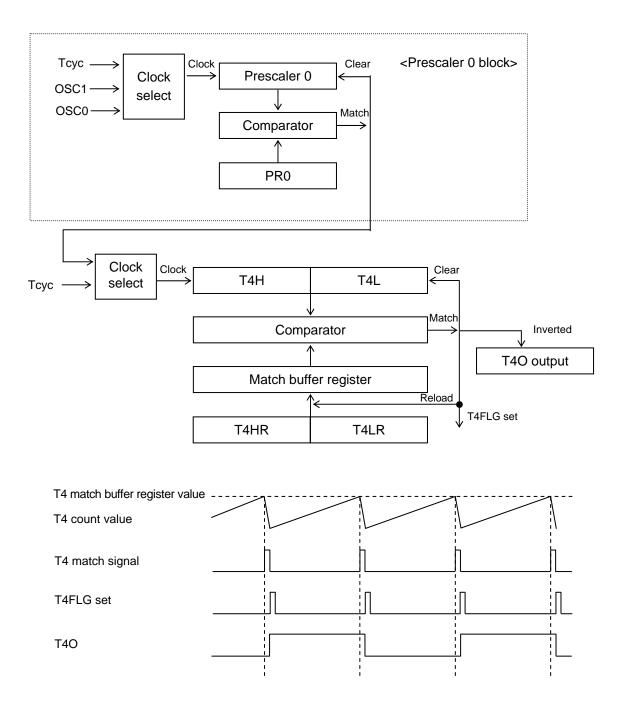



Figure 3.16.1 Timer 4 Block Diagram

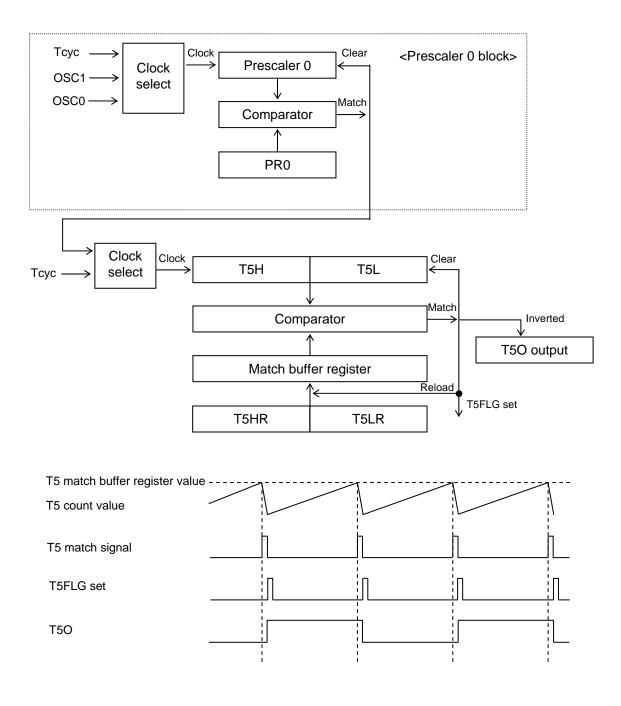



Figure 3.16.2 Timer 5 Block Diagram

## 3.16.4 Related Registers

#### 3.16.4.1 Timer 4 match data register (T4HR, T4LR) (16-bit register)

- 1) This register is used to store the match data for T4. A match signal is generated when the value of this match data register matches the value of timer 4 (T4).
- 2) This register can be read or written in 8- or 16-bit units.

| Address | Initial value | R/W | Name | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|------|------|------|------|------|------|------|------|------|
| 7FA0    | 0000 0000     | R/W | T4LR | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
| 7FA1    | 0000 0000     | R/W | T4HR | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

#### 3.16.4.2 Timer 5 match data register (T5HR, T5LR) (16-bit register)

1) This register is used to store the match data for T5. A match signal is generated when the value of this match data register matches the value of timer 5 (T5).

| =)      | Timb regi     | oter eur | r oe read | or writeen | m o or i | o on unit | .0.  |      |      |      |      |
|---------|---------------|----------|-----------|------------|----------|-----------|------|------|------|------|------|
| Address | Initial value | R/W      | Name      | BIT7       | BIT6     | BIT5      | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
| 7FA2    | 0000 0000     | R/W      | T5LR      | BIT7       | BIT6     | BIT5      | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
| 7FA3    | 0000 0000     | R/W      | T5HR      | BIT7       | BIT6     | BIT5      | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

2) This register can be read or written in 8- or 16-bit units.

#### 3.16.4.3 Timer 4/5 control register (T45CNT)

1) This register is an 8-bit register that controls the operation and interrupts of T4 and T5

| Address | Initial value | R/W | Name   | BIT7  | BIT6   | BIT5  | BIT4 | BIT3  | BIT2   | BIT1  | BIT0 |
|---------|---------------|-----|--------|-------|--------|-------|------|-------|--------|-------|------|
| 7FA4    | 0000 0000     | R/W | T45CNT | T5RUN | T5CKSL | T5FLG | T5IE | T4RUN | T4CKSL | T4FLG | T4IE |

#### T5RUN (bit 7): T5 count control

When this bit is set to 0, timer 5 (T5) stops on a count value of 0.

When this bit is set to 1, timer 5 (T5) performs the preset counting operation.

#### T5CKSL (bit 6): T5 count clock select

| Mode | T5CKSL | T5 Count Clock           |
|------|--------|--------------------------|
| 0    | 0      | System clock             |
| 1    | 1      | Prescaler 0 match signal |

Note: This bit must be set when T5RUN is set to 0.

#### T5FLG (bit 5): T5 match flag

This bit is set when T5 is running (T5RUN = 1) and its value turns to 0. This bit must be cleared with an instruction.

#### T5IE (bit 4): T5 interrupt request enable control

When this bit and T5FLG are set to 1, an interrupt request to vector address 8030H is generated.

#### T4RUN (bit 3): T4 count control

When this bit is set to 0, timer 4 (T4) stops on a count value of 0.

When this bit is set to 1, timer 4 (T4) performs the preset counting operation.

## T4CKSL (bit 2): T4 count clock select

| Mode | T4CKSL | T4 Count Clock           |
|------|--------|--------------------------|
| 0    | 0      | System clock             |
| 1    | 1      | Prescaler 0 match signal |

Note: This bit must be set when T4RUN is set to 0.

## T4FLG (bit 1): T4 match flag

This bit is set when T4 is running (T4RUN = 1) and its value turns to 0. This bit must be cleared with an instruction.

## T4IE (bit 0): T4 interrupt request enable control

When this bit and T4FLG are set to 1, an interrupt request to vector address 8024H is generated.

Note: T5FLG and T4FLG must be cleared to 0 with an instruction.

## 3.16.4.4 Timer clock setting register 0

1) This register is used to set the timer clocks.

| Address | Initial value | R/W | Name   | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0   |
|---------|---------------|-----|--------|------|------|------|------|------|------|------|--------|
| 7FB6    | 0000 00L0     | R/W | TMCLK0 |      | PR0  |      |      | PRO  | )CK  | -    | PWM0CK |

## PR0 (bits 7 to 4): Prescaler 0 control

These four bits set the period of prescaler 0. PR0 period =  $(PR0 + 1) \times \text{count clock}$ 

## PR0CK (bits 3, 2): Prescaler 0 clock select

| Mode | PR0CK | Prescaler 0 Count Clock |
|------|-------|-------------------------|
| 0    | 00    | System Clock            |
| 1    | 01    | Inhibited               |
| 2    | 10    | OSC0                    |
| 3    | 11    | OSC1                    |

## (Bit 1): This bit does not exist.

This bit is always read as 0.

PWM0CK (bit 0): This bit is not used by this module.

# 3.16.5 Timer 4 and Timer 5 Output Port Settings

1) T4O (P25)

|          | Regist   | er Data  |          | Port P25 State                        |
|----------|----------|----------|----------|---------------------------------------|
| P2FSA<5> | P2FSB<5> | P2LAT<5> | P2DDR<5> | Output                                |
| 1        | 0        | 1        | 0        | Timer 4 output (CMOS inverted)        |
| 1        | 0        | 0        | 1        | Timer 4 output (CMOS)                 |
| 1        | 1        | 1        | 0        | Timer 4 output (slow CMOS change )    |
| 1        | 1        | 0        | 1        | Timer 4 output (N-channel open drain) |

## 2) T5O (P26)

|          | Regist   | er Data  |          | Port P26 State                        |
|----------|----------|----------|----------|---------------------------------------|
| P2FSA<6> | P2FSB<6> | P2LAT<6> | P2DDR<6> | Output                                |
| 1        | 0        | 1        | 0        | Timer 5 output (CMOS inverted)        |
| 1        | 0        | 0        | 1        | Timer 5 output (CMOS)                 |
| 1        | 1        | 1        | 0        | Timer 5 output (slow CMOS change)     |
| 1        | 1        | 0        | 1        | Timer 5 output (N-channel open drain) |

# 3.17 Base Timer

## 3.17.1 Overview

The base timer incorporated in this series of microcontrollers is a 16-bit binary up-counter that can measure several types of intervals. It also supplies clocks to the watchdog timer.

## 3.17.2 Functions

- Timing of several intervals
   8 types of intervals can be measured.
- 2) Interrupt generation

An interrupt request can be generated at set time intervals if the corresponding interrupt request enable bit is set.

- HOLDX mode release
   HOLDX mode can be released by the base timer interrupt.
- 4) Clock supply to the watchdog timer A clock with a period of 32TBST or 8192TBST can be supplied to the watchdog timer.
   \*TBST: The period of the input clock selected by OCR1.
- 5) It is necessary to manipulate the following special function registers (SFRs) to control the base timer.
  - BTCR, OCR0, OCR1

| Address | Initial value | R/W | Name | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|------|------|------|------|------|------|------|------|------|
| 7F0E    | 0000 0000     | R/W | BTCR | FST  | RUN  | CN   |      | FLG1 | IE1  | FLG0 | IE0  |

## 3.17.3 Circuit Configuration

## 3.17.3.1 8-bit binary up-counter 0 (8-bit counter)

1) This counter is an 8-bit up-counter that receives, as its input, the signal selected by the oscillation control register 1 (OCR1). It generates the signal that sets the base timer interrupt 1 flag. The overflow of this counter serves as a clock to the 8-bit binary counter 1.

## 3.17.3.2 8-bit binary up-counter 1 (8-bit counter)

1) This counter is an 8-bit up-counter that receives, as its input, the signal that is selected by the oscillation control register 1 (OCR1) or the overflow from the 8-bit binary counter 0. It generates the signal that sets the base timer interrupt 0 and 1 flags. The selection of the input signal is accomplished by the base timer control register.

## 3.17.3.3 Base timer input clock source

1) The source of the base timer input clock (fBST) is selected from OSC0 and the frequency-divided clock of the system clock through the oscillation control register 1 (OCR1).

## 3.17.3.4 Base timer control register (8-bit register)

1) This register controls the operation of the base timer.

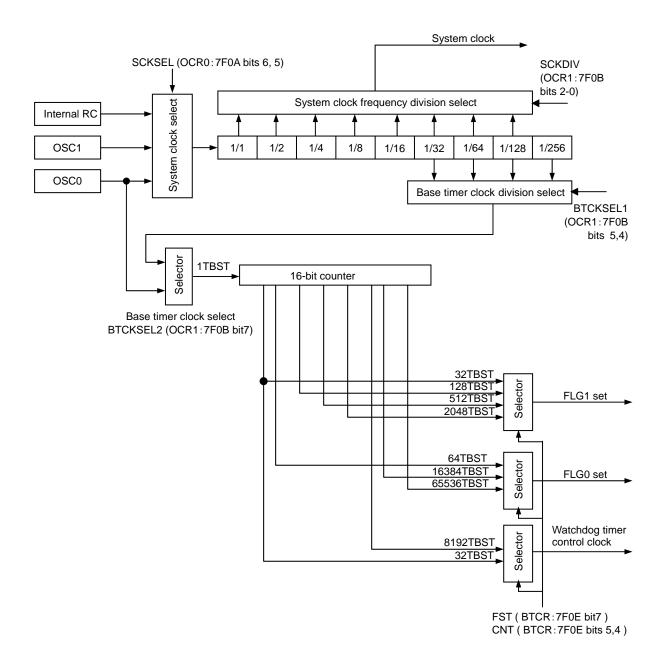



Figure 3.17.1 Base Timer Block Diagram

## 3.17.4 Related Registers

### 3.17.4.1 Base timer control register

1) This register controls the operation of the base timer.

| Address | Initial value | R/W | Name | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|------|------|------|------|------|------|------|------|------|
| 7F0E    | 0000 0000     | R/W | BTCR | FST  | RUN  | CN   | T    | FLG1 | IE1  | FLG0 | IE0  |

#### RUN (bit 6): Base timer operation control

When this bit is set to 0, the base timer stops when the count value reaches 0.

When this bit is set to 1, the base timer continues operation.

#### FST (bit 7): Base timer interrupt period select

#### CNT (bits 5 and 4): Base timer interrupt period select

The above three bits are used to select the period of base timer interrupts.

| FST | CNT | Base Timer Interrupt 0<br>Period | Base Timer Interrupt 1<br>Period | Watchdog Timer<br>Control Clock |
|-----|-----|----------------------------------|----------------------------------|---------------------------------|
| 0   | 00  | 16384TBST                        | 32TBST                           | 8192TBST                        |
| 0   | 01  | 16384TBST                        | 128TBST                          | 8192TBST                        |
| 0   | 10  | 16384TBST                        | 512TBST                          | 8192TBST                        |
| 0   | 11  | 16384TBST                        | 2048TBST                         | 8192TBST                        |
| 1   | 00  | 64TBST                           | 32TBST                           | 32TBST                          |
| 1   | 01  | 64TBST                           | 128TBST                          | 32TBST                          |
| 1   | 10  | 65536TBST                        | 512TBST                          | 8192TBST                        |
| 1   | 11  | 65536TBST                        | 2048TBST                         | 8192TBST                        |

\* TBST: The period of the input clock selected by oscillation control register 1 (OCR1).

## FLG1 (bit 3): Base timer interrupt 1 flag

This flag is set at the interval equal to the base timer interrupt 1 period.

This flag must be cleared with an instruction.

#### IE1 (bit 2): Base timer interrupt 1 request enable control

When this bit and FLG1 are set to 1, a HOLDX mode release signal and an interrupt request to vector address 8004H are generated.

#### FLG0 (bit 1): Base timer interrupt 0 flag

This flag is set at the interval equal to the base timer interrupt 0 period.

This flag must be cleared with an instruction.

#### IE0 (bit 0): Base timer interrupt 0 request enable control

When this bit and FLG0 are set to 1, a HOLDX mode release signal and an interrupt request to vector address 8004H are generated.

# 3.18 Asynchronous Serial Interface 0 (UART0)

## 3.18.1 Overview

This series of microcontrollers incorporates an asynchronous serial interface 0 (UART0) that has the following characteristics and features:

| 1) | Data length:           | 8 bits (LSB first, fixed)                        |
|----|------------------------|--------------------------------------------------|
| 2) | Stop bits:             | 1 bit                                            |
| 3) | Parity bits:           | None/even parity/odd parity                      |
| 4) | Transfer rate:         | 4 cycles/8 cycles (Note 1)                       |
| 5) | Baudrate clock source: | Pin P07                                          |
|    |                        | (External input or timer 0 toggle output T0PWMH) |

6) Full duplex communication

The independent transmitter and receiver blocks allow both transmit and receive operations to be performed at the same time. Both transmitter and receiver blocks adopt a double buffer configuration, so that data can be transmitted and received continuously.

Note 1:

The baudrate clock source for UARTO is supplied from pin P07. One period of the selected baudrate clock source is referred to as the "cycle" in this document.

## 3.18.2 Functions

#### 3.18.2.1 Continuous data transmission/reception

UART0 performs continuous data reception and transmission using a single communication format at a single transfer rate.

The receive data is stored in the receive data register L (UORXL).

The transmit data is read out of the transmit data register L (U0TXL).

## 3.18.2.2 Interrupt generation

Interrupt requests are generated by the following two interrupt sources:

TXEMPTY, RXREADY

See Subsection "3.18.4 Related Registers" for details.

#### 3.18.2.3 HALT mode operation

The transmitter and receiver circuits of the UART0 remain active in HALT mode. HALT mode can be released by a UART0 interrupt.

#### 3.18.2.4 Special function register (SFR) manipulation

It is necessary to manipulate the following special function registers (SFRs) to control UARTO.

U0CR, U0RXL, U0RXH, U0TXL, U0TXH, P0LAT, P0DDR, P1LAT, P1DDR, P1FSA, P1FSB, T0LR, T0HR, T0CNT, T0PR, EXCPH, OCR0

## 3.18.3 Circuit Configuration

3.18.3.1 UART0 control register (U0CR) (8-bit register)

This register controls the operation of and interrupts of UART0.

- **3.18.3.2 UARTO receive data register L (UORXL) (8-bit register)** Data is received through this register.
- **3.18.3.3 UARTO receive data register H (UORXH) (2-bit register)** This register holds the receive parity and receive stop bit values.
- **3.18.3.4 UARTO receive shift register (UORSH) (10-bit register)** This register is a shift register used for receiving data. This register cannot be accessed directly with an instruction.
- **3.18.3.5 UARTO transmit data register L (U0TXL) (8-bit register)** Data is transmitted through this register.
- **3.18.3.6 UARTO transmit data register H (UOTXH) (2-bit register)** This register is used to select the transmit parity setting.
- **3.18.3.7 UARTO transmit shift register (UOTSH) (10-bit register)** This register is a shift register used for transmitting data. This register cannot be accessed directly with an instruction.

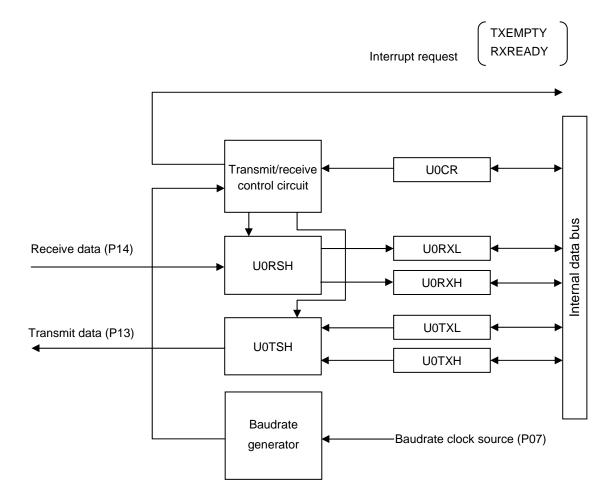



Figure 3.18.1 UART0 Block Diagram

## 3.18.4 Related Registers

### 3.18.4.1 UART0 control register (U0CR)

1) This register is an 8-bit register that controls the operation and interrupts of the UART0 module.

| Address | Initial value | R/W | Name | BIT7 | BIT6  | BIT5     | BIT4   | BIT3    | BIT2 | BIT1    | BIT0 |
|---------|---------------|-----|------|------|-------|----------|--------|---------|------|---------|------|
| 7F38    | 0000 1000     | R/W | U0CR | RUN  | OVRUN | BAUDRATE | PARITY | TXEMPTY | TXIE | RXREADY | RXIE |

#### RUN (bit 7): UART0 operation control

0: Stops the UART0 module circuit.

1: Starts the UART0 module circuit.

#### OVRUN (bit 6): Overrun error flag

This bit is set when the UART0 module fails to detect a stop bit, or new data is received in the receive buffer full state.

#### **BAUDRATE (bit 5): Baudrate select**

0: The transfer rate is 8 cycles.

(The transfer rate is 57.6 kbps when the baudrate clock source is set to 460.8 kHz.)

1: The transfer rate is 4 cycles.

(The transfer rate is 115.2 kbps when the baudrate clock source is set to 460.8 kHz.)

#### PARITY (bit 4): Parity bit control

- 0: No parity bit
- 1: Parity bit present

#### **TXEMPTY** (bit 3): Transmit data empty flag

0: Data is present in the transmit data register (U0TXL).

1: No data is present in the transmit data register (U0TXL).

- 1) TXEMPTY is set to 1 when reset but its value can be rewritten with an instruction.
- 2) When RUN = 1 and TXEMPTY = 1,

a) TXEMPTY is cleared if U0TXL is loaded with data.

If no data transfer is in progress, a data transfer is started and when a start bit is output, TXEMPTY is set to 1 again, making the UART0 ready for next transmit data write.

b) TXEMPTY is cleared when the next data is placed in the U0TXL.

If data is being transferred, transfer of data from this U0TXL starts and TXEMPTY is set to 1 again after the current data transfer ends.

#### TXIE (bit 2): Transmit interrupt enable

When this bit and TXEMPTY are set to 1, UART0\_FLG (bit 5) of the EXCPH register is set to 1.

## RXREADY (bit 1): Receive data reception end flag

1: Data is present in the receive data register (U0RXL).

- 0: No data is present in the receive data register (U0RXL).
- When data reception processing ends:
   a) When RXREADY is set to 0, the receive data is placed in U0RXL and RXREADY is set to 1.
   b) When RXREADY is set to 1, OVRUN is set.
- When UART0 is operating (RUN = 1) and RXREADY is set to 1, RXREADY is cleared if U0RXL is read with an instruction.

## **RXIE (bit 0): Receive interrupt enable**

When this bit and RXREADY are set to 1, UART0\_FLG (bit 5) of the EXCPH register is set to 1.

## 3.18.4.2 UART0 receive data register L (U0RXL)

1) This register is an 8-bit register that holds the receive data.

| Address | Initial value | R/W | Name  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|-------|------|------|------|------|------|------|------|------|
| 7F3A    | 0000 0000     | R/W | U0RXL | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

This register is loaded with 8 bits of receive data.

RXREADY (bit 1) of UOCR is cleared when this register is read when UARTO is operating.

## 3.18.4.3 UART0 receive data register H (U0RXH)

| Address | Initial value | R/W | Name  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|-------|------|------|------|------|------|------|------|------|
| 7F3B    | LLLL LL00     | R/W | U0RXH | -    | -    | -    | -    | -    | -    | BIT1 | BIT0 |

## (Bits 7 to 2): Always read as 0.

These bits are read-only.

## (Bit 1): Holds the receive stop bit value.

## (Bit 0): Holds the parity state of 9-bit data including the receive parity bit

That is:

0: Even parity reception

1: Odd parity reception

Parity error processing needs to be performed if an incorrect result is encountered.

\* If PARITY (bit 4) of U0CR is set to 0, this bit is set to the parity state of 8-bit receive data.

## 3.18.4.4 UART0 transmit data register L (U0TXL)

1) This register is an 8-bit register that holds the transmit data.

| Address | Initial value | R/W | Name  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|-------|------|------|------|------|------|------|------|------|
| 7F3C    | 0000 0000     | R/W | U0TXL | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

This is a buffer register for holding 8-bit transmit data.

If this register is loaded with data when UART0 is operating, TXEMPTY (bit 3) of U0CR is cleared.

### 3.18.4.5 UART0 transmit data register H (U0TXH)

| Address | Initial value | R/W | Name  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|-------|------|------|------|------|------|------|------|------|
| 7F3D    | LLLL LLH0     | R/W | U0TXH | -    | -    | -    | -    | -    | -    | BIT1 | BIT0 |

#### (Bits 7 to 2): Always read as 0.

These bits are read-only.

#### (Bit 1): Holds the transmit stop bit value (fixed at 1).

This bit is read-only.

#### (Bit 0): Selects the transmit parity mode.

- 0: Even parity transmission
- 1: Odd parity transmission
- \* The value of this bit is "don't care" if PARITY (bit 4) of U0CR is set to 0.

## 3.18.5 UART0 Communication Format Examples

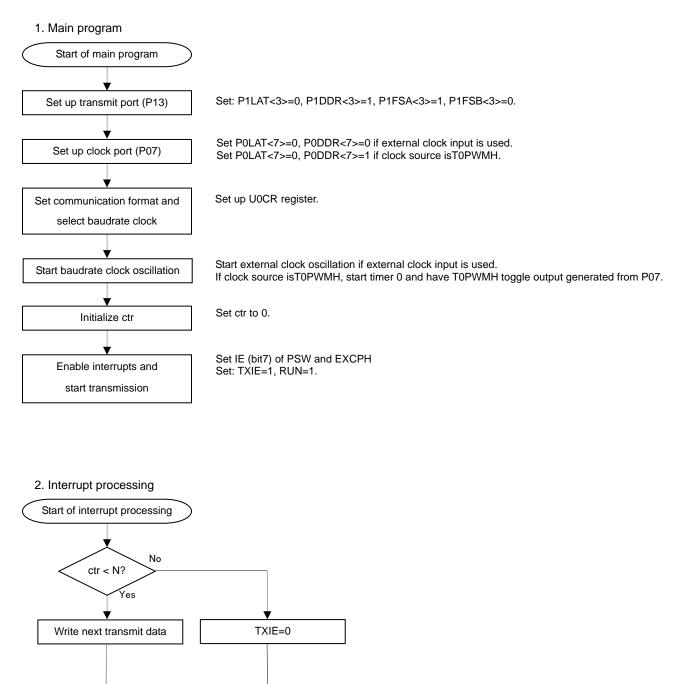
1) When U0CR, PARITY (bit 4) = 0



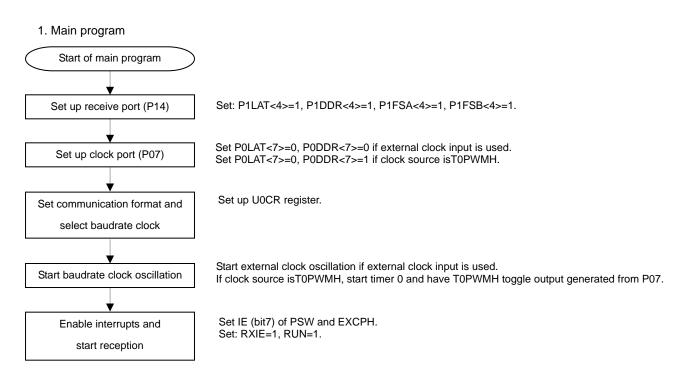
2) When U0CR, PARITY (bit 4) = 1



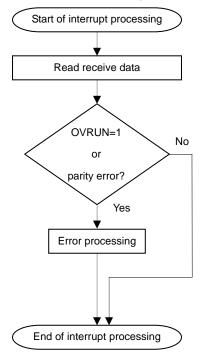
\* P in the above figures denotes: Even parity when U0TXH<0> = 0 Odd parity when U0TXH<0> = 1


## 3.18.6 UART0 Communication Examples

## 3.18.6.1 Continuous transmission example


Increment ctr

End of interrupt processing


N is the number of transmit data bytes and ctr is the count variable in the transmit data.



## 3.18.6.2 Continuous reception example



2. Interrupt processing



## 3.18.6.3 UART0 communication port settings

- **Register Data** Port P13 State P1FSA<3> P1FSB<3> P1LAT<3> P1DDR<3> 0 UART0 transmit output (CMOS) 1 0 1 1 1 0 1 UART0 transmit output (slow CMOS change) 1 1 0 1 UART0 transmit output (N-channel open drain)
- 1) Transmit port (P13) settings

### 2) Receive port (P14) settings

|          | Regist   | er Data  |          | Port P14 State              |  |  |  |
|----------|----------|----------|----------|-----------------------------|--|--|--|
| P1FSA<4> | P1FSB<4> | P1LAT<4> | P1DDR<4> | Port P14 State              |  |  |  |
| 1        | 1        | 1        | 1        | Input (UART0 receive input) |  |  |  |

## 3) Clock port (P07) settings

| Regist | er Data             |   |                                                  |
|--------|---------------------|---|--------------------------------------------------|
| -      | - P0LAT<7> P0DDR<7> |   | Port P07 State                                   |
| -      | 0                   | 0 | Input (UART0 clock source set to external input) |
| -      | - 0 1               |   | CMOS output (UART0 clock set to T0PWMH output)   |

# 3.19 Asynchronous Serial Interface 2 (UART2)

## 3.19.1 Overview

This series of microcontrollers incorporates an asynchronous serial interface 2 (UART2) that has the following characteristics and features:

- 1) Data length: 8 bits (LSB first, fixed)
- 2) Stop bits: 1 or 2 bits
- 3) Parity bits: None/even parity/odd parity
- 4) Transfer rate: 8 to 4096 cycles (Note 1)
- 5) Baudrate clock source: System clock/OSC0/OSC1
- 6) Operating mode: Mode 0/mode 1
- Wakeup function
   Capable of generating an interrupt request on detection of a low level at the receive pin.
- 8) Full duplex communication

The independent transmitter and receiver blocks allow both transmit and receive operations to be performed at the same time. Both transmitter and receiver blocks adopt a double buffer configuration, so that data can be transmitted and received continuously.

Note 1:

The UART2 baudrate clock source can be selected from the system clock, OSC0, and OSC1. One period of the selected baudrate clock source is referred to as the "cycle" in this document.

## 3.19.2 Functions

## 3.19.2.1 Operating modes

UART2 has the following two operating modes that can be selected by configuring the register.

1) Mode 0

UART2 is placed in this mode by loading U2BG with a value other than 00H.

DIV of the UART2 control register 1 (U2CNT1) and the UART2 baudrate control register (U2BG) are used to control the frequency of the baudrate clock.

The legitimate transfer rate range is from 8 to 4096 cycles.

Parity is controlled by the PODD bit and PEN bit of the UART2 control register 1 (U2CNT1).

2) Mode 1

UART2 is placed in this mode by loading U2BG with 00H.

In this mode, a X'tal resonator (32.768 kHz) is used and communication is carried out at a transfer rate of 9600 bps.

The setting of DIV is ignored.

No parity is assumed regardless of the settings of PODD and PEN.

## 3.19.2.2 Continuous data transmission/reception

UART2 performs continuous data transmission and reception using a single communication format at a single transfer rate.

The transmit data is read out of the transmit data register (U2TBUF).

The receive data is stored in the receive data register (U2RBUF).

#### 3.19.2.3 Interrupt generation

Interrupt requests are generated by the following four interrupt sources:

TEMPTY, TEND, RREADY, WUPFLG

See Subsection "3.19.4 Related Registers" for details.

#### 3.19.2.4 HALT mode operation

The transmitter and receiver circuits of UART2 are active in HALT mode. HALT mode can be released by a UART2 interrupt.

### 3.19.2.5 Wakeup function

The interrupt request (WUPFLG) is generated by detecting a low level at the receive pin. This function can be used to release HOLD mode.

#### 3.19.2.6 Special function register (SFR) manipulation

It is necessary to manipulate the following special function registers (SFRs) to control UART2. U2CNT0, U2CNT1, U2TBUF, U2RBUF, U2BG P1LAT, P1DDR, P1FSA, P1FSB IL1H, OCR0

## 3.19.3 Circuit Configuration

#### 3.19.3.1 UART2 control register 0 (U2CNT0) (8-bit register)

This register is used to control the operation and interrupts of UART2.

#### 3.19.3.2 UART2 control register 1 (U2CNT1) (8-bit register)

This register is used to control the communication format and wakeup function.

#### 3.19.3.3 UART2 transmit data register (U2TBUF) (8-bit register)

Data is transmitted through this register.

#### 3.19.3.4 UART2 transmit shift register (U2TSH) (9-bit register)

This register is a shift register used for transmitting data. This register cannot be accessed directly with an instruction.

#### 3.19.3.5 UART2 receive data register (U2RBUF) (8-bit register)

Data is received through this register.

**3.19.3.6 UART2 receive shift register (U2RSH) (8-bit register)** This register is a shift register used for receiving data.

This register cannot be accessed directly with an instruction.

## 3.19.3.7 UART2 baudrate control register (U2BG) (8-bit register)

This register is used to control the UART2 operating mode and the baudrate clock frequency in mode 0.

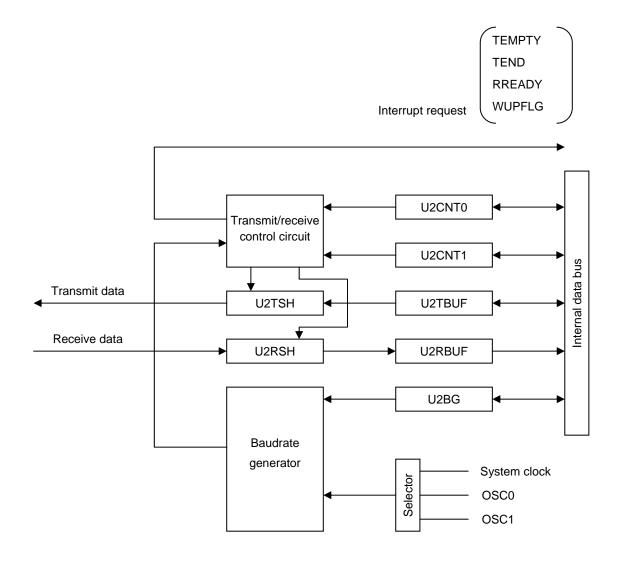



Figure 3.19.1 UART2 Block Diagram

## 3.19.4 Related Registers

## 3.19.4.1 UART2 control register 0 (U2CNT0)

1) This register is an 8-bit register that controls the operation and interrupts of the UART2 module.

| Address | Initial value | R/W | Name   | BIT7 | BIT6   | BIT5   | BIT4     | BIT3 | BIT2 | BIT1   | BIT0 |
|---------|---------------|-----|--------|------|--------|--------|----------|------|------|--------|------|
| 7F6C    | 0010 0000     | R/W | U2CNT0 | TEND | TENDIE | TEMPTY | TEMPTYIE | RUN  | RERR | RREADY | RIE  |

#### TEND (bit 7): Transmit end flag

This bit is set if no next transmit data is written in the transmit data register (U2TBUF) at the end of transmission of the stop bit.

This bit is cleared when data is transferred from the transmit data register (U2TBUF) to the transmit shift register (U2TSH).

#### **TENDIE** (bit 6): **TEND** interrupt enable

When this bit and TEND are set to 1, an interrupt request to vector address 008018H is generated.

#### TEMPTY (bit 5): Transmit data empty flag

This bit is set when data is transferred from the transmit data register (U2TBUF) to the transmit shift register (U2TSH).

This bit is cleared when data is written in the transmit data register (U2TBUF).

This bit is read-only.

#### **TEMPTYIE (bit 4): TEMPTY interrupt enable**

When this bit and TEMPTY are set to 1, an interrupt request to vector address 008018H is generated.

#### RUN (bit 3): UART 2 operation control

0: Stops the operation of the UART2 module circuit.

1: Starts the operation of the UART2 module circuit.

#### RERR (bit 2): Receive error detection flag

This bit is set when the stop bit is received if a parity error, overrun error, or stop bit error is detected.

#### RREADY (bit 1): Receive data receive end flag (R/O)

This bit is set at the end of receive operation when the stop bit is received.

This bit is cleared when data is read out of the receive data register (U2RBUF).

This bit is read-only.

#### RIE (bit 0): Receive interrupt enable

When this bit and RREADY are set to 1, an interrupt request to vector address 008018H is generated.

## 3.19.4.2 UART2 control register 1 (U2CNT1)

1) This register is an 8-bit register that controls the communication format and wakeup function.

| Address | Initial value | R/W | Name   | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1   | BIT0  |
|---------|---------------|-----|--------|------|------|------|------|------|------|--------|-------|
| 7F6D    | 0000 0000     | R/W | U2CNT1 | TSTB | DIV  | SC   | СК   | PODD | PEN  | WUPFLG | WUPIE |

## TSTB (bit 7): Transmit stop bit length select

This bit selects the stop bit length when transmitting.

0: 1 stop bit

1:2 stop bits

In receive mode, the UART2 module checks only the first stop bit regardless of the value of this bit. If the second bit is found to be 0, it is regarded as the start bit of the next transmit character.

#### DIV (bit 6): Baudrate clock frequency division select

This bit selects the frequency division of the baudrate clock in mode 0.

0: The baudrate setting range is from 8 to 1024 cycles.

1: The baudrate setting range is from 32 to 4096 cycles.

The value of this bit is ignored in mode 1.

#### SCK (bits 5 and 4): Baudrate clock source select

These bits select the baudrate clock source.

| SCK | Baudrate Clock Source |
|-----|-----------------------|
| 00  | System Clock          |
| 10  | OSC0                  |
| 11  | OSC1                  |

\* The use of any setting other than the ones listed above is not allowed.

#### PODD (bit 3): Even/odd parity select

This bit selects the parity type of transmit and receive data in mode 0.

- 0: Even parity
- 1: Odd parity
- The value of this bit is ignored in mode 1.

#### PEN (bit 2): Parity enable

This bit controls the presence or absence of the parity bit in the transmit and receive data in mode 0.

- 0: No parity
- 1: Parity present

No parity is assumed in mode 1 regardless of the value of this bit.

#### WUPFLG (bit 1): Wakeup detection flag

This bit is set when WUPIE is set to 1 and the receive pin is set to low.

#### WUPIE (bit 0): Wakeup interrupt enable

When this bit and WUPFLG are set to 1, an interrupt request to vector address 008018H is generated.

#### 3.19.4.3 UART2 transmit data register (U2TBUF)

1) This register is an 8-bit register for writing the transmit data.

| Address | Initial value | R/W | Name   | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|--------|------|------|------|------|------|------|------|------|
| 7F6E    | 0000 0000     | R/W | U2TBUF | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

The data from U2TBUF is transferred to the transmit shift register (U2TSH) at the beginning of a transmission operation.

Set the next transmit data after checking the transmit data empty flag (TEMPTY).

### 3.19.4.4 UART2 receive data register (U2RBUF)

1) This register is an 8-bit register for storing the receive data.

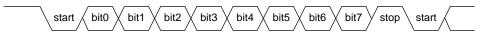
| Address | Initial value | R/W | Name   | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|--------|------|------|------|------|------|------|------|------|
| 7F6F    | 0000 0000     | R   | U2RBUF | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

The receive data is transferred from the receive shift register (U2RSH) to U2RBUF at the end of a receive operation.

## 3.19.4.5 UART2 baudrate control register (U2BG)

1) This register is an 8-bit register that controls the operating mode of UART2 and the frequency of the baudrate clock in mode 0.

| Address | Initial value | R/W | Name | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|------|------|------|------|------|------|------|------|------|
| 7F74    | 0000 0000     | R/W | U2BG | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |


The legitimate value ranges of the baudrate clock frequency that can be set in mode 0 are listed below.

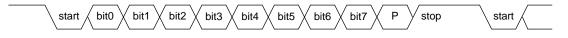
| DIV | Transfer Rate                       | Value Range       |
|-----|-------------------------------------|-------------------|
| 0   | $(U2BG value + 1) \times 4$ cycles  | 8 to 1024 cycles  |
| 1   | $(U2BG value + 1) \times 16 cycles$ | 32 to 4096 cycles |

The UART2 module is placed into mode 1 by loading U2BG with 00H.

## 3.19.5 UART2 Communication Format Examples

1) When TSTB = 0, PEN = 0




2) When TSTB = 0, PEN = 1

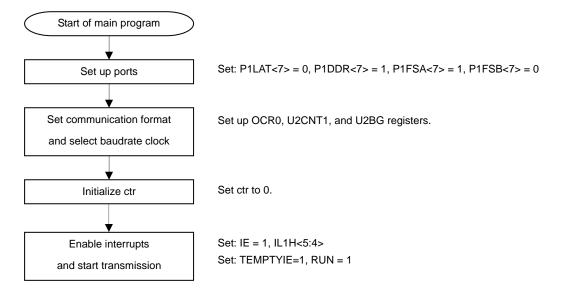


3) When TSTB = 1, PEN = 0

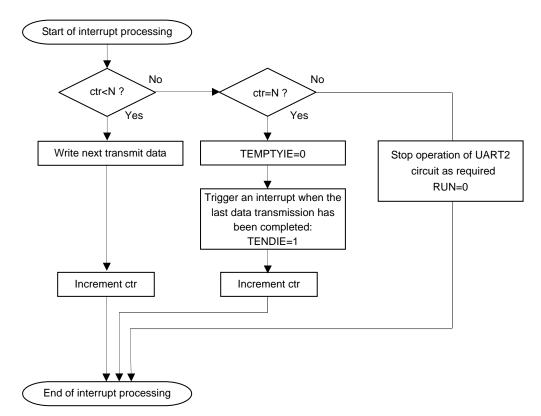


4) When TSTB = 1, PEN = 1




\* A P in the above examples denotes even parity when PODD = 0 and odd parity when PODD = 1.

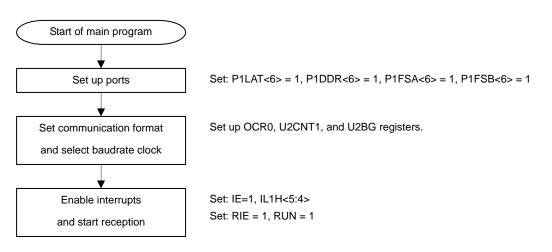
## 3.19.6 UART2 Communication Examples


## 3.19.6.1 Continuous transmission example

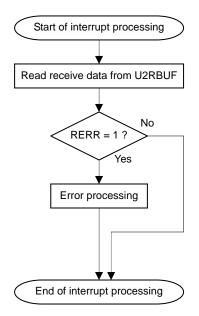
N is the number of transmit data bytes and ctr is the count variable in the transmit data.

#### 1. Main program




#### 2. Interrupt processing




## UART2

## 3.19.6.2 Continuous reception example

1. Main program



### 2. Interrupt processing



## 3.19.6.3 UART2 communication port settings

1) Transmit port (P17) settings

|          | Regist   | er Data  |          | Port P17 State                               |
|----------|----------|----------|----------|----------------------------------------------|
| P1FSA<7> | P1FSB<7> | P1LAT<7> | P1DDR<7> | Output                                       |
| 1        | 0        | 0        | 1        | UART2 transmit output (CMOS)                 |
| 1        | 1        | 1        | 0        | UART2 transmit output (slow CMOS change)     |
| 1        | 1        | 0        | 1        | UART2 transmit output (N-channel open drain) |

2) Receive port (P16) settings

|          | Regist   | er Data  |          | Port P16 State                |
|----------|----------|----------|----------|-------------------------------|
| P1FSA<6> | P1FSB<6> | P1LAT<6> | P1DDR<6> | Input                         |
| 1        | 1        | 1        | 1        | Enabled (UART2 receive input) |

# 3.20 Serial Interface 0 (SIO0)

## 3.20.1 Overview

This series of microcontrollers incorporates a serial interface (SIO0) that has the following functions:

- 1) Synchronous 8-bit serial I/O (2- or 3-wire configuration, variable length data communication in units of 1 to 8 bits, transfer clock of 4 to 512 cycles) (Note 1)
- 2) Wakeup function (2- or 3-wire configuration, external clock mode only)
- 3) Continuous automatic data communication (variable length data communication in units of 9 to 32768 bits, transfer clock of 4 to 512 cycles, time interval between bytes)

Note 1:

The SIO0 baudrate clock source can be selected from the system clocks. One period of the selected baudrate clock source is referred to as the "cycle" in this document.

## 3.20.2 Functions

## 3.20.2.1 Operating modes

SIO0 has the following two operating modes that can be selected by configuring the registers.

| Address | Initial value | R/W | Name    | BIT7   | BIT6 | BIT5  | BIT4 | BIT3  | BIT2  | BIT1  | BIT0 |
|---------|---------------|-----|---------|--------|------|-------|------|-------|-------|-------|------|
| 7F30    | 0000 0000     | R/W | SOCNT   | WAKEUP | REC  | RUN   | AUTO | MSB   | OVRUN | FLG   | IE   |
| 7F31    | 0000 0000     | R/W | SOBG    | BIT7   | BIT6 | BIT5  | BIT4 | BIT3  | BIT2  | BIT1  | BIT0 |
| 7F32    | 0000 0000     | R/W | SOBUF   | BIT7   | BIT6 | BIT5  | BIT4 | BIT3  | BIT2  | BIT1  | BIT0 |
| 7F33    | 0000 0000     | R/W | SOINTVL | -      |      | SNBIT |      | XCHNG |       | INTVL |      |

1) Mode 0

SIO0 performs 2- or 3-wire synchronous serial communication in this mode. Both the internal and external clocks can be used.

SIO0 performs variable length data communication in units of 1 to 8 bits.

The period of the internal clock is variable within the range of  $(n + 1) \times 2$  cycles (n = 1 to 255, n = 0 is inhibited).

The wakeup function is available only in this mode.

2) Mode 1

Mode 1 has three automatic communication functions, i.e., automatic transmission, automatic reception, and automatic transmission/reception. Both the internal and external clocks can be used.

SIO0 performs variable length data communication in units of 9 to 32768 bits.

The RAM buffer address and the number of transfers need to be specified in the real-time service controller.

In automatic transmission mode, the transmit data is transferred automatically from the designated RAM buffer address to the data buffer (S0BUF) specified number of times.

In automatic reception mode, the receive data is transferred automatically from the data buffer (S0BUF) to the designated RAM buffer address specified number of times.

In automatic transmission/reception mode, the transmit data is transferred automatically from the designated RAM buffer address to the data buffer (S0BUF) specified number of times and the receive data from the data buffer (S0XBUF) to RAM automatically. The receive data is overwritten in the RAM area where the transmit data was stored.

The period of the internal clock is variable within the range of  $(n+1) \times 2$  cycles (n = 1 to 255, n = 0 is inhibited).

The time interval between bytes is variable within the range of (period of internal clock)  $\times$  n [cycle] (n = 0, 1, 2, 4, 8, 16, 32, 64).

#### 3.20.2.2 Interrupt generation

SIO0 generates an interrupt request at the end of communication or on detection of the overrun flag if the corresponding interrupt request enable bit is set.

#### 3.20.2.3 HALT mode operation

When in HALT mode, SIO0 runs in all operating modes. HALT mode can be released by the SIO0 interrupt.

#### 3.20.2.4 Wakeup function

The wakeup function is available only in mode 0. It can be used to release HOLD or HOLDX mode when the external clock is used.

#### 3.20.2.5 Special function register (SFR) manipulation

It is necessary to manipulate the following special function registers (SFRs) to control SIO0.

SOCNT, SOBG, SOBUF, SOINTVL P1LAT, P1DDR, P1FSA, P1FSB IL2H RTS1ADRL, RTS1ADRH, RTS1CTR, RTSCNT

# 2.20.3 Circuit Configuration

#### 2.20.3.1 SIO0 control register (S0CNT) (8-bit register)

1) This register controls the operation and interrupts of SIO0.

#### 2.20.3.2 SIO0 baudrate control register (S0BG) (8-bit register)

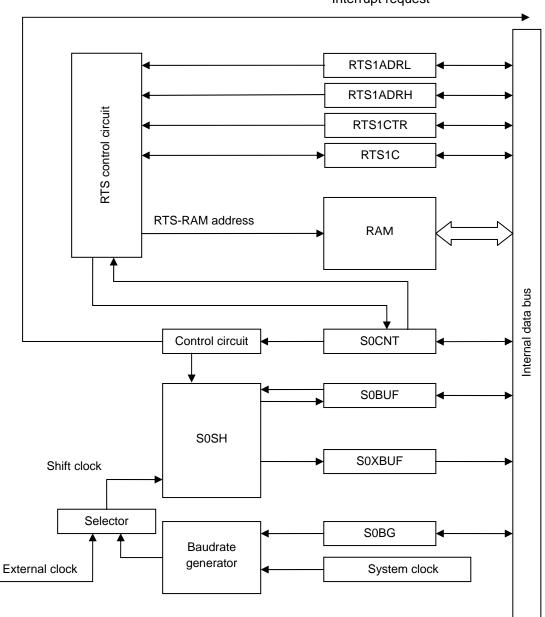
- 1) This register is a reload counter used for generating internal clocks.
- It can generate a clock with a period of (n+1) × 2 cycles (n=1 to 255).
   S0BG must be loaded with 00H when the external clock is to be used.

#### 2.20.3.3 SIO0 shift register (S0SH) (8-bit shift register)

- 1) This register is used for data transmission and reception through SIO0.
- 2) This register cannot be accessed directly with an instruction. It must be accessed through SOBUF.

#### 2.20.3.4 SIO0X data buffer (S0XBUF) (8-bit register)

- 1) This buffer is used to store the receive data in mode 1 automatic transmission/reception mode.
- 2) This buffer register cannot be accessed directly with an instruction.


# 2.20.3.5 SIO0 data buffer (S0BUF) (8-bit register)

Data is transmitted or received through this register.

- 1) This register is used for transmission and reception in mode 0.
- 2) In mode 1 automatic transmission mode, transmit data is transferred from RAM automatically.
- 3) In mode 1 automatic reception mode, receive data is transferred to RAM automatically.
- 4) In mode 1 automatic transmission/reception mode, transmit data is transferred from RAM automatically.
- 5) This register can be accessed directly with an instruction.

## 2.20.3.6 SIO0 interval register (S0INTVL) (8-bit register)

- 1) This register sets the time interval between bytes for serial communication in mode 1.
- 2) This register makes settings for automatic transmission/reception in mode 1.
- 3) This register specifies the fractional bits.



Interrupt request

Figure 3.20.1 SIO0 Block Diagram

# 3.20.4 Related Registers

## 3.20.4.1 SIO0 control register (S0CNT)

1) This register is an 8-bit register that controls the operation and interrupts of the SIO0 module.

| Address | Initial value | R/W | Name  | BIT7   | BIT6 | BIT5 | BIT4 | BIT3 | BIT2  | BIT1 | BIT0 |
|---------|---------------|-----|-------|--------|------|------|------|------|-------|------|------|
| 7F30    | 0000 0000     | R/W | SOCNT | WAKEUP | REC  | RUN  | AUTO | MSB  | OVRUN | FLG  | IE   |

#### WAKEUP (bit 7): Wakeup function control

- 0: Disables wakeup function.
- 1: Enables wakeup function.
- \* The wakeup function can be used only in mode 0.

AUTO is always set to 0 when this bit is set.

#### REC (bit 6): Receive mode setting

- 0: Selects transmit mode.
- 1: Selects receive mode.

#### RUN (bit 5): SIO0 operation flag

- 1) A 1 in this bit indicates that SIO0 is running. This bit must be set with an instruction.
- 2) Clearing this bit with an instruction when SIO0 is running forces SIO0 to stop. In this case, IE must be cleared at the same time.
- 3) In mode 0, the termination processing starts on the rising edge of the last transfer clock. FLG is then set and this bit is automatically cleared.
- 4) In mode 1 automatic transmission mode, the termination processing starts on the rising edge of the last transfer clock. FLG is then set and this bit is automatically cleared.
- 5) In mode 1 automatic transmission/reception mode, the termination processing starts after the last received data is transferred to RAM. FLG is then set and this bit is automatically cleared.

#### AUTO (bit 4): Automatic communication mode setting

- 1) Setting this bit to 0 places SIO0 in mode 0.
- 2) AUTO is always set to 0 when WAKEUP is set to 1.
- 3) Setting this bit to 1 places SIO0 in mode 1.
- 4) Automatic communication can be suspended (AUTO = 0, RUN = 1) by executing a CLR instruction on this bit while SIO0 is in mode 1 communication (AUTO = RUN = 1). SIO0 suspends the communication after completing the transmission of the byte in progress. In this case, FLG is not set. To resume communication, execute the SET instruction on this bit (AUTO = RUN = 1). Automatic communication resumes.

#### MSB (bit 3): MSB/LSB first select

- 0: Selects LSB first.
- 1: Selects MSB first.

#### OVRUN (bit 2): Overrun flag

- 1) This bit is set when the falling edge of the input clock is detected with RUN set to 0.
- 2) This bit is set in mode 0 when the falling edge of the input clock is detected during the startup processing that is carried out after RUN is set.
- 3) This bit is set in mode 0 when the falling edge of the input clock is detected during the termination processing that is carried out following the rising of the last transfer clock.
- 4) In mode 1 automatic transmission mode, this bit is set when the falling edge of the input clock is detected by the time when data is transferred from RAM to S0BUF automatically and communication starts.

- 5) In mode 1 automatic reception or automatic transmission/reception mode, this bit is set when the falling edge of the input clock is detected during the period from the rising edge of the last transfer clock until the time data from S0BUF and S0XBUF is transferred automatically to RAM and termination processing is finished.
- 6) Read this bit to determine whether the communication has been successful.
- 7) This bit must be cleared with an instruction.

#### FLG (bit 1): Serial transfer end flag

- 1) This bit is set at the end of a serial transfer operation.
- 2) This bit must be cleared with an instruction.

#### IE (bit 0): Receive interrupt enable

- 1) When this bit and FLG are set to 1, an interrupt request to vector address 008038H is generated.
- 2) When this bit and OVRUN are set to 1, an interrupt request to vector address 008038H is generated.

#### 3.20.4.2 SIO0 baudrate control register (S0BG)

1) This register is an 8-bit register that sets the transfer rate of serial transfer.

| Address | Initial value | R/W | Name | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|------|------|------|------|------|------|------|------|------|
| 7F31    | 0000 0000     | R/W | SOBG | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

The transfer rate is set as follows:

 $TSOBG = (SOBG value + 1) \times 2 cycles$ 

S0BG takes a value of 1 to 255 and the value range of TS0BG is from 4 to 512 cycles.

Set S0BG to 00H when using an external clock.

#### 3.20.4.3 SIO0 data buffer (S0BUF)

1) This buffer is an 8-bit buffer register used to store the serial transfer data.

The data to be transmitted or received is transferred from this serial buffer to the shift register at the beginning of transmission.

In receive mode, the data from the shift register is transferred to the serial buffer at the end of serial transfer.

| Address | Initial value | R/W | Name  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|-------|------|------|------|------|------|------|------|------|
| 7F32    | 0000 0000     | R/W | SOBUF | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

#### 3.20.4.4 SIO0 interval register (S0INTVL)

1) This register is used to make settings for the automatic communication mode and to specify the number of communication bits.

| Address | Initial value | R/W | Name    | BIT7 | BIT6 | BIT5  | BIT4 | BIT3  | BIT2 | BIT1  | BIT0 |
|---------|---------------|-----|---------|------|------|-------|------|-------|------|-------|------|
| 7F33    | 0000 0000     | R/W | SOINTVL | —    |      | SNBIT |      | XCHNG |      | INTVL |      |

#### (Bit 7): Fixed bit

This bit must always be set to 0.

#### SNBIT (bits 6 to 4)

- 1) These bits set the fractional bits.
- 2) The value of these bits must not be changed while SIO0 is running (RUN = 1). SIO0 will malfunction if these bits are changed. Be sure to manipulate these bits while SIO0 is stopped (RUN = 0).

## XCHNG (bit 3): Automatic transmission/reception

- 1) Setting this bit to 1 places SIO0 in mode 1 automatic transmission/reception mode.
- 2) This bit must not be set or cleared while SIO0 is running (RUN = 1). Be sure to manipulate this bit while SIO0 is stopped (RUN = 0). SIO0 will malfunction if this bit is set in other operating mode than automatic communication mode (AUTO = 0).

## INTVL (bits 2 to 0)

- 1) These bits are enabled only in mode 1. They set the interval time between bytes to be transmitted. This does not apply if the external clock is selected.
- 2) Interval time [cycles] = ((S0BG value + 1)  $\times$  2)  $\times$  interval time set
- 3) Since 6 cycles are required to transfer data between S0SH and S0BUF or S0XBUF, SIO0 cannot run normally if the byte-to-byte cycle count (from the rising edge to the falling edge of a serial clock) is set to 6 or less.
- 4) Depending on the settings (bus steal request disabled/wait request disabled) made in the RTS control register of the real-time service controller, the interval time set by S0INTVL cannot always be honored.
- 5) The value of this bit must not be changed while SIO0 is running (RUN = 1). SIO0 will malfunction if changed. Be sure to manipulate this bit while SIO0 is stopped (RUN = 0).

| INTVL | Number of Transfer Clocks |
|-------|---------------------------|
| 000   | 0                         |
| 001   | 1                         |
| 010   | 2                         |
| 011   | 4                         |
| 100   | 8                         |
| 101   | 16                        |
| 110   | 32                        |
| 111   | 64                        |
|       | 0.                        |

 Table 3.20.1
 INTVL Settings and Number of Transfer Clocks Inserted

| WAKEUP | XCHNG | AUTO | REC | Mode                                                  |
|--------|-------|------|-----|-------------------------------------------------------|
| 0      | 0     | 0    | 0   | Mode 0: Transmission                                  |
| 0      | 0     | 0    | 1   | Mode 0: Reception or transmission/reception           |
| 1      | 0     | 0    | 0   | Mode 0: Wakeup transmission                           |
| 1      | 0     | 0    | 1   | Mode 0: Wakeup reception or<br>transmission/reception |
| 0      | 0     | 1    | 0   | Mode 1: Automatic transmission                        |
| 0      | 0     | 1    | 1   | Mode 1: Automatic reception                           |
| 0      | 1     | 1    | 1   | Mode 1: Automatic transmission/reception              |

Table 3.20.2 SIO0 Operating Modes

# 3.20.5 Configuring the Number of Transfer Bits

# 3.20.5.1 Configuration in mode 0

The number of transfer bits must be specified by SNBIT. See Table 3.20.3 Example: 5-bit communication Set as follows: SNBIT = 1 0 1

# 3.20.5.2 Configuration in mode 1

Specify the number of transfer bits according to  $n = ((X + 1) \times 8) + N$ .

(n = 9 to 32768 bits, X = 0 to 4094, N = 1 to 8 bits)

X is set by RTS1CTR and RTS1ADRL.

X = ((((RTS1ADRL) << 8)&0x0F00) + (RTS1CTR&0x00FF))

N is set by SNBIT.

See Table 3.20.3.

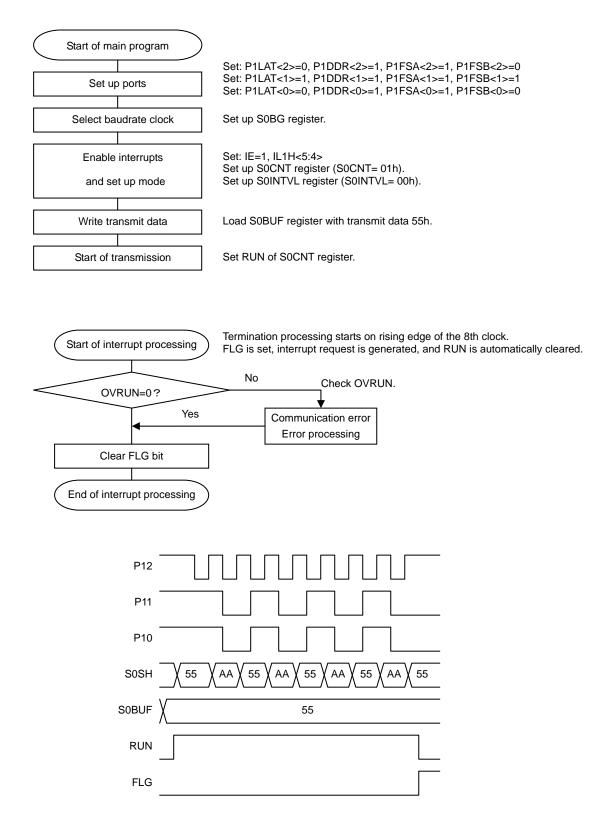
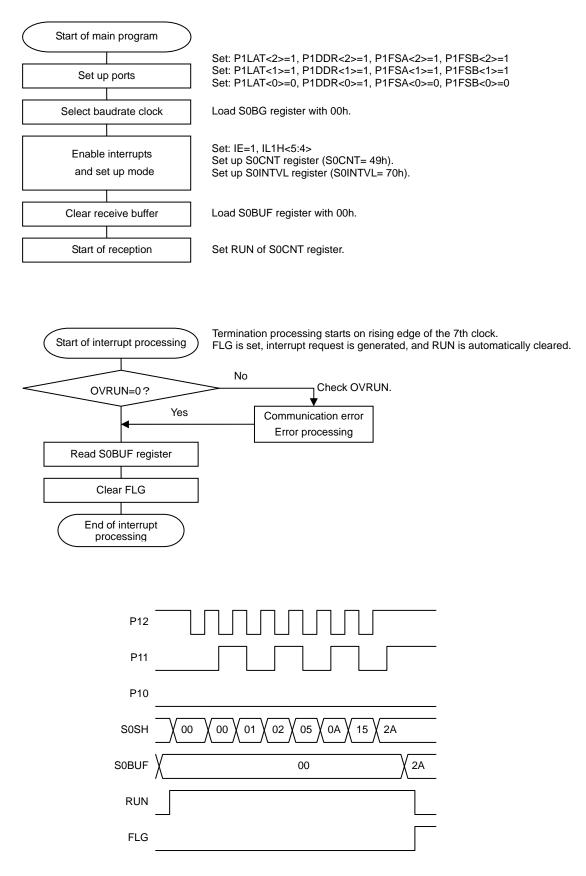

| SNBIT | Number of Bits |
|-------|----------------|
| 000   | 8              |
| 001   | 1              |
| 010   | 2              |
| 011   | 3              |
| 100   | 4              |
| 101   | 5              |
| 110   | 6              |
| 111   | 7              |

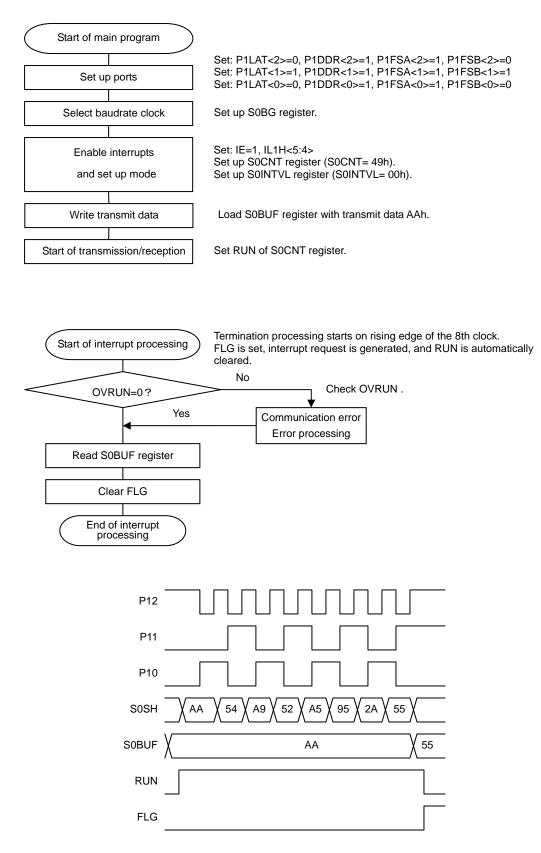
Table 3.20.3 Bit Settings

# 3.20.6 SIO0 Communication Examples


#### 3.20.6.1 Mode 0 (transmission) example

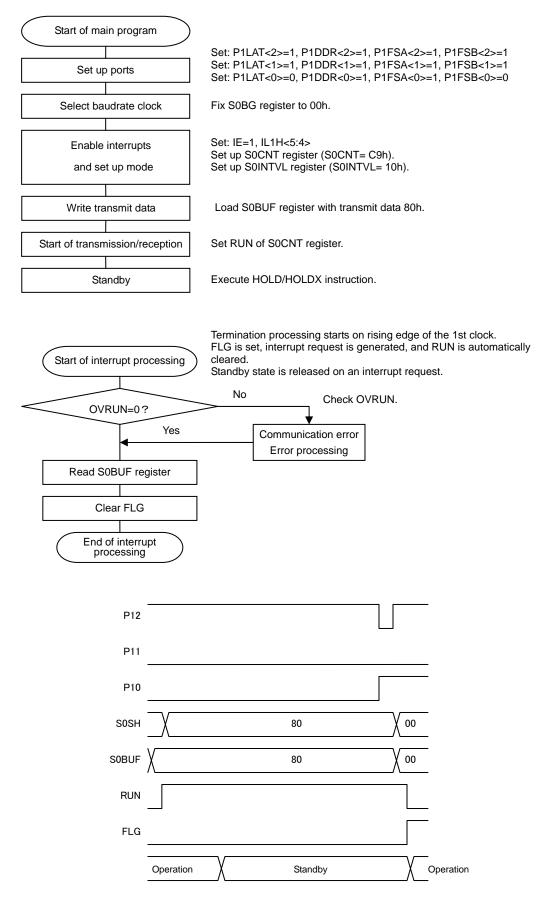
Internal clock, LSB first, transmit data = 55h, number of transmit bits = 8




#### 3.20.6.2 Mode 0 (reception) example

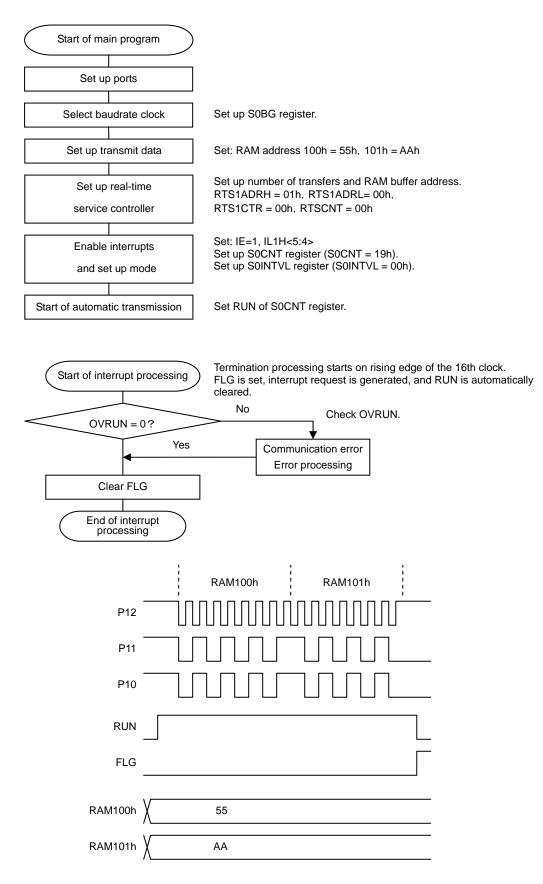
External clock, MSB first, P10 = L output, receive data = 2Ah, number of receive bits = 7




#### 3.20.6.3 Mode 0 (transmission/reception) example

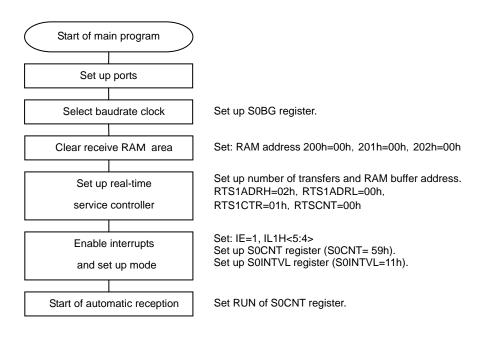
Internal clock, MSB first, receive data 55h, transmit data AAh, number of transmit/receive bits = 8

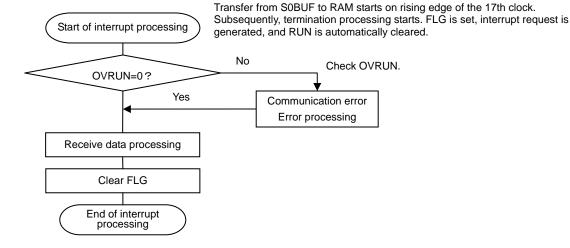



#### 3.20.6.4 Mode 0 (transmission/reception, wakeup) example

External clock, MSB first, receive data = 00h, transmit data = 80h, number of transmit/receive bits = 1



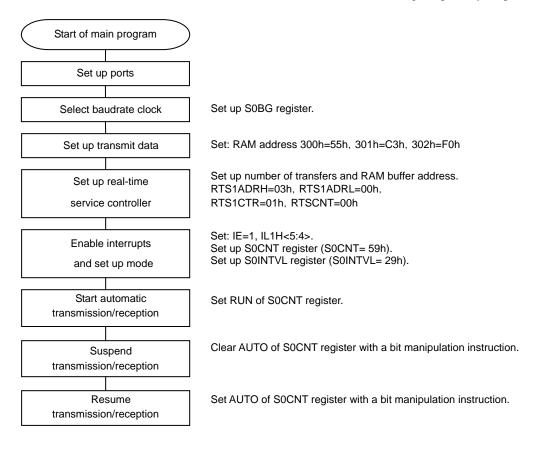

# 3.20.6.5 Mode 1 (automatic transmission) example

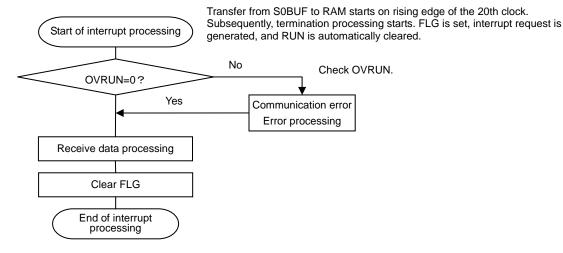

Internal clock, MSB first, transmit data starting RAM buffer address = 100, interval time = 0, number of transmit bits = 16

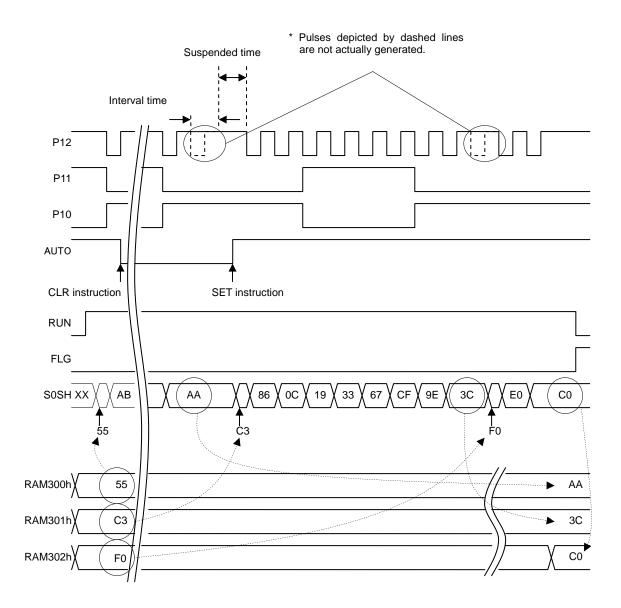


#### 3.20.6.6 Mode 1 (automatic reception) example

Internal clock, MSB first, receive data starting RAM buffer address = 200, interval time = 2, number of receive bits = 17, P10 = L output




#### 3.20.6.7 Mode 1 (automatic transmission/reception) example

Internal clock, MSB first, transmit/receive data starting RAM buffer address = 300, interval time = 1, number of transmit/receive bits = 18, communication resumes after being temporarily suspended







# 3.20.6.8 SIO0 port settings

|          | Register | Settings |          | D10 State                     | Fast/ |
|----------|----------|----------|----------|-------------------------------|-------|
| P1FSA<0> | P1DDR<0> | P1LAT<0> | P1FSB<0> | P10 State                     | Slow  |
| 1        | 1        | 0        | 0        | CMOS output<br>(Transmission) | Fast  |
| 1        | 0        | 1        | 1        | CMOS output<br>(Transmission) | Slow  |

1) Data transmission only port (P10) settings

## 2) Data transmission/reception port (P11) settings

|          | Register | Settings |                                   | D14 State                     | Fast/ |
|----------|----------|----------|-----------------------------------|-------------------------------|-------|
| P1FSA<1> | P1DDR<1> | P1LAT<1> | P1FSB<1>                          | P11 State                     | Slow  |
| 1        | 1        | 0        | 0                                 | CMOS output<br>(Transmission) | Fast  |
| 1        | 0        | 1        | 1 1 CMOS output<br>(Transmission) |                               | Slow  |
| 1        | 1        | 1        | 1                                 | Input<br>(Reception)          | —     |

# 3) Clock port (P12) settings

|          | Register | Settings |          | D40 State                       | Fast/ |
|----------|----------|----------|----------|---------------------------------|-------|
| P1FSA<2> | P1DDR<2> | P1LAT<2> | P1FSB<2> | P12 State                       | Slow  |
| 1        | 1        | 0        | 0        | CMOS output<br>(Internal clock) | Fast  |
| 1        | 0        | 1        | 1        | CMOS output<br>(Internal clock) | Slow  |
| 1        | 1        | 1        | 1        | Input<br>(External clock)       | —     |

# 3.21 Serial Interface 1 (SIO1)

# 3.21.1 Overview

This series of microcontrollers incorporates a serial interface (SIO1) that has the following functions:

- 1) Synchronous 8-bit serial I/O (2- or 3-wire configuration, variable length data communication in units of 1 to 8 bits, transfer clock of 4 to 512 cycles) (Note 1)
- 2) Wakeup function (2- or 3-wire configuration, external clock mode only)
- 3) Continuous automatic data communication (variable length data communication in units of 9 to 32768 bits, transfer clock of 4 to 512 cycles, time interval between the variable bytes)

Note 1:

The SIO1 baudrate clock source can be selected from the system clocks. One period of the selected baudrate clock source is referred to as the "cycle" in this document.

# 3.21.2 Functions

## 3.21.2.1 Operating modes

SIO1 has the following two operating modes that can be selected by configuring the registers.

| Address | Initial value | R/W | Name    | BIT7   | BIT6 | BIT5  | BIT4 | BIT3  | BIT2  | BIT1  | BIT0 |
|---------|---------------|-----|---------|--------|------|-------|------|-------|-------|-------|------|
| 7F34    | 0000 0000     | R/W | S1CNT   | WAKEUP | REC  | RUN   | AUTO | MSB   | OVRUN | FLG   | IE   |
| 7F35    | 0000 0000     | R/W | S1BG    | BIT7   | BIT6 | BIT5  | BIT4 | BIT3  | BIT2  | BIT1  | BIT0 |
| 7F36    | 0000 0000     | R/W | S1BUF   | BIT7   | BIT6 | BIT5  | BIT4 | BIT3  | BIT2  | BIT1  | BIT0 |
| 7F37    | 0000 0000     | R/W | S1INTVL | —      |      | SNBIT |      | XCHNG |       | INTVL |      |

1) Mode 0

SIO1 performs 2- or 3-wire synchronous serial communication in this mode. Both the internal and external clocks can be used.

SIO0 performs variable length data communication in units of 1 to 8 bits.

The period of the internal clock is variable within the range of  $(n + 1) \times 2$  cycles (n = 1 to 255, n = 0 is inhibited).

The wakeup function is available only in this mode.

2) Mode 1

Mode 1 has three automatic communication functions, i.e., automatic transmission, automatic reception, and automatic transmission/reception. Both the internal and external clocks can be used.

SIO1 performs variable length data communication in units of 9 to 32768 bits.

The RAM buffer address and the number of transfer times need to be specified in the real-time service controller.

In automatic transmission mode, the transmit data is transferred automatically from the designated RAM buffer address to the data buffer (S1BUF) specified number of times.

In automatic reception mode, the receive data is transferred automatically from the data buffer (S1BUF) to the designated RAM buffer address specified number of times.

In automatic transmission/reception mode, the transmit data is transferred automatically from the designated RAM buffer address to the data buffer (S1BUF) specified number of times and the receive data from the data buffer (S1XBUF) to RAM automatically. The receive data is overwritten in the RAM area where the transmit data was stored.

The period of the internal clock is variable within the range of  $(n + 1) \times 2$  cycles (n = 1 to 255, n = 0 is inhibited).

The time interval between bytes is variable within the range of (period of internal clock)  $\times$  n [cycle] (n = 0, 1, 2, 4, 8, 16, 32, 64).

#### 3.21.2.2 Interrupt generation

SIO1 generates an interrupt request at the end of communication or on detection of the overrun if the corresponding interrupt request enable bit is set.

#### 3.21.2.3 HALT mode operation

When in HALT mode, SIO1 runs in all operating modes. HALT mode can be released by the SIO1 interrupt.

#### 3.21.2.4 Wakeup function

The wakeup function can be used only in mode 0. It can be used to release HOLD or HOLDX mode when the external clock is used.

#### 3.21.2.5 Special function register (SFR) manipulation

It is necessary to manipulate the following special function registers (SFRs) to control SIO1.

S1CNT, S1BG, S1BUF, S1INTVL P4LAT, P4DDR, P4FSA, P4FSB IL2L RTS2ADRL, RTS2ADRH, RTS2CTR, RTSCNT

# 3.21.3 Circuit Configuration

# 3.21.3.1 SIO1 control register (S1CNT) (8-bit register)

1) This register controls the operation and interrupts of SIO1.

#### 3.21.3.2 SIO1 baudrate control register (S1BG) (8-bit register)

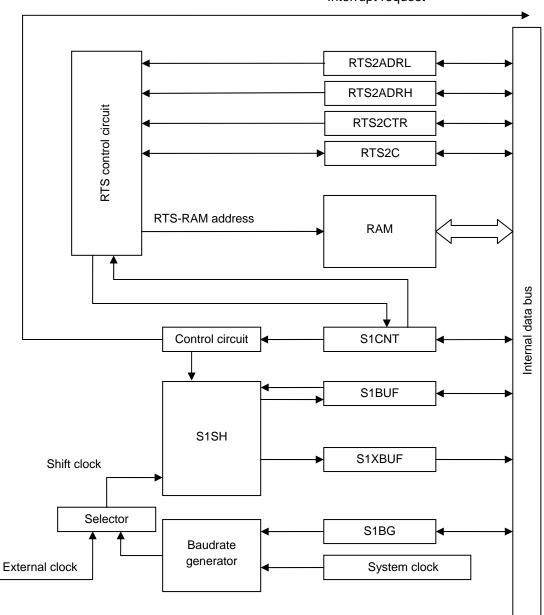
- 1) This register is a reload counter used for generating internal clocks.
- 2) It can generate a clock with a period of  $(n + 1) \times 2$  cycles (n = 1 to 255). S1BG must be loaded with 00H when the external clock is to be used.

#### 3.21.3.3 SIO1 shift register (S1SH) (8-bit shift register)

- 1) This register is used for data transmission and reception through SIO1.
- 2) This register cannot be accessed directly with an instruction. It must be accessed through S1BUF.

#### 3.21.3.4 SIO1X data buffer (S1XBUF) (8-bit register)

- 1) This buffer is used to store the receive data in mode 1 automatic transmission/ reception mode.
- 2) This buffer register cannot be accessed directly with an instruction.


# 3.21.3.5 SIO1 data buffer (S1BUF) (8-bit register)

Data is transmitted or received through this register.

- 1) This register is used for transmission and reception in mode 0.
- 2) In mode 1 automatic transmission mode, transmit data is transferred from RAM automatically.
- 3) In mode 1 automatic reception mode, receive data is transferred to RAM automatically.
- 4) In mode 1 automatic transmission/reception mode, transmit data is transferred from RAM automatically.
- 5) This register can be accessed directly with an instruction.

# 3.21.3.6 SIO1 interval register (S1INTVL) (8-bit register)

- 1) This register sets the time interval between bytes for serial communication in mode 1.
- 2) This register makes settings for automatic transmission/reception in mode 1.
- 3) This register specifies the fractional bits.



Interrupt request

Figure 3.21.1 SIO1 Block Diagram

# 3.21.4 Related Registers

# 3.21.4.1 SIO1 control register (S1CNT)

1) This register is an 8-bit register that controls the operation and interrupts of the SIO1 module.

| Address | Initial value | R/W | Name  | BIT7   | BIT6 | BIT5 | BIT4 | BIT3 | BIT2  | BIT1 | BIT0 |
|---------|---------------|-----|-------|--------|------|------|------|------|-------|------|------|
| 7F34    | 0000 0000     | R/W | S1CNT | WAKEUP | REC  | RUN  | AUTO | MSB  | OVRUN | FLG  | IE   |

## WAKEUP (bit 7): Wakeup function

- 0: Disables wakeup function.
- 1: Enables wakeup function.
- \* The wakeup function can be used only in mode 0.
- AUTO is always set to 0 when this bit is set to 1.

## REC (bit 6): Receive mode setting

- 0: Selects transmit mode.
- 1: Selects receive mode.

## RUN (bit 5): SIO1 operation flag

- 1) A 1 in this bit indicates that SIO1 is running. This bit must be set with an instruction.
- 2) Clearing this bit with an instruction when SIO1 is running forces SIO1 to stop. In this case, IE must also be cleared at the same time.
- 3) In mode 0, the termination processing starts on the rising edge of the last transfer clock. FLG is then set and this bit is automatically cleared.
- 4) In mode 1 automatic transmission mode, the termination processing starts on the rising edge of the last transfer clock. FLG is then set and this bit is automatically cleared.
- 5) In mode 1 automatic transmission/reception mode, the termination processing starts after the last received data is transferred to RAM. FLG is then set and this bit is automatically cleared.

#### AUTO (bit 4): Automatic communication mode setting

- 1) Setting this bit to 0 places SIO1 in mode 0.
- 2) AUTO is always set to 0 when WAKEUP is set to 1.
- 3) Setting this bit to 1 places SIO1 in mode 1.
- 4) Automatic communication can be suspended (AUTO = 0, RUN = 1) by executing a CLR instruction on this bit while SIO1 is in mode 1 communication (AUTO = RUN = 1). SIO1 suspends the communication after completing the transmission of the byte in progress. In this case, FLG is not set. To resume communication, execute a SET instruction on this bit (AUTO = RUN = 1). Automatic communication resumes.

#### MSB (bit 3): MSB/LSB first select

0: Selects LSB first.

1: Selects MSB first.

# OVRUN (bit 2): Overrun flag

- 1) This bit is set when the falling edge of the input clock is detected with RUN set to 0.
- 2) This bit is set in mode 0 when the falling edge of the input clock is detected during the startup processing that is carried out after RUN is set.
- 3) This bit is set in mode 0 when the falling edge of the input clock is detected during the termination processing that is carried out following the rising edge of the last transfer clock.
- 4) In mode 1 automatic transmission mode, this bit is set when the falling edge of the input clock is detected by the time data is transferred from RAM to S1BUF automatically and communication starts.

- 5) In mode 1 automatic reception or automatic transmission/reception mode, this bit is set when the falling edge of the input clock is detected during the period from the rising edge of the last transfer clock until the time data from S1BUF or S1XBUF is transferred automatically to RAM and termination processing is finished.
- 6) Read this bit to determine whether the communication has been successful.
- 7) This bit must be cleared with an instruction.

#### FLG (bit 1): Serial transfer end flag

- 1) This bit is set at the end of a serial transfer operation.
- 2) This bit must be cleared with an instruction.

#### IE (bit 0): Receive interrupt enable

- 1) When this bit and the FLG bit are set to 1, an interrupt request to vector address 008024H is generated.
- 2) When this bit and the OVRUN bit are set to 1, an interrupt request to vector address 008024H is generated.

#### 3.21.4.2 SIO1 baudrate control register (S1BG)

1) This register is an 8-bit register that sets the transfer rate of SIO1 serial transfer.

| Address | Initial value | R/W | Name | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|------|------|------|------|------|------|------|------|------|
| 7F35    | 0000 0000     | R/W | S1BG | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

The transfer rate is set as follows:

 $TS1BG = (S1BG value + 1) \times 2$  cycles

S1BG takes a value of 1 to 255 and the value range of TS1BG is from 4 to 512 cycles.

Set S1BG to 00H when using the external clock.

#### 3.21.4.3 SIO1 data buffer (S1BUF)

1) This buffer is an 8-bit buffer register used to store the serial transfer data.

The data to be transmitted or received is transferred from this serial buffer to the shift register at the beginning of transmission.

In receive mode, the data from the shift register is transferred to the serial buffer at the end of serial transfer.

| Address | Initial value | R/W | Name  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|-------|------|------|------|------|------|------|------|------|
| 7F36    | 0000 0000     | R/W | S1BUF | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

#### 3.21.4.4 SIO1 interval register (S1INTVL)

1) This register is used to make settings for automatic communication mode and to specify the number of communication bits.

| Address | Initial value | R/W | Name    | BIT7 | BIT6  | BIT5 | BIT4  | BIT3 | BIT2  | BIT1 | BIT0 |
|---------|---------------|-----|---------|------|-------|------|-------|------|-------|------|------|
| 7F37    | 0000 0000     | R/W | S1INTVL | -    | SNBIT |      | XCHNG |      | INTVL |      |      |

#### (Bit 7): Fixed bit

This bit must always be set to 0.

#### SNBIT (bits 6 to 4):

- 1) These bits set the fractional bits.
- 2) The value of these bits must not be changed while SIO1 is running (RUN = 1). SIO1 will malfunction if these bits are changed. Be sure to manipulate these bits while SIO1 is stopped (RUN = 0).

#### XCHNG (bit 3): Automatic transmission/reception

- 1) Setting this bit to 1 places SIO1 in mode 1 automatic transmission/reception mode.
- 2) This bit must not be set or cleared while SIO1 is running (RUN = 1). Be sure to manipulate this bit while SIO1 is stopped (RUN = 0). SIO1 will malfunction if this bit is set in other operating mode than automatic communication mode (AUTO = 0).

## INTVL (bits 2 to 0):

- 1) These bits are enabled only in mode 1. They set the interval time between bytes to be transmitted. This does not apply if the external clock is selected.
- 2) Interval time [cycles] = ((S1BG value + 1)  $\times$  2)  $\times$  interval time set
- 3) Since 6 cycles are required to transfer data between S1SH and S1BUF or S1XBUF, SIO1 cannot run normally if the byte-to-byte cycle count (from the rising edge to the falling edge of a serial clock) is set to 6 or less.
- 4) Depending on the settings (bus steal request disabled/wait request disabled) made in the RTS control register of the real-time service controller, the interval time set by S1INTVL cannot always be honored.
- 5) The value of this bit must not be changed while SIO1 is running (RUN = 1). SIO1 will malfunction if changed. Be sure to manipulate this bit while SIO1 is stopped (RUN = 0).

| INTVL | Number of Transfer Clocks |
|-------|---------------------------|
| 000   | 0                         |
| 001   | 1                         |
| 010   | 2                         |
| 011   | 4                         |
| 100   | 8                         |
| 101   | 16                        |
| 110   | 32                        |
| 111   | 64                        |

 Table 3.21.2
 INTVL Settings and Number of Transfer Clocks Inserted

| WAKEUP | XCHNG | AUTO | REC | Mode                                                  |
|--------|-------|------|-----|-------------------------------------------------------|
| 0      | 0     | 0    | 0   | Mode 0: Transmission                                  |
| 0      | 0     | 0    | 1   | Mode 0: Reception or transmission/reception           |
| 1      | 0     | 0    | 0   | Mode 0: Wakeup transmission                           |
| 1      | 0     | 0    | 1   | Mode 0: Wakeup reception or<br>transmission/reception |
| 0      | 0     | 1    | 0   | Mode 1: Automatic transmission                        |
| 0      | 0     | 1    | 1   | Mode 1: Automatic reception                           |
| 0      | 1     | 1    | 1   | Mode 1: Automatic transmission/reception              |

# Table 3.21.2 SIO1 Operating Modes

# 3.21.5 Configuring the Number of Transfer Bits

#### 3.21.5.1 Configuration in mode 0

The number of transfer bits must be specified by the SNBIT. See Table 3.21.3. Example: 5-bit communication Set as follows: SNBIT = 101

#### 3.21.5.2 Configuration in mode 1

Specify the number of transfer bits according to  $n = ((X + 1) \times 8) + N$ .

(n = 9 to 32768 bits, X = 0 to 4094, N = 1 to 8 bits)

X is set by RTS2CTR and RTS2ADRL.

 $\mathbf{X} = ((((\mathbf{RTS2ADRL}) << 8)\&0x0F00) + (\mathbf{RTS2CTR}\&0x00FF))$ 

N is set by the SNBIT.

See Table 3.21.3.

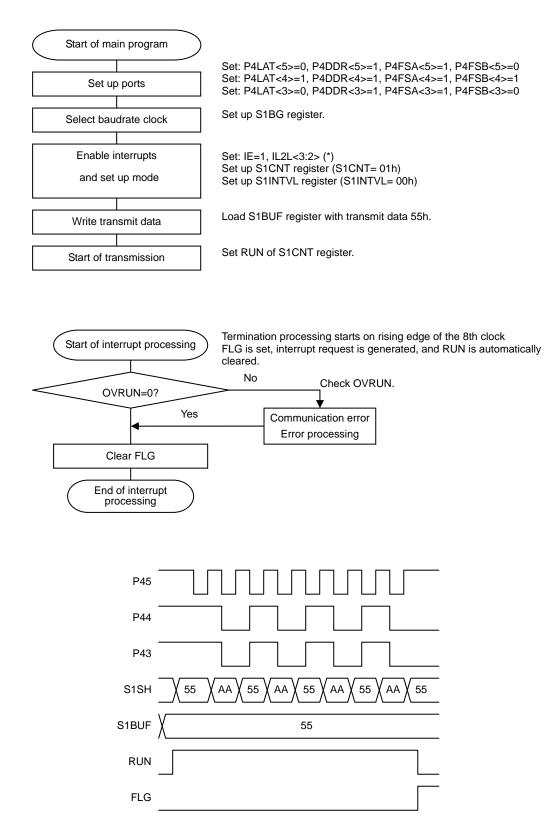
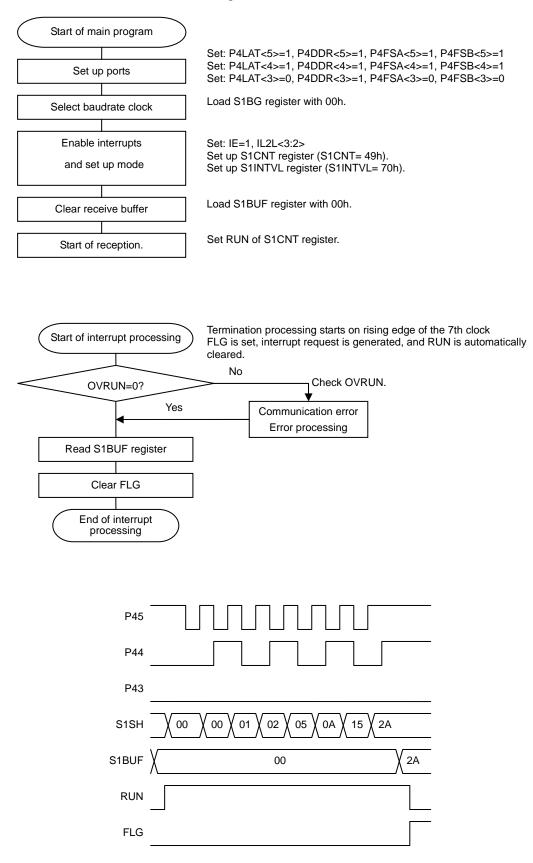

| SNBIT | Number of Bits |
|-------|----------------|
| 000   | 8              |
| 001   | 1              |
| 010   | 2              |
| 011   | 3              |
| 100   | 4              |
| 101   | 5              |
| 110   | 6              |
| 111   | 7              |

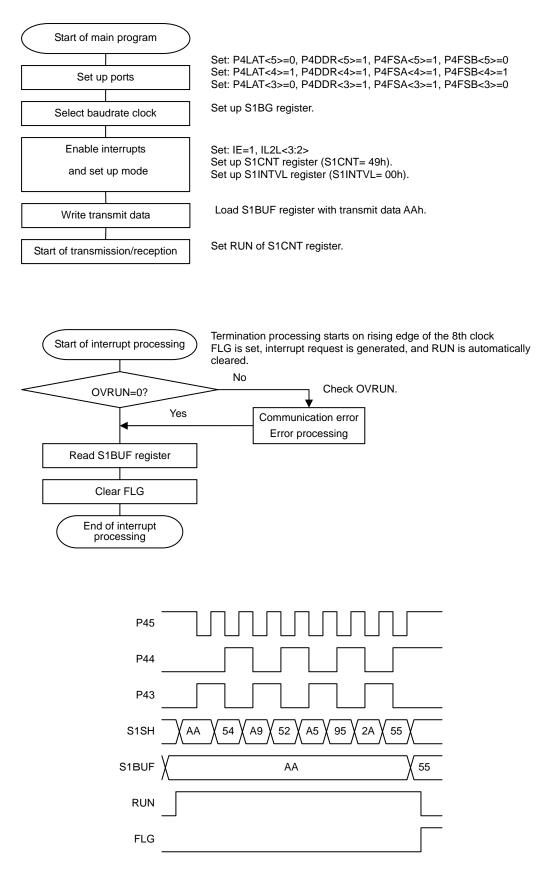
Table 3.21.3 No. of Bits Settings

# 3.21.6 SIO1 Communication Examples


## 3.21.6.1 Mode 0 (transmission) example

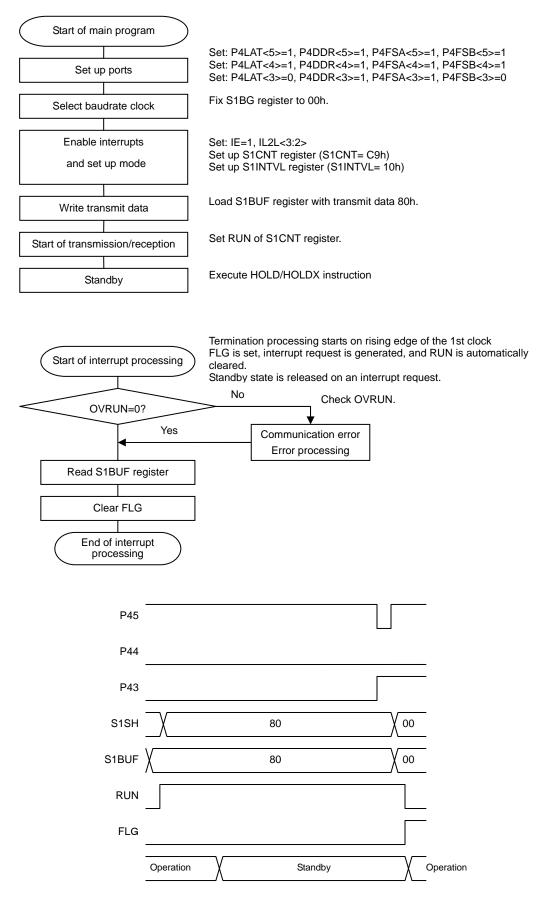
Internal clock, LSB first, transmit data = 55h, number of transmit bits = 8




#### 3.21.6.2 Mode 0 (reception) example

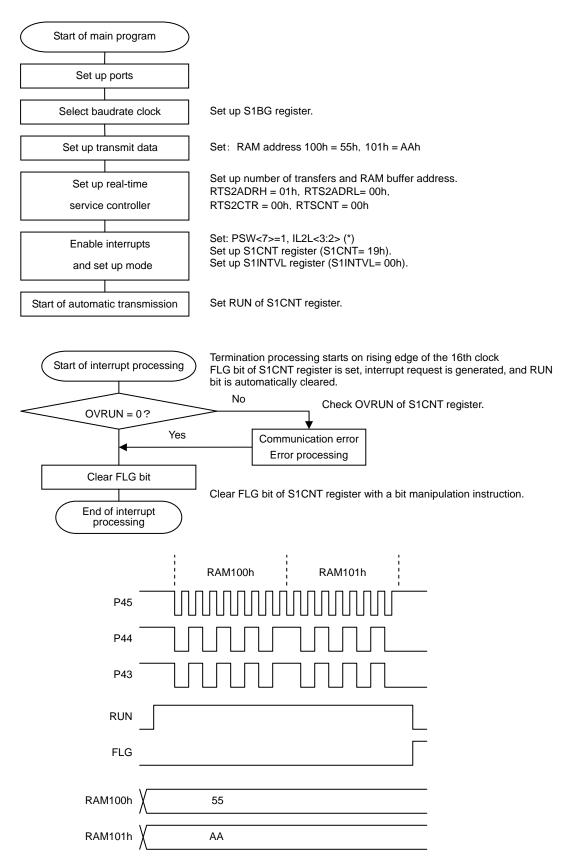
External clock, MSB first, P43 = L output, receive data = 2Ah, number of receive bits = 7




## 3.21.6.3 Mode 0 (transmission/reception) example

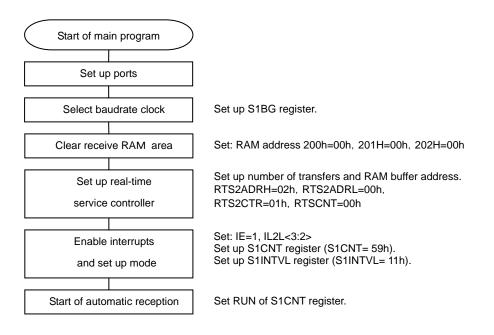
Internal clock, MSB first, receive data = 55h, transmit data = AAh, number of transmit/receive bits = 8

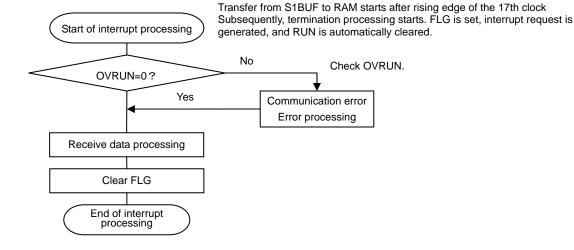


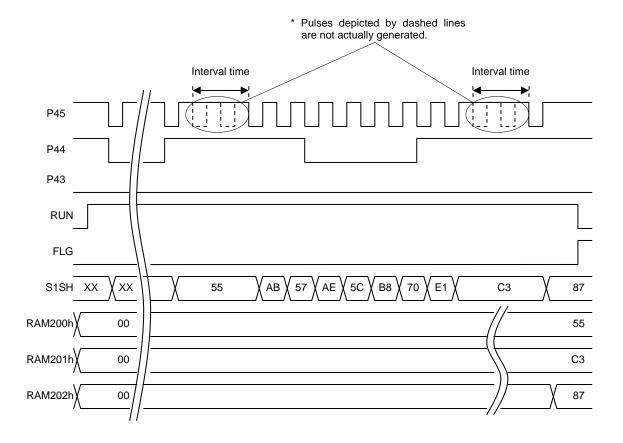

#### 3.21.6.4 Mode 0 (transmission/reception, wakeup) example

External clock, MSB first, receive data = 00h, transmit data = 80h, number of transmit/receive bits = 1



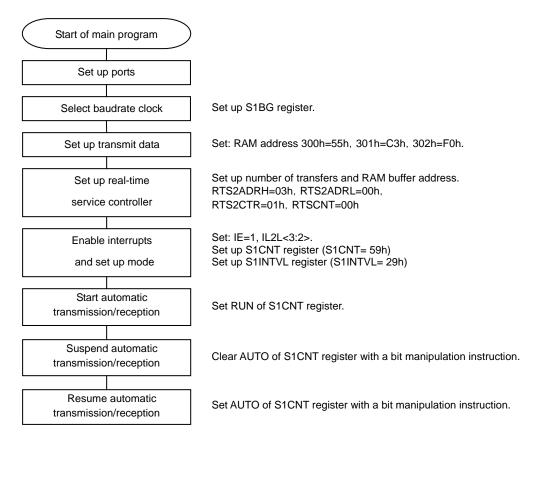

# 3.21.6.5 Mode 1 (automatic transmission) example

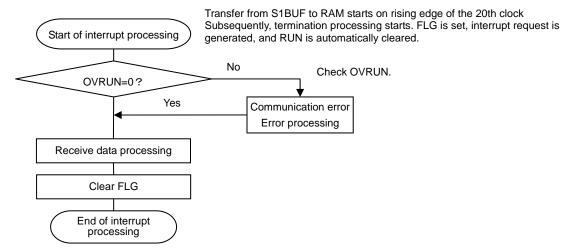

Internal clock, MSB first, transmit/receive data starting RAM buffer address = 100, interval time = 0, number of transmit bits = 16

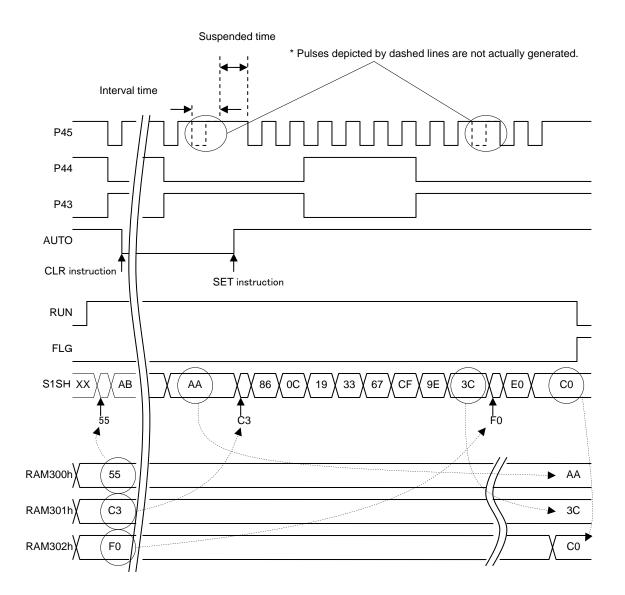



#### 3.29.6.6 Mode 1 (automatic reception) example

Internal clock, MSB first, receive data starting RAM buffer address = 200, interval time = 2, number of receive bits = 17, P43 = L output




#### 3.29.6.7 Mode 1 (automatic transmission/reception) example

Internal clock, MSB first, transmit/receive data starting RAM buffer address = 300, interval time = 1, number of transmit/receive bits = 18, communication resumes after being temporarily suspended







# 3.21.6.8 SIO1port settings

|          | Register | P43 State | Fast/    |                               |      |  |
|----------|----------|-----------|----------|-------------------------------|------|--|
| P4FSA<3> | P4DDR<3> | P4LAT<3>  | P4FSB<3> | F45 State                     | Slow |  |
| 1        | 1        | 0         | 0        | CMOS output<br>(Transmission) | Fast |  |
| 1        | 0        | 1         | 1        | CMOS output<br>(Transmission) | Slow |  |

1) Data transmission only port (P43) settings

# 2) Data transmission/reception port (P44) settings

|          | Register | P44 State | Fast/    |                               |      |
|----------|----------|-----------|----------|-------------------------------|------|
| P4FSA<4> | P4DDR<4> | P4LAT<4>  | P4FSB<4> | r44 Slale                     | Slow |
| 1        | 1        | 0         | 0        | CMOS output<br>(Transmission) | Fast |
| 1        | 0        | 1         | 1        | CMOS output<br>(Transmission) | Slow |
| 1        | 1        | 1         | 1        | Input<br>(Reception)          | _    |

3) Clock port (P45) settings

|          | Register | DAE State | Fast/    |                                  |      |
|----------|----------|-----------|----------|----------------------------------|------|
| P4FSA<5> | P4DDR<5> | P4LAT<5>  | P4FSB<5> | P45 State                        | Slow |
| 1        | 1        | 0         | 0        | CMOS output<br>(Internal clock)) | Fast |
| 1        | 0        | 1         | 1        | CMOS output<br>(Internal clock)) | Slow |
| 1        | 1        | 1         | 1        | Input<br>(External clock)        | _    |

# 3.22 SMIIC0 (Single Master I<sup>2</sup>C)

# 3.22.1 Overview

The I<sup>2</sup>C-bus module incorporated in this series of microcontrollers has the following two functions:

- 1)  $I^2C$  communication in the single-master master mode\*
- 2) Synchronous 8-bit serial I/O (2- or 3-wire system, data MSB first)

\* This module does not have an address comparator function. Consequently, it is necessary to perform address comparison and other processing under program control when using this module in the single-master slave mode or performing  $I^2C$  communication in the multi-master mode.

# 3.22.2 Circuit Configuration

### 3.22.2.1 I<sup>2</sup>C control register 0 (SMIC0CNT) (8-bit register)

- 1) This register controls the  $I^2C$ -bus mode.
- 2) This register controls interrupts.

## 3.22.2.2 I<sup>2</sup>C status register 0 (SMIC0STA) (8-bit register)

- 1) This register is used to provide  $I^2C$ -bus event detection flags.
- 2) This register controls the ACK data.

#### 3.22.2.3 I<sup>2</sup>C baudrate control register 0 (SMIC0BRG) (8-bit register)

- 1) This register is used to control the clock frequency of the noise filter in the SDA and SCL import blocks.
- 2) This register controls the frequency of the SCL clock.

#### 3.22.2.4 I<sup>2</sup>C data buffer 0 (SMIC0BUF) (8-bit register)

1) The data is transmitted and received through this register.

#### 3.22.2.5 I<sup>2</sup>C port control register 0 (SMIC0PCNT) (8-bit register)

1) This register controls the  $I^2C$  ports.

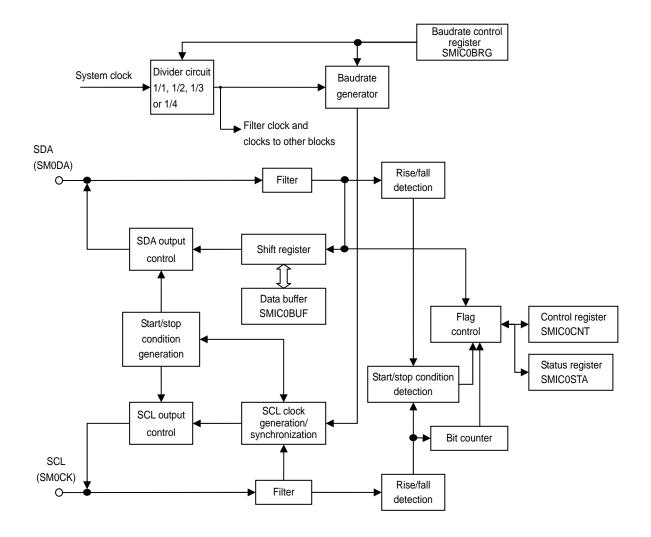



Figure 3.22.1 SMIIC0 Block Diagram

# 3.22.3 Related Registers

# 3.22.3.1 I<sup>2</sup>C control register 0 (SMIC0CNT)

1) This register is an 8-bit register used to control the operation of the SMIIC module.

| Address | Initial value | R/W | Name     | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|----------|------|------|------|------|------|------|------|------|
| 7F60    | 0000 0000     | R/W | SMIC0CNT | RUN  | MST  | TRX  | SCL8 | MKC  | BB   | END  | IE   |

#### RUN (bit 7): SMIIC0 operation control

Setting this bit to 1 activates the SMIIC0 module. Setting this bit to 0 stops the SMIIC0 module.

#### MST (bit 6): Master-slave control

•  $I^2C \mod (SMD = 0)$ 

When this bit is set to 1, the SMIIC0 module runs in master mode.

(The module generates start and stop conditions and sends transfer clocks.)

When this bit is set to 0, the SMIIC0 module runs in slave mode.

(The module generates no clocks. It performs data transmission and reception in synchronization with a clock from the master.)

Conditions under which MST is reset:

<1> A stop condition is detected.

<2> An arbitration lost is detected.

After an arbitration lost is detected, this bit remains uncleared and the transmission of the clock is continued until the end of the transfer of one byte.

After an arbitration lost, the MST flag is cleared when the interrupt request flag (END) is set.

• Synchronous 8-bit serial mode (SMD = 1) Setting this bit to 1 starts 8-bit communication.

Conditions under which MST is reset: <1> MST is reset on the rising edge of the 8th clock.

#### TRX (bit 5): Transmitter/receiver control

•  $I^2C \mod (SMD = 0)$ 

When this bit is set to 1, the SMIIC0 module serves as a transmitter. When this bit is set to 0, the SMIIC0 module serves as a receiver.

Conditions under which TRX is reset:

<1> A stop condition is detected.

<2> An arbitration lost is detected.

<3> A start condition is detected in slave mode.

• Synchronous 8-bit serial mode (SMD = 1)

Setting this bit to 1 places the module into data transfer mode.

Setting this bit to 0 places the module into data reception mode.

#### SCL8 (bit 4): Interrupt control on falling edge of 8th clock

•  $I^2C \mod (SMD = 0)$ 

When this bit is set to 1, an interrupt request is generated on the falling edge of the 8th clock. When this bit is set to 0, no interrupt request is generated on the falling edge of the 8th block.

Conditions under which SCL8 is set:

<1> A start condition is detected.

This bit is not cleared automatically. It must be cleared with an instruction.

• Synchronous 8-bit serial mode (SMD = 1) This bit must always be set to 0.

#### MKC (bit 3): Start/stop condition generation control

•  $I^2C \mod (SMD = 0)$ 

This bit is a write-only bit and is set to 1 to generate a start or stop condition. (This bit is always read as 0.)

• Synchronous 8-bit serial mode (SMD = 1) This bit must always be set to 0.

# BB (bit 2): Bus busy flag (read-only)

•  $I^2C \mod (SMD = 0)$ 

Bit 2 consists of a read-only BB and write-only BBW.

The read-only BB flag indicates the busy status of the bus. It is set when a start condition is detected and reset when a stop condition is detected.

A 1 in this bit indicates that the I<sup>2</sup>C bus is busy.

When generating a start condition, make sure that this bit is set to 0 and that both SDA and SCL are set to high (except when generating a restart condition).

• This bit is a read-only bit. It cannot be rewritten directly with an instruction.

Conditions under which BB is set:

<1> A start condition is detected.

Conditions under which BB is reset:

- <1> A stop condition is detected.
- <2> RUN is set to 0.

# BBW (bit 2): Start/stop condition generation control

Bit 2 consists of a read-only BB and write-only BBW.

The write-only BBW is used to control the generation of start/stop conditions by writing its value together with bits 6, 5, and 3 of this register (SMIC0CNT, 07F60h) with a MOV instruction.

• If the interrupt request enable control bit IE is set to 1:

Loading SMIC0CNT with EDh generates a start condition.

Loading SMIC0CNT with E9h generates a stop condition.

• If the interrupt request enable control bit IE is set to 0:

Loading SMIC0CNT with ECh generates a start condition.

Loading SMICOCNT with E8h generates a stop condition.

- \* See Section "3.22.6 Start Condition and Stop Condition," for details on the generation of start/stop conditions.
- Synchronous 8-bit serial mode (SMD = 1)

This bit is a read-only bit and gives the same value as MST (bit 6) when read.

#### END (bit 1): Interrupt flag

•  $I^2C \mod (SMD = 0)$ 

This bit is set at the end of data transfer or on a stop condition.

If this bit is set to 1 and SCL is set to low, this module continuously sends low signals to SCL until this flag is cleared, whether it is in master or slave mode.

Conditions under which END is set:

<1> The falling edge of the 8th clock if SCL8 is set to 1

- <2> The falling edge of the ACK clock
- <3> Stop condition detection

This bit is not cleared automatically. It must be cleared with an instruction.

When this bit is cleared, the module stops the continuous transmission of low signals to SCL and continues transfer processing. Data loading into or reading from the buffer SMICOBUF must be completed before this bit is cleared.

• Synchronous 8-bit serial mode (SMD = 1)

This bit is set at the end of data transfer.

Conditions under which END is set: <1> The rising edge of the 8th clock

This bit is not cleared automatically. It must be cleared with an instruction.

#### IE (bit 0): Interrupt request enable control

When this bit and END are set to 1, an interrupt request to vector address 0801CH is generated.

# 3.22.3.2 I<sup>2</sup>C status register 0 (SMIC0STA)

1) This register is an 8-bit register used to control the  $I^2C$  bus and detect each event.

| Address | Initial value | R/W | Name     | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|----------|------|------|------|------|------|------|------|------|
| 7F61    | 0000 0000     | R/W | SMIC0STA | SMD  | RQL9 | STD  | SPD  | AL   | OVR  | TAK  | RAK  |

# SMD (bit 7): I<sup>2</sup>C /synchronous 8-bit serial mode select

Setting this bit to 1 runs this module in the synchronous 8-bit serial mode. When this bit is set to 1, the noise filter function for the clock data input pin is disabled. Setting this bit to 0 runs this module in the  $I^2C$  communication mode.

When this bit is set to 0, the noise filter function for the clock data input pin is enabled.

#### RQL9 (bit 6): ACK clock timing detection flag (read-only)

This flag is set and held at 1 from the falling edge of the 9th clock until the falling edge of the next clock. This bit is a read-only bit. It cannot be rewritten directly with an instruction.

\* This bit is not used in synchronous 8-bit serial mode (SMD = 1). This bit is always read as 0.

#### STD (bit 5): Start condition detection flag

This flag bit is set when a start condition is detected.

Conditions under which STD is set:

<1> A start condition is detected.

This bit is not cleared automatically. It must be cleared with an instruction.

\* This bit is not automatically set in the synchronous 8-bit serial mode (SMD = 1). This bit must always be set to 0.

#### SPD (bit 4): Stop condition detection flag

This flag is set when a stop condition is detected.

Conditions under which SPD is set:

<1> A stop condition is detected.

This bit is not cleared automatically. It must be cleared with an instruction.

\* This bit is not automatically set in the synchronous 8-bit serial mode (SMD = 1). This bit must always be set to 0.

#### SMIIC0

# AL (bit 3): Arbitration lost detection flag

This flag is set when an arbitration lost is detected in master mode.

Conditions under which AL is set:

- <1> On the rising edges of the 1st to 8th clocks in master transmitter mode and on the rising edge of the 9th clock in master receiver mode, when the state of the internal SDA is high and the level at the SDA pin is low.
- <2> Generation of start conditions is disabled by the duplicate start condition prevention function.

This bit is not cleared automatically. It must be cleared with an instruction.

\* This bit is not automatically set in the synchronous 8-bit serial mode (SMD = 1). This bit must always be set to 0.

#### OVR (bit 2): Overrun detection flag

•  $I^2C \mod (SMD = 0)$ 

This flag is set if the falling edge of the clock on the SCL line is detected when BB (07F60h, bit 2) is set to 0.

Conditions under which OVR is set:

<1> A falling edge of SCL is detected when BB is set to 0.

This bit is not cleared automatically. It must be cleared with an instruction.

• Synchronous 8-bit serial mode (SMD = 1)

This flag is set if the falling edge of the clock on the SCL line is detected when MST (07F60h, bit 6) is set to 0.

Conditions under which OVR is set:

<1> A falling edge of SCL is detected when MST is set to 0.

This bit is not cleared automatically. It must be cleared with an instruction.

#### TAK (bit 1): ACK clock time SDA control bit

The value of this bit is placed in SDA at the ACK clock timing in master receiver/slave receiver mode. In master transmitter/slave transmitter mode, SDA is set to the high level at the ACK clock timing regardless of the value of this bit.

Conditions under which TAK is set:

- <1> A stop condition is detected.
- <2> An arbitration lost is detected.
- <3> A start condition is detected in slave mode.

\* This bit must always be set to 0 in the synchronous 8-bit serial mode (SMD = 1).

# RAK (bit 0): Receive ACK data storage bit (read-only)

This bit stores the ACK receive data.

This bit is loaded with the SDA data that is established when an ACK clock occurs in both transmitter and receiver modes.

Conditions under which RAK is set: <1> SDA is set to the high level on the rising edge of an ACK clock.

Conditions under which RAK is reset:

<1> SDA is set to the low level on the rising edge of an ACK clock.

This bit is a read-only bit. It cannot be rewritten directly with an instruction.

\* This bit is not used in synchronous 8-bit serial mode (SMD = 1). This bit is always read as 0.

#### 3.22.3.3 I<sup>2</sup>C baudrate control register 0 (SMIC0BRG)

1) This register is an 8-bit register that controls the frequency of the SDA and SCL filter clocks and the frequency of the SCL clocks.

| Address | Initial value | R/W | Name     | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|----------|------|------|------|------|------|------|------|------|
| 7F62    | 0000 0000     | R/W | SMIC0BRG | BRP  |      | BRDQ | BRD  |      |      |      |      |

#### BRP (bits 7 and 6): Filter clock control

| BRP | Filter Clock Period<br>(Tfilt) |
|-----|--------------------------------|
| 00  | Tcyc × 1                       |
| 01  | Tcyc × 2                       |
| 10  | Tcyc × 3                       |
| 11  | Tcyc × 4                       |

\* Tcyc denotes the period of the system clock.

BRP must be set so that the filter clock period Tfilt falls within the following value range:

250nsec  $\geq$  Tfilt > 140nsec

#### System Clock Frequencies and BRP Values

| System Clock | BRP | Tfilt                                      |
|--------------|-----|--------------------------------------------|
| 4 MHz        | 00  | $250 \text{ ns} \times 1 = 250 \text{ ns}$ |
| 6 MHz        | 00  | $166 \text{ ns} \times 1 = 166 \text{ ns}$ |
| 7 MHz        | 00  | $143 \text{ ns} \times 1 = 143 \text{ ns}$ |
| 8 MHz        | 01  | $125 \text{ ns} \times 2 = 250 \text{ ns}$ |

#### BRDQ (bit 5): SCL clock frequency control

This bit must be set to 1 in STANDARD-mode and to 0 in FAST-mode.

## BRD (bits 4 to 0): SCL clock frequency control

Assuming that the 5 bits of BRD are set to n, the SCL clock period Tfsck is calculated as follows:

When BRDQ = 0 (FAST-mode) Tfsck = Tfilt  $\times$  (n + 1)  $\times$  2

When BRDQ = 1 (STANDARD-mode) Tfsck = Tfilt × (n + 1) × 8

The SCL clock frequency fsck is calculated as follows:

When BRDQ = 0 (FAST-mode) fsck =  $1/(Tfilt \times (n + 1) \times 2)$ 

When BRDQ = 1 (STANDARD-mode) fsck =  $1/(Tfilt \times (n + 1) \times 8)$ 

- \* Tfilt denotes the filter clock period that is determined by the system clock frequency and filter clock control bits BRP (SMIC0BRG, bits 7 and 6).
- \* When used in I<sup>2</sup>C communication mode (SMD=0), the n value set by the 5 bits of BRD must be 4 or greater (setting it to a value of 0 to 3 is inhibited).

\* When used in synchronous 8-bit serial mode (SMD=1), set this register as follows: BRP (SMIC0BRG, bits 7 and 6) = 00

BRDQ = 0 or 1

The n value set by the 5 bits of BRD must be 3 or greater (setting it to a value of 0 to 2 is inhibited).

The output clock frequency fsck is then determined by the following formulas:

When BRDQ = 0:fsck = 1 / (Tcyc × (n + 1) × 2)When BRDQ = 1:fsck = 1 / (Tcyc × (n + 1) × 8)

# STANDARD-mode: BRDQ = 1 SCL Frequency (kHz)

| BDD            | Tfilt F   | Period    |  |  |
|----------------|-----------|-----------|--|--|
| BRD<br>Value n | 250ns     | 166ns     |  |  |
| Value II       | (4MHz)    | (6MHz)    |  |  |
| 00h            | Inhibited | Inhibited |  |  |
| 01h            | Inhibited | Inhibited |  |  |
| 02h            | Inhibited | Inhibited |  |  |
| 03h            | Inhibited | Inhibited |  |  |
| 04h            | 100       | *         |  |  |
| 05h            | 83.3      | *         |  |  |
| 06h            | 71.4      | *         |  |  |
| 07h            | 62.5      | 94.1      |  |  |
| 08h            | 55.6      | 83.7      |  |  |
| 09h            | 50        | 75.3      |  |  |
| 0Ah            | 45.5      | 68.5      |  |  |
| 0Bh            | 41.7      | 57.9      |  |  |
| 0Ch            | 38.5      | 53.8      |  |  |
| 0Dh            | 35.7      | 50.2      |  |  |
| 0Eh            | 33.3      | 47.1      |  |  |
| 0Fh            | 31.3      | 44.3      |  |  |
| 10h            | 29.4      | 41.8      |  |  |
| 11h            | 27.8      | 39.6      |  |  |
| :              | :         | :         |  |  |
| 1Ch            | 17.2      | 25.9      |  |  |
| 1Dh            | 16.7      | 25.1      |  |  |
| 1Eh            | 16.1      | 24.3      |  |  |
| 1Fh            | 15.6      | 23.5      |  |  |

FAST-mode: BRDQ = 0 SCL Frequency (kHz)

| JCL I   | requency (kHz) | New'r d   |  |  |
|---------|----------------|-----------|--|--|
| BRD     |                | Period    |  |  |
| Value n | 250ns          | 166ns     |  |  |
|         | (4MHz)         | (6MHz)    |  |  |
| 00h     | Inhibited      | Inhibited |  |  |
| 01h     | Inhibited      | Inhibited |  |  |
| 02h     | Inhibited      | Inhibited |  |  |
| 03h     | Inhibited      | Inhibited |  |  |
| 04h     | 400            | *         |  |  |
| 05h     | 333.3          | *         |  |  |
| 06h     | 328.7          | *         |  |  |
| 07h     | 250            | 376.5     |  |  |
| 08h     | 222.2          | 334.7     |  |  |
| 09h     | 200            | 301.2     |  |  |
| 0Ah     | 181.8          | 273.8     |  |  |
| 0Bh     | 166.7          | 251       |  |  |
| 0Ch     | 153.8          | 231.7     |  |  |
| 0Dh     | 142.9          | 215.1     |  |  |
| 0Eh     | 133.3          | 200.8     |  |  |
| 0Fh     | 125            | 188.3     |  |  |
| 10h     | 117.6          | 177.2     |  |  |
| 11h     | 111.1          | 167.3     |  |  |
| :       | :              | :         |  |  |
| 1Ch     | 69             | 103.9     |  |  |
| 1Dh     | 66.7           | 100.4     |  |  |
| 1Eh     | 64.5           | 97.23     |  |  |
| 1Fh     | 62.5           | 94.1      |  |  |

\* Out of I<sup>2</sup>C bus specifications

# 3.22.3.4 I<sup>2</sup>C data buffer 0 (SMIC0BUF)

1) This buffer is an 8-bit register used to store the receive data or write the transmit data.

| Address | Initial value | R/W | Name     | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|----------|------|------|------|------|------|------|------|------|
| 7F63    | 0000 0000     | R/W | SMIC0BUF | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

• Data reception

•  $I^2C \mod (SMD = 0)$ 

The data from the receive shift register is transferred to the SMICOBUF register on the falling edge of the 8th SCL clock in both transmitter and receiver modes.

• Synchronous 8-bit serial mode (SMD = 1)

The data from the receive shift register is transferred to the SMIC0BUF register on the rising edge of the 8th SCL clock in both transmitter and receiver modes.

- Data transmission
  - $I^2C \mod (SMD = 0)$

In the transmitter mode, the contents of the SMICOBUF register are transferred to the transmit shift register at one of the following timings:

<1> A start condition is detected

<2> Data is written into SMIC0BUF when END is set to 1.

• Synchronous 8-bit serial mode (SMD = 1)

In the data transmission mode, the contents of the SMICOBUF register are transferred to the transmit shift register at the following timing:

<1> Data is written into SMIC0BUF when MST is set to 0.

# 3.22.3.5 I<sup>2</sup>C port control register 0 (SMIC0PCNT)

1) This register is a 4-bit register used to control the  $I^2C$  ports.

| Address | Initial value | R/W | Name      | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|-----------|------|------|------|------|------|------|------|------|
| 7F68    | LLLL 0000     | R/W | SMIC0PCNT | -    | -    | -    | -    | SHDS | P5V  | PCLV | PSLW |

#### SHDS (bit 3): SDA internal HOLD time adjustment

This bit must normally be set to 0.

#### P5V (bit 2): I<sup>2</sup>C port voltage control

When using a 5V power supply, set this bit to 1.

When using a 3V power supply, set this bit to 0.

## PCLV (bit 1): I<sup>2</sup>C port threshold voltage control

When this bit is set to 1, the  $I^2C$  port threshold voltage is set to the CMOS level.

When this bit is set to 0, the  $I^2C$  port threshold voltage is set to the TTL level.

This bit must be set to 1 when the module is to be used in  $I^2C$  mode.

# PSLW (bit 0): I<sup>2</sup>C port slow control

When this bit is set to 1, the output characteristics of ports P22 and P23 is set to slow.

When this bit is set to 0, the output characteristics of ports P22 and P23 is controlled by P2LAT, P2DDR, P2FSA, and P2FSB.

When this bit is set to 1, the fall time of the output signal at P22 and P23 are set to slow mode, but the interval from the time a low signal output is placed at pin P22 or P23 until the time the pin voltage is actually set to the low level becomes longer.

This bit should be set to 0 if there is no problem with the fall time characteristics of the output signal.

# 3.22.3.6 SMIIC port settings

| 1) Clock I/O port (P22) settings |  |
|----------------------------------|--|
|----------------------------------|--|

|          | Regist   | er Data  |          | Port P22 State                                                   |
|----------|----------|----------|----------|------------------------------------------------------------------|
| P2FSA<2> | P2FSB<2> | P2LAT<2> | P2DDR<2> | Output                                                           |
| 1        | 1        | 1        | 1        | Open (external clock input in synchronous 8-bit serial mode)     |
| 1        | 0        | 0        | 1        | Clock output (CMOS)                                              |
| 1        | 1        | 1        | 0        | Clock output (slow CMOS change)                                  |
| 1        | 1        | 0        | 1        | Clock output/ I <sup>2</sup> C SCL output (N-channel open drain) |

2) Data I/O port (P23) settings

|          | Regist   | er Data  |          | Port P23 State               |                                                                    |  |  |
|----------|----------|----------|----------|------------------------------|--------------------------------------------------------------------|--|--|
| P2FSA<3> | P2FSB<3> | P2LAT<3> | P2DDR<3> | Input                        | Output                                                             |  |  |
| 1        | 1        | 1        | 1        | Enabled (data receive input) | Open                                                               |  |  |
| 1        | 0        | 0        | 1        | Enabled (data receive input) | Data output (CMOS)                                                 |  |  |
| 1        | 1        | 1        | 0        | Enabled (data receive input) | Data output<br>(slow CMOS change)                                  |  |  |
| 1        | 1        | 0        | 1        | Enabled (data receive input) | Data output/ I <sup>2</sup> C SDA output<br>(N-channel open drain) |  |  |

3) Data output port (P24) settings (Used in the 3-wire synchronous 8-bit serial mode)

|          | Regist   | er Data  |          | Port P24 State                     |
|----------|----------|----------|----------|------------------------------------|
| P2FSA<4> | P2FSB<4> | P2LAT<4> | P2DDR<4> | Output                             |
| 1        | 0        | 0        | 1        | Data output (CMOS)                 |
| 1        | 1        | 1        | 0        | Data output (slow CMOS change)     |
| 1        | 1        | 0        | 1        | Data output (N-channel open drain) |

- \* When using this module in I<sup>2</sup>C mode, set PCLV of the I<sup>2</sup>C port control register 0 (SMIC0PCNT) to 1 and configure P22 and P23 for I<sup>2</sup>C SCL output (N-channel open drain) and I<sup>2</sup>C SDA output (N-channel open drain), respectively
- \* The PSLW bit of the I<sup>2</sup>C port control register 0 (SMIC0PCNT) should be set to 0 (fast mode) if there is no problem with the signal fall time characteristics.
- \* When using an external clock in synchronous 8-bit serial mode, set the clock I/O port to open. Also set the data I/O port to open when receiving data in synchronous 8-bit serial mode.

# 3.22.4 Notes on the Configuration of the I<sup>2</sup>C Ports for Slow Setting

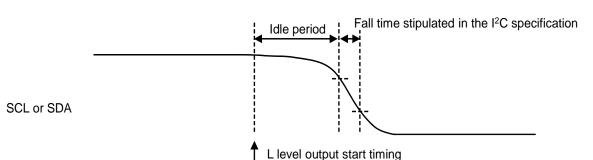



Figure 3.22.2 I<sup>2</sup>C Port Falling Waveform

When the I<sup>2</sup>C port output characteristics is the slow setting, the interval from the time the output of the low level signal is started until the time the port actually falls down to the low level becomes longer than when the port output characteristics is the fast setting as shown in the above figure.

Note that the I<sup>2</sup>C I/O characteristics described in the datasheet is specified on the basis of the output start timing.

# 3.22.5 Waveform of Generated Clocks and SCL Rise Times

# 3.22.5.1 Waveform of generated clocks

The SCL clock waveform has a duty cycle of 50% of the clock period Tfsck that is defined by the  $I^2C$  baudrate control register 0 (SMIC0BRG).

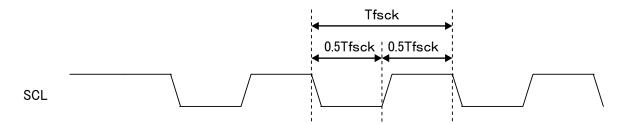



Figure 3.22.3 SCL Clock Waveform

If the clock frequency is set to 400 kHz for processing in FAST-mode, the low period of the SCL is 1.25  $\mu$ s (provided that the rise and fall times of the signal are ignored), which does not meet the I<sup>2</sup>C bus interface specification (1.3  $\mu$ s minimum).

To cope with this issue, consider the following countermeasures:

- 1) Reduce the transfer rate so as to meet the specification.
- 2) Adjust the rise and fall times by adjusting the external components such as the resistance of the pull-up resistor.

Also note that the low level period of SCL is further shortened when the  $I^2C$  port output characteristics is the slow setting as the interval from the time the output of the low level signal is started until the time the port actually falls down to the low level becomes longer.

#### 3.22.5.2 SCL rise time

This module always monitors the rise timing of the SCL clock line and attempts to establish synchronization to guarantee the predetermined high-level width of the clock output even if the SCL line is set to low by another master or slave in  $I^2C$  mode.

The SCL rise time is defined by the  $I^2C$  bus interface specifications as being within 300 ns in FAST-mode and within 1000 ns in STANDARD-mode.

No problem occurs in FAST-mode because the maximum SCL rise time is 300 ns. If the rise time is longer than (Tfilt  $\times$  2.5) in STANDARD-mode, however, the module's synchronization function is activated, making the transfer rate lower than the preset clock frequency.

| System Clock | BRP1 | BRP0 | Tfilt  | Tfilt x 2.5 |
|--------------|------|------|--------|-------------|
| 4 MHz        | 0    | 0    | 250 ns | 625 ns      |
| 6 MHz        | 0    | 0    | 166 ns | 415 ns      |
| 7 MHz        | 0    | 0    | 143 ns | 357 ns      |
| 8 MHz        | 0    | 1    | 250 ns | 625 ns      |

To run the module at the preset transfer rate, set the resistance of the pull-up resistor and the load capacitance so that the rise time of the SCL line is shorter than the Tfilt  $\times 2.5$  value that is shown above.

# 3.22.6 Start Condition and Stop Condition

#### 3.22.6.1 Definition of start and stop conditions

SDA must be in a stable state while SCL is high. That is, it is only when SCL is low that the state of SDA can switch between high and low. By making use of this fact, the  $I^2C$  protocol defines special conditions for signals indicating start and stop of data transfer as follows:

• Start condition (S)

Data transfer start condition. The state of SDA changes from high to low when SCL is set to high.

• Stop condition (P)

Data transfer stop condition. The state of SDA changes from low to high when SCL is set to high.

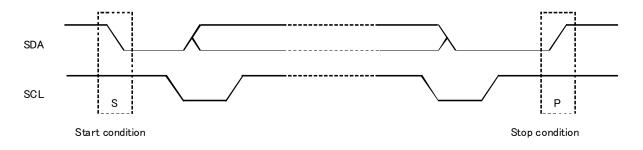



Figure 3.22.4 Start and Stop Conditions

#### SMIIC0

#### 3.22.6.2 Generating a start condition

The process of generating a start condition is initiated by loading the  $I^2C$  control register SMIC0CNT with the value given below when SMIIC operation control bit RUN (SMIIC0CNT, bit 7) is preset to 1.

Since bit 0 of the SMIC0CNT register is an interrupt request enable control bit, data to be loaded into the register varies depending on whether interrupts are to be enabled (IE = 1) or disabled (IE = 0).

Methods of generating a start condition:

Loading SMIC0CNT with EDh (when enabling interrupts) Loading SMIC0CNT with ECh (when disabling interrupts)

# 3.22.6.3 Start condition generation timing

Before generating a start condition, make sure that the BB flag (SMIC0CNT, bit 2) is set to 0. Follow the procedure given below when starting this module after a reset.

- <1> Set the filter clock and baudrate clock using SMIC0BRG.
- <2> Set RUN (SMIC0CNT, bit 7) to 1.
- <3> Insert wait equivalent to several baudrate clock cycles and make sure that both BB (SMIC0CNT, bit 2) and OVR (SMIC0STA, bit 2) are set to 0.
- <4> To determine whether SDA and SCL lines are fixed by another master or slave device, read the SDA and SCL ports and make sure that they are set to high.
- <5> If the result of the check in steps <3> and <4> is OK, it indicates that the start condition instructions can be safely executed.
- <6> If the result of the check in steps <3> and <4> is NG, it determines that the use of the bus is started by another master before this module starts operation and waits until a stop condition is received. (It is necessary to perform wait time timeout processing using a timer in a situation in which the bus is locked under an abnormal condition)
- <7> In a single master configuration or if the wait processing for a stop condition performed in step <6> times out, it is necessary to generate a stop condition by manipulating relevant ports under program control, considering that the bus is locked by another slave device.
  - Step 1. Set SCL to low by manipulating ports under program control. In this case, if SDA is low, manipulate ports and supply clocks to SCL until SCL goes low and SDA goes high.
  - Step 2. Manipulate ports under program control to change the state of the SDA and SCL lines as follows:

1- SDA = H SCL = L 2- SDA = L SCL = L 3- SDA = L SCL = H4- SDA = H SCL = H

(When the ports are manipulated as indicated above, it is necessary to take the setup/hold times for the other devices into consideration.)

The figure below shows a timing example for generating a start condition.

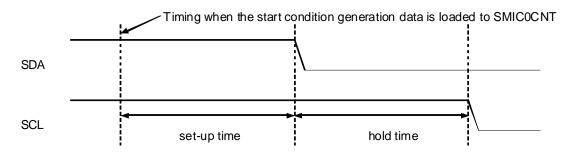



Figure 3.22.5 Start Condition Generation Timing Diagram

#### 3.22.6.4 Restart condition generation timing

Follow the procedure below to generate a restart condition which is required to switch the transmission/reception mode or the destination slave device without generating a stop condition after transmitting a start condition and transmitting/receiving data in master communication mode.

- <1> If the module is in master receiver mode, send ACK data = 1 (NACK) to force the slave to release the SDA line.
- <2> After the falling edge of the ACK data clock, make sure that END (SMIC0CNT, bit 1) is set to 1 and RQL9 (SMIC0STA, bit 6) is set to 1. While END = 1, the low level is kept output to the SCL line.
- <3> Load SMICOBUF with 7 bits of slave address data and the R/W bit.
- <4> Load SMICOCNT with the data for generating a start condition.
- <5> Loading SMICOCNT with the data for generating a start condition causes END (SMICOCNT, bit 1) to be cleared and, after the elapse of the pre-set-up time for the restart condition, causes the SCL line to be released. Since the END flag is cleared by the start condition instruction, if interrupt processing is being executed as controlled by IE (SMICOCNT, bit 0) set to 1, it is necessary to execute this start condition instruction immediately before exiting that interrupt processing.

The figure below shows a timing example for generating a restart condition.

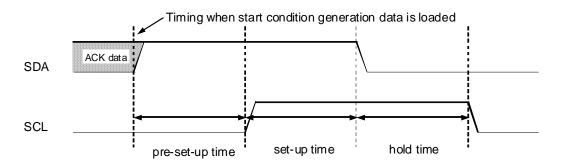



Figure 3.22.6 Restart Condition Generation Timing

#### SMIIC0

#### 3.22.6.5 Generating a stop condition

The process for generating a stop condition begins when END (SMIC0CNT, bit 1) is set to 1 on the falling edge of the ACK clock and the  $I^2C$  control register SMIC0CNT is loaded with the data given below while SCL is held low.

Since the bit 0 of SMIC0CNT is an interrupt request enable control bit, the data to be loaded into the SMIC0CNT register varies depending on whether interrupts are to be enabled (IE = 1) or disabled (IE = 0).

Methods of generating a stop condition:

Loading SMICOCNT with E9h (when enabling interrupts)

Loading SMICOCNT with E8h (when disabling interrupts)

#### 3.22.6.6 Stop condition generation timing

Follow the procedure below when generating a stop condition in master communication mode.

- <1> When the module is in master receiver mode, send ACK data = 1 (NACK) to force the slave to release the SDA line.
- <2> After the falling edge of the ACK data clock, make sure that END (SMIC0CNT, bit 1) is set to 1 and RQL9 (SMIC0STA, bit 6) is set to 1. While END = 1, the low level is kept output to the SCL line.
- <3> Load SMIC0BUF with 0FFh.
- <4> Load SMICOCNT with the data for generating a stop condition.
- <5> Loading SMICOCNT with the data for generating a stop condition causes END (SMICOCNT, bit 1) to be cleared and, after the elapse of the pre-set-up time, causes the SCL line to be released. Since the END flag is cleared by the stop condition instruction, if interrupt processing is being executed as controlled by IE (SMICOCNT, bit 0) set to 1, it is necessary to execute this stop condition instruction immediately before exiting that interrupt processing.

The figure below shows a timing example for generating a stop condition.

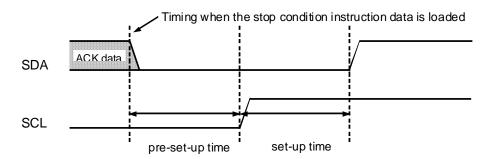
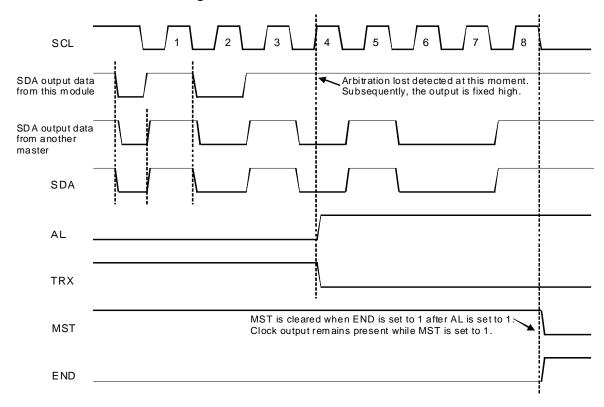




Figure 3.22.7 Stop Condition Generation Timing

# 3.22.7 Arbitration Lost

#### 3.22.7.1 Arbitration

Arbitration refers to the process of enabling communication or the procedure for enabling one and only master to control a bus. Arbitration is implemented by ANDing the SDA lines to the devices (the SDA line being set to low under the influence of a device that generates a low output). In this case, a master whose output does not match the SDA value is disabled for communication. Such a master needs to keep its output high so that it does not affect the SDA line. This state of a master that becomes disabled for communication is called an arbitration lost. The arbitration lost is detected when generating a start condition and when sending data in master mode.



#### 3.22.7.2 Arbitration lost during data transfer

Figure 3.22.8 Arbitration Lost During Data Transfer

An arbitration lost during data transfer is identified by the SDA value that is established on the rising edge of SCL.

In Figure 3.22.8, since the output value of the internal SDA is high and the SDA value is low on the rising edge of the 4th clock, an arbitration lost is detected at this point and AL is set to 1.

Following the detection of an arbitration lost, AL is set, TRX is reset, and the SDA output is fixed at high. MST is not reset at this point and the transmission of SCL clocks is continued.

MST is cleared at the timing when END is set. When SCL8 (SMICOCNT, bit 4) is set to 1, MST is cleared on the falling edge of the 8th clock, and on the falling edge of the 9th clock if SCL8 is set to 0, after which the transmission of clocks is stopped.

The detection of an arbitration lost is attempted in the data block (1st to 8th clocks) in master transmitter mode and in the ACK block (9th clock) in master receiver mode.

A master that has detected an arbitration lost needs to continue its operation as a slave until a stop condition is detected.

#### SMIIC0

#### 3.22.7.3 Arbitration lost while a start condition is being transmitted

An arbitration lost is detected during the period from the execution of a start condition instruction until a start condition is generated under one of the following two conditions:

- <1> The overrun detection flag OVR (SMIC0STA, bit 2) or the start condition detection flag STD (SMIC0STA, bit 5) is set to 1 when the start condition instruction is being executed.
- <2> A change in the state of SDA from high to low is detected earlier than expected during the generation of the start condition due to the influences exerted by another master.

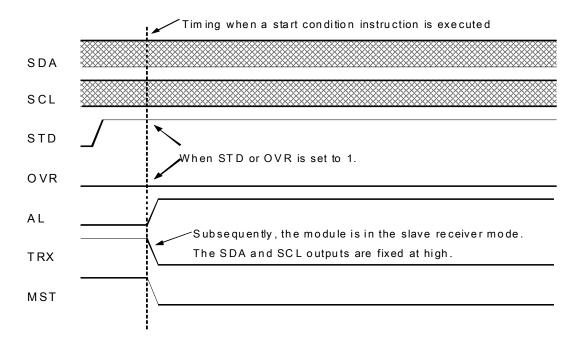



Figure 3.22.9 Arbitration Lost During Start Condition Generation <1>

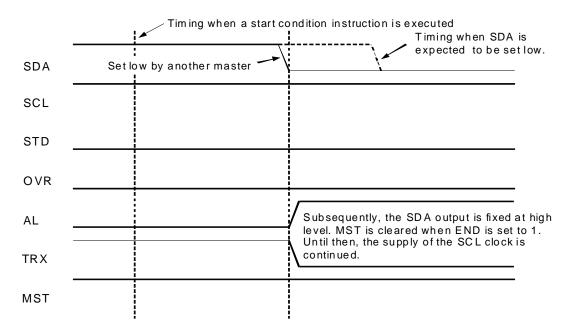
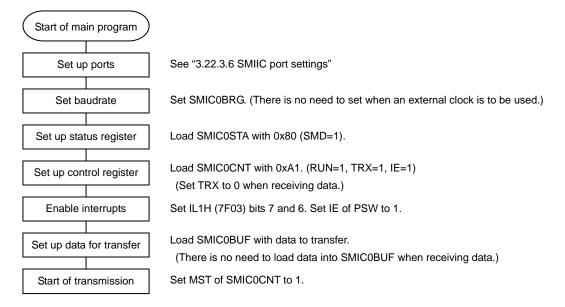
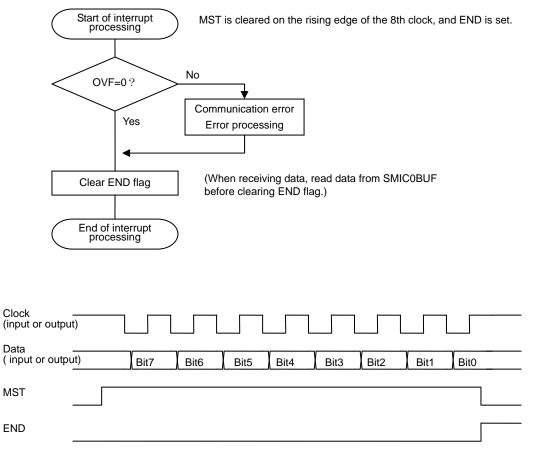



Figure 3.22.10 Arbitration Lost During Start Condition Generation <2>


If an arbitration lost is detected under the condition <1> above, both MST and TRX are cleared at the timing when AL is set to 1, which causes the module to enter the slave receiver mode and to receive the incoming address.

If an arbitration lost is detected under the condition  $\langle 2 \rangle$  above, TRX is cleared at the timing when AL is set to 1 but MST is not cleared. As in the case of arbitration lost during data transfer discussed in 3.22.7.2, the transmission of clocks is continued and MST is cleared at the timing when END is set. At this moment, the module enters the slave receiver mode and processes the received address under program control.


# 3.22.8 Examples of Simple SIO Mode Communication

# 3.22.8.1 Example of transmitting/receiving 1 byte in simple SIO mode

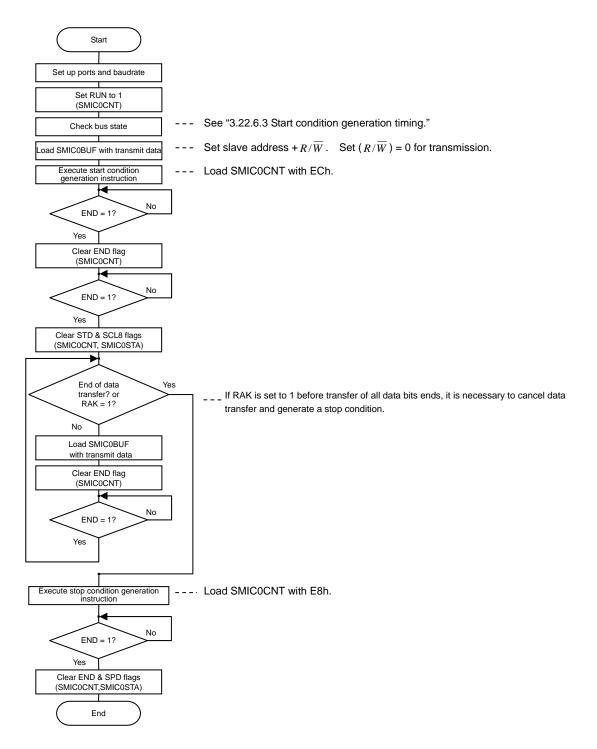
1. Main Program



# 2. Interrupt processing



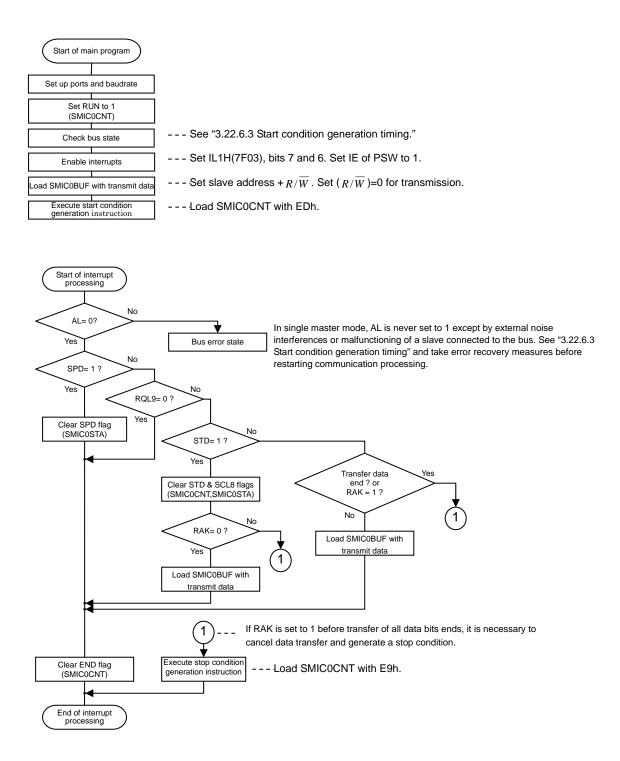



# 3.22.9 Examples of Single Master I<sup>2</sup>C Communication

The I<sup>2</sup>C communication flowcharts of each mode are given below.

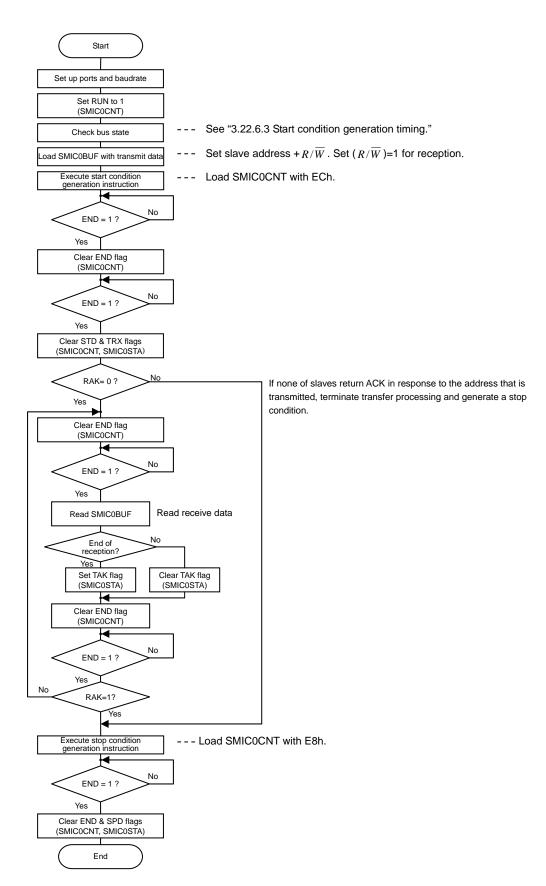
\* If it is expected that abnormal conditions can occur due to noise interferences or malfunctioning of the devices connected to the bus, it is necessary to provide measures to avoid lock conditions by implementing timeout processing using a timer, etc.

### 3.22.9.1 Example of transmitting data in single master mode (using no interrupt)


Below is the flowchart for sending data without using an interrupt.



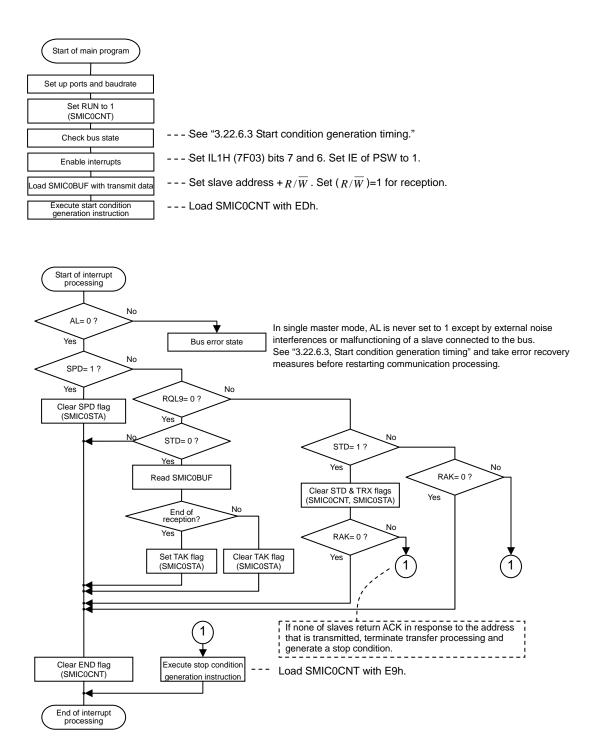
#### SMIIC0


# 3.22.9.2 Example of transmitting data in single master mode (using interrupts)

Below is the flowchart for sending data using interrupts.



# 3.22.9.3 Example of receiving data in single master mode (using no interrupt)


Below is the flowchart for receiving data without using an interrupt.



#### SMIIC0

# 3.22.9.4 Example of receiving data in single master mode (using interrupts)

Below is the flowchart for receiving data using interrupts.



# 3.23 PWM0

# 3.23.1 Overview

The PWM0 incorporated in this series of microcontrollers is a 12-bit PWM module that has two outputs (PWM0A and PWM0B). It is made up of a PWM generator circuit that generates variable period 8-bit fundamental PWM waves and a 4-bit additional pulse generator circuit.

# 3.23.2 Functions

- PWM0 fundamental wave period Fundamental wave period = (16 to 256) TPWMR0 (Variable in units of 16TPWMR0, common to PWM0A and PWM0B)
- 2) PWM0A output
  - <1> Fundamental wave PWM mode (register PWM0AL set to 0) High-level pulse width = 0 to fundamental wave period – TPWMR0 (variable in units of TPWMR0)
  - <2> Fundamental wave + additional pulse PWM mode Overall period = Fundamental wave period × 16 High-level pulse width = 0 to overall period – TPWMR0 (variable in units of TPWMR0)

# 3) PWM0B output

<1>Fundamental wave PWM mode (register PWM0BL set to 0)

High-level pulse width = 0 to fundamental wave period – TPWMR0 (variable in units of TPWMR0)

- <2> Fundamental wave + additional pulse PWM mode Overall period = Fundamental wave period × 16 High-level pulse width = 0 to overall period – TPWMR0 (variable units of TPWMR0)
- 4) Interrupt generation

Interrupt requests are generated at the intervals equal to the overall PWM0 period if the interrupt request enable bit is set.

- 5) It is necessary to manipulate the following special function registers to control the PWM0.
  - PWM0AL, PWM0AH, PWM0BL, PWM0BH, PWM0C, PWM0PR
  - PWMCNT, P4LAT, P4DDR, P4FSA, P4FSB

| Address | Initial value | R/W | Name   | BIT7 | BIT6 | BIT5 | BIT4 | BIT3    | BIT2    | BIT1 | BIT0   |
|---------|---------------|-----|--------|------|------|------|------|---------|---------|------|--------|
| 7FAA    | 0000 LLLL     | R/W | PWM0AL | BIT7 | BIT6 | BIT5 | BIT4 | -       | -       | -    | -      |
| 7FAB    | 0000 0000     | R/W | PWM0AH | BIT7 | BIT6 | BIT5 | BIT4 | BIT3    | BIT2    | BIT1 | BIT0   |
| 7FAC    | 0000 LLLL     | R/W | PWM0BL | BIT7 | BIT6 | BIT5 | BIT4 | -       | -       | -    | -      |
| 7FAD    | 0000 0000     | R/W | PWM0BH | BIT7 | BIT6 | BIT5 | BIT4 | BIT3    | BIT2    | BIT1 | BIT0   |
| 7FAE    | 0000 0000     | R/W | PWM0C  |      | С    | Н    |      | ENPWM0B | ENPWM0A | OV   | IE     |
| 7FAF    | 0000 0000     | R/W | PWM0PR | BIT7 | BIT6 | BIT5 | BIT4 | BIT3    | BIT2    | BIT1 | BIT0   |
| 7FB6    | 0000 00L0     | R/W | TMCLK0 |      | PI   | R0   |      | PRO     | OCK     | -    | PWM0CK |

# 3.23.3 Circuit Configuration

# 3.23.3.1 PWM0 control register (PWM0C) (8-bit register)

1) This register controls the operation and interrupts of PWM0.

# 3.23.3.2 PWM0 fundamental wave counter (8-bit counter)

- 1) Start/stop: Stop/start is controlled by the 0/1 value of ENPWM0A (bit 2) or ENPWM0B (bit 3) of the PWM0C register.
- 2) Count clock: PWM0 prescaler match signal
- Match signal: A match signal is generated when the count value matches the value that is set up in bits CH.
- 4) Reset: When operation is stopped or a match signal is generated.

# 3.23.3.3 PWM0 additional pulse counter (4-bit counter)

- 1) Count clock: PWM0 match signal
- 2) Match signal: A match signal is generated when the count value matches the value that is set up in registers PWM0AL and PWM0BL.
- 3) Reset: When the PWM0 module is reset.

# 3.23.3.4 PWM0A compare resister L (PWM0AL) (4-bit register)

- 1) This register controls the additional pulses of PWM0A.
- 2) PWM0AL is assigned bits 7 to 4 and all of its low-order 4 bits are set to 0 when read.

## 3.23.3.5 PWM0A compare register H (PWM0AH) (8-bit register with a match buffer register)

- 1) This register controls the high-level pulse width of PWM0A. It has an 8-bit match buffer register. The output of PWM0A is set to low when the value of this match buffer register matches the value of the PWM0 fundamental wave counter.
- 2) If bits 7 to 4 of PWM0AL are all fixed at 0, PWM0A can be used as a variable period 8-bit PWM that is controlled by PWM0AH.
- 3) The match buffer register is updated as follows:

When it is not running, the value of the match buffer register matches the value of PWM0AH.

When it is running, the match buffer register is loaded with the value of PWM0AH when the PWM0 fundamental wave counter reaches 0.

# 3.23.3.6 PWM0B compare register L (PWM0BL) (4-bit register)

- 1) This register controls the additional pulses of PWM0B.
- 2) PWM0BL is assigned bits 7 to 4 and all of its low-order 4 bits are set to 0 when read.

# 3.23.3.7 PWM0B compare register H (PWM0BH) (8-bit register with a match buffer register)

- 1) This register controls the high-level pulse width of PWM0B. It has an 8-bit match buffer register. The output of PWM0B is set to low when the value of this match buffer register matches the value of the PWM0 fundamental wave counter.
- 2) If bits 7 to 4 of PWM0BL are all fixed at 0, PWM0B can be used as a variable period 8-bit PWM that is controlled by PWM0BH.
- 3) The match buffer register is updated as follows:

When it is not running, the value of the match buffer register matches the value of PWM0BH.

When it is running, the match buffer register is loaded with the value of the PWM0BH when the PWM0 fundamental wave counter reaches 0.

### 3.23.3.8 PWM0 prescaler (PWM0PR) (8-bit register)

- 1) Start/stop: Stop/start is controlled by the 0/1 value of ENPWM0A (bit 2) or ENPWM0B (bit 3) of the PWM0C register.
- 2) Count clock: Selected by PWM0CK (bit 0) of TMCLK0.

| Mode | PWM0CK | PWM0 Prescaler Count Clock |
|------|--------|----------------------------|
| 0    | 0      | System clock (Tcyc)        |
| 1    | 1      | OSC1                       |

- Match signal: A match signal is generated when the count value matches the value that is set up in the 8-bit register PWM0PR <7:0>.
- 4) Reset: When operation is stopped or a match signal is generated.
- 5) PWM0 prescaler period TPWMR0 = (PWM0PR <7:0> + 1) × count clock

#### 3.23.3.9 Timer clock setting register 0 (TMCLK0) (8-bit register)

1) This register sets the count clock to the PWM0 prescaler.

#### 3.23.3.10 PWM0A output (PWM0A)

1) When PWM0A is not running, the output of PWM0A is held low. When it is running, it generates a variable period PWM output.

#### 3.23.3.11 PWM0B output (PWM0B)

1) When PWM0B is not running, the output of PWM0B is held low. When it is running, it generates a variable period PWM output.

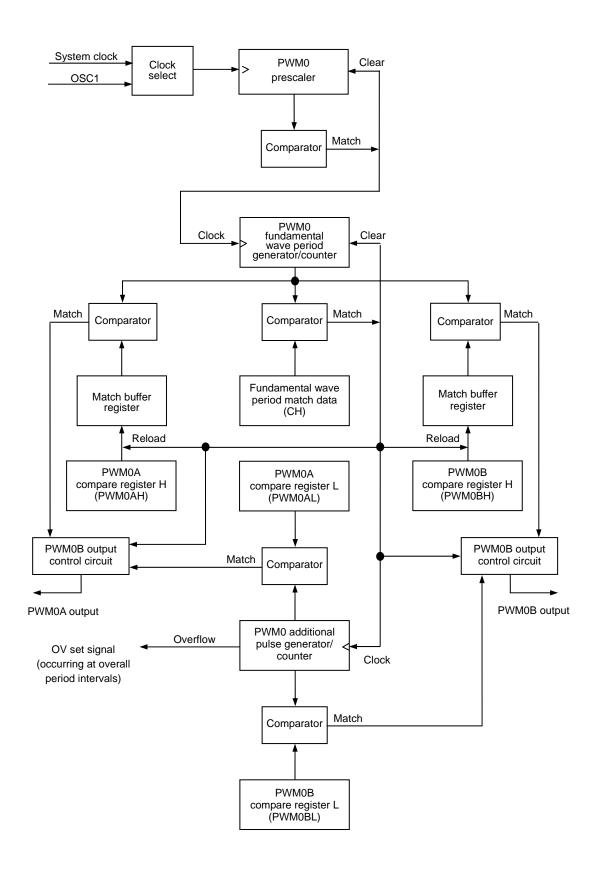



Figure 3.23.1 PWM0 Block Diagram

# 3.23.4 Related Registers

# 3.23.4.1 PWM0 control register (PWM0C) (8-bit register)

1) This register controls the operation and interrupts of PWM0.

| Address | Initial value | R/W | Name  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3    | BIT2    | BIT1 | BIT0 |
|---------|---------------|-----|-------|------|------|------|------|---------|---------|------|------|
| 7FAE    | 0000 0000     | R/W | PWM0C |      | С    | Н    |      | ENPWM0B | ENPWM0A | OV   | IE   |

# CH (bits 7 to 4): PWM0 period setting

Fundamental wave period = (Value set by CH +1)  $\times$  16TPWMR0 Overall period = Fundamental wave period  $\times$  16

# ENPWM0B (bit 3): PWM0B operation control

Setting this bit to 1 starts PWM0B.

Setting this bit to 0 stops PWM0B.

# ENPWM0A (bit 2): PWM0A operation control

Setting this bit to 1 starts PWM0A. Setting this bit to 0 stops PWM0A.

# OV (bit 1): PWM0 overflow flag

This flag is set at the intervals equal to the PWM0 overall period. This flag must be cleared with an instruction.

# IE (bit 0): PWM0 interrupt request enable control

When this bit and OV are set to 1, an interrupt request to vector address 802CH is generated.

# 3.23.4.2 PWM0A compare register L (PWM0AL) (4-bit register)

- 1) This register controls the additional pulses of PWM0A.
- 2) PWM0AL is assigned bits 7 to 4 and all of its low-order 4 bits are set to 0 when read.

| Address | Initial value | R/W | Name   | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|--------|------|------|------|------|------|------|------|------|
| 7FAA    | 0000 LLLL     | R/W | PWM0AL | BIT7 | BIT6 | BIT5 | BIT4 | -    | -    | -    | -    |

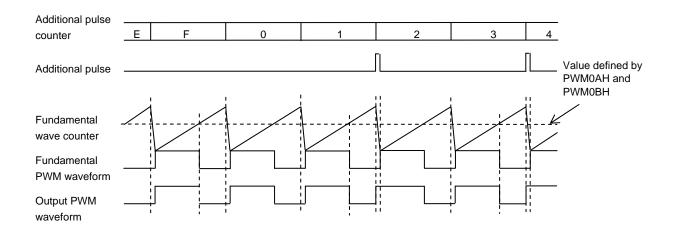
# 3.23.4.3 PWM0A compare register H (PWM0AH) (8-bit register)

- This register controls the high-level pulse width of PWM0A.
   High-level pulse width = (Value set by PWM0AH <7:0>) × TPWMR0
- 2) If bits 7 to 4 of PWM0AL are all fixed at 0, PWM0A can be used as a variable period 8-bit PWM that is controlled by PWM0AH.

| Address | Initial value | R/W | Name   | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|--------|------|------|------|------|------|------|------|------|
| 7FAB    | 0000 0000     | R/W | PWM0AH | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

# 3.23.4.4 PWM0B compare resister L (PWM0BL) (4-bit register)

- 1) This register controls the additional pulses of PWM0B.
- 2) PWM0BL is assigned bits 7 to 4 and all of its low-order 4 bits are set to 0 when read.


| Address | Initial value | R/W | Name   | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|--------|------|------|------|------|------|------|------|------|
| 7FAC    | 0000 LLLL     | R/W | PWM0BL | BIT7 | BIT6 | BIT5 | BIT4 | -    | -    | -    | -    |

#### <u>PWM0</u>

# 3.23.4.5 PWM0B compare register H (PWM0BH) (8-bit register)

- 1) This register controls the high-level pulse width of PWM0B.
  - High-level pulse width = (Value set by PWM0BH <7:0>) × TPWMR0
- 2) When bits 7 to 4 of PWM0BL are all fixed at 0, PWM0B can be used as a variable period 8-bit PWM that is controlled by PWM0BH.

| Address | Initial value | R/W | Name   | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|--------|------|------|------|------|------|------|------|------|
| 7FAD    | 0000 0000     | R/W | PWM0BH | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |



# 3.23.4.6 PWM0 prescaler (PWM0PR) (8-bit register)

1) This register sets the count value of the PWM0 prescaler.

| Address | Initial value | R/W | Name   | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|--------|------|------|------|------|------|------|------|------|
| 7FAF    | 0000 0000     | R/W | PWM0PR | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

# (Bits 7 to 0): PWM0 prescaler control

The above 8 bits define the period of the PWM0 prescaler.

PWM0PR period = (PWM0PR <7:0>+1) × count clock

# 3.23.4.7 Timer clock setting register 0

1) This register is used to select the clock source for PWM0.

| Address | Initial value | R/W | Name   | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0   |
|---------|---------------|-----|--------|------|------|------|------|------|------|------|--------|
| 7FB6    | 0000 00L0     | R/W | TMCLK0 |      | PF   | R0   |      | PRO  | )CK  | _    | PWM0CK |

# PR0 (bits 7 to 4): Not used by this module.

#### PR0CK (bits 3, 2): Not used by this module.

#### (Bit 1): Does not exist.

This bit is always read as 0.

#### PWM0CK (bit 0): PWM0 count clock select

| Mode | PWM0CK | PWM0 Prescaler Count Clock Source |
|------|--------|-----------------------------------|
| 0    | 0      | System clock                      |
| 1    | 1      | OSC1                              |

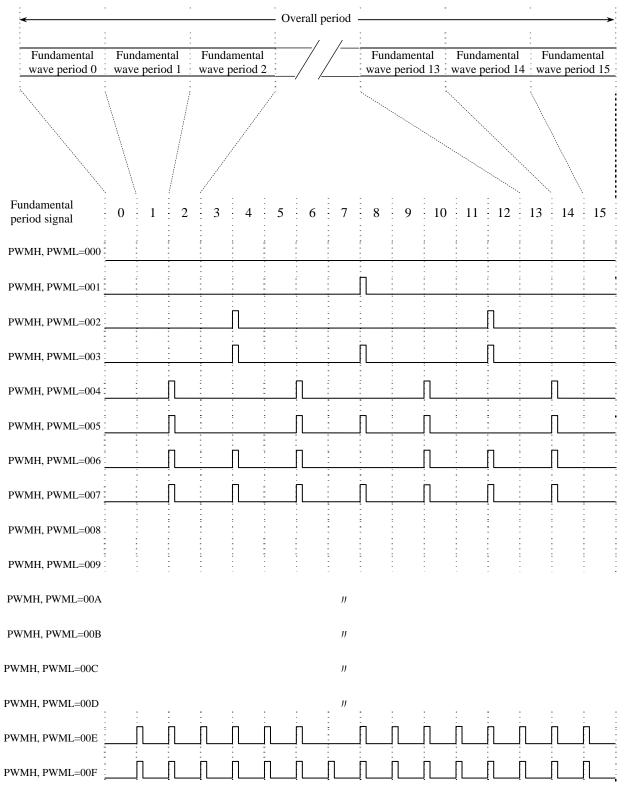
(Note) This bit must be set when the PWM module is stopped.

# 3.23.5 PWM0 Output Port Settings

1) PWM0A (P46)

|          | Regist   | er Data  |          | Port P46 State                      |  |  |  |  |  |
|----------|----------|----------|----------|-------------------------------------|--|--|--|--|--|
| P4FSA<6> | P4FSB<6> | P4LAT<6> | P4DDR<6> | Output                              |  |  |  |  |  |
| 1        | 0        | 1        | 0        | PWM0A output (CMOS inverted)        |  |  |  |  |  |
| 1        | 0        | 0        | 1        | PWM0A output (CMOS)                 |  |  |  |  |  |
| 1        | 1        | 1        | 0        | PWM0A output (slow CMOS change)     |  |  |  |  |  |
| 1        | 1        | 0        | 1        | PWM0A output (N-channel open drain) |  |  |  |  |  |

2) PWM0B (P47)


|          | Regist   | er Data  |          | Port P47 State                      |  |  |  |  |
|----------|----------|----------|----------|-------------------------------------|--|--|--|--|
| P4FSA<7> | P4FSB<7> | P4LAT<7> | P4DDR<7> | Output                              |  |  |  |  |
| 1        | 0        | 1        | 0        | PWM0B output (CMOS inverted)        |  |  |  |  |
| 1        | 0        | 0        | 1        | PWM0B output (CMOS)                 |  |  |  |  |
| 1        | 1        | 1        | 0        | PWM0B output (slow CMOS change)     |  |  |  |  |
| 1        | 1        | 0        | 1        | PWM0B output (N-channel open drain) |  |  |  |  |

#### <u>PWM0</u>

- The 12-bit PWM generates the waveforms of the type shown below.
  - The overall period consists of 16 fundamental wave periods.
  - A fundamental waveform period consists of 8 bits of PWM outputs. (PWM compare register H) (PWMH)
  - 4 bits are used to designate the fundamental wave period to which additional pulses are to be added. (PWM compare register L) (PWML)

12-bit register configuration  $\rightarrow$  (PWMH), (PWML) = XXXX XXXX, XXXX (12 bits)

- How pulses are added to the fundamental wave periods (Example 1)
  - PWM compare register H (PWMH) = 00 [H]
  - PWM compare register L (PWML) =0 to F [H]



- How pulses are added to fundamental wave periods
- PWM compare register H (PWMH) = 01 [H]
- PWM compare register L (PWML) =0 to F [H]

| <                                                                               |                      |          |          |                  | Ov       | verall p | period   |          |                    |             |            |                   | :          |                   |    |
|---------------------------------------------------------------------------------|----------------------|----------|----------|------------------|----------|----------|----------|----------|--------------------|-------------|------------|-------------------|------------|-------------------|----|
| Fundamental<br>wave period 0                                                    | Fundame<br>wave peri |          |          | amenta<br>period |          | _/_      | /—       |          | idamen<br>e perioc |             |            | amenta<br>eriod 1 |            | undame<br>ve peri |    |
|                                                                                 |                      |          |          |                  |          | , ,      |          |          | ****               |             |            |                   |            |                   |    |
| Fundamental period signal                                                       | 0 1                  | 2        | 3        | 4                | 5        | 6        | 7        | 8        | 9                  | 10          | 11         | 12                | 13         | 14                | 15 |
| PWMH, PWML=010                                                                  | Ļ                    | <u>İ</u> | j        | <u>İ</u>         | <u>İ</u> | ļ        | ļ        | ļ        | ļ                  | ļ           | ļ          | ļ                 | ļ          |                   |    |
| PWMH, PWML=011                                                                  |                      |          | <u>_</u> | <u>_</u>         | Ī        | ļ        | ļ        | ŗ        | ,<br>I             | <u></u>     | Ϊ          | <u>і</u>          | <u></u>    | Π                 |    |
| PWMH, PWML=012                                                                  |                      |          |          |                  |          |          | j        | I        |                    |             | <u></u>    |                   |            |                   |    |
| PWMH, PWML=013                                                                  |                      |          |          |                  |          | ļ        |          |          |                    | :<br> <br>  |            |                   |            | $\square$         |    |
| PWMH, PWML=014                                                                  |                      |          |          |                  | -<br>    |          |          |          |                    |             |            | <u></u>           | <br>       |                   |    |
| PWMH, PWML=015                                                                  |                      |          |          | -<br>            |          |          |          |          | ļ<br>ļ             |             |            |                   | :<br> <br> |                   |    |
| PWMH, PWML=016                                                                  |                      |          |          | <u>ا</u> ر       | ]        | j        | j        | j<br>    | <br>               | <u>і</u> л_ | <u></u>    | <br>              | ;<br>I     |                   |    |
| PWMH, PWML=017                                                                  |                      | j_       |          | j.               |          | j        | <u>.</u> | j        | ļ                  | ļ٦_         |            | j                 |            |                   |    |
| PWMH, PWML=018                                                                  |                      | -        |          |                  |          |          |          |          |                    |             |            |                   |            |                   |    |
| PWMH, PWML=019                                                                  |                      | -        | -        |                  | -        |          | -        | -        |                    | -           |            | -                 |            |                   |    |
| PWMH, PWML=01A                                                                  |                      |          |          |                  |          |          | IJ       |          |                    |             |            |                   |            |                   |    |
| PWMH, PWML=01B                                                                  |                      |          |          |                  |          |          | ]]       |          |                    |             |            |                   |            |                   |    |
| PWMH, PWML=01C                                                                  |                      |          |          |                  |          |          | ]]       |          |                    |             |            |                   |            |                   |    |
| PWMH, PWML=01D                                                                  | :                    |          | •        |                  | •        |          |          |          | •                  |             |            | •                 |            |                   |    |
| PWMH, PWML=01E                                                                  |                      | <u>j</u> | <u>_</u> | ļ1_              | <b> </b> | ļ.       | ļ.       | <u>.</u> | <u> </u>           | <b> </b>    | <u>ا</u> م | ļ.                | <b> </b>   |                   |    |
| PWMH, PWML=01F                                                                  |                      | j        | j        | j                |          | j        | j        | j        | j                  |             | j          | j                 |            |                   |    |
| • The fundamental wave period is variable within the range of 16 to 256 TPWMR0. |                      |          |          |                  |          |          |          |          |                    |             |            |                   |            |                   |    |

- Fundamental wave period = (Value defined by CH + 1) × 16 TPWMR0
- The overall period can be changed by changing the fundamental wave period.
- The overall period consists of 16 fundamental wave periods.

# 3.24 AD Converter

# 3.24.1 Overview

This series of microcontrollers incorporates a 12-bit resolution AD converter that has the features listed below. It allows the microcontroller to capture analog signals easily.

- 1) 12-bit resolution
- 2) Successive approximation
- 3) AD conversion mode select (resolution switching)
- 4) 11-channel analog input
- 5) Conversion time select
- 6) Automatic reference voltage generation control
- 7) 8-bit comparator

# 3.24.2 Functions

- 1) Successive approximation
  - The AD converter has a resolution of 12 bits.
  - Some conversion time is required after starting conversion processing.
  - The conversion results are transferred to the AD conversion result registers (ADRL, ADRH).
- 2) AD conversion select (resolution switching)

The AD converter supports two AD conversion modes (12- and 8-bit conversion modes), so that the appropriate conversion resolution can be selected according to the operating conditions of the application. The AD mode register (ADMR) is used to select the AD conversion mode.

3) 11-channel analog input

The signal to be converted is selected using the AD control register (ADCR) from the 11 types of analog signals that are supplied from ports P60 to P67 and P70 to P72.

4) Conversion time select

The AD conversion time can be set to  $\frac{1}{1}$ ,  $\frac{1}{2}$ ,  $\frac{1}{4}$ ,  $\frac{1}{8}$ ,  $\frac{1}{16}$ ,  $\frac{1}{32}$ ,  $\frac{1}{64}$ , and  $\frac{1}{128}$  (frequency division ratio). The AD control register (ADCR) is used to select the conversion time for appropriate AD conversion.

5) Automatic reference voltage generation control

The AD converter incorporates a reference voltage generator that automatically generates the reference voltage when an AD conversion starts and stops generation when the conversion ends. For this reason, set/reset control of reference voltage generation is not necessary. Also, there is no need to supply the reference voltage externally.

6) Comparator

The AD converter is provided with an 8-bit resolution comparator function so that it can compare 11 channels of analog inputs with the reference voltage.

- 7) It is necessary to manipulate the following special control registers (SFRs) to control the AD converter.
  - ADCR, ADMR, ADRL, ADRH, P6LAT, P6DDR, P6FSB, P7LAT, P7DDR, P7FSB.

| Address | Initial value | R/W | Name | BIT7    | BIT6 | BIT5 | BIT4 | BIT3 | BIT2  | BIT1   | BIT0 |
|---------|---------------|-----|------|---------|------|------|------|------|-------|--------|------|
| 7F20    | 0000 0000     | R/W | ADCR | CHSEL   |      |      |      | CMP  | START | ENDFLG | IE   |
| 7F21    | 0000 0000     | R/W | ADMR | - RESOL |      |      |      | -    | ADJ   | ME     | 010  |
| 7F22    | 0000 0000     | R/W | ADRL | DATAL   |      |      |      | -    | -     | -      | MD2  |
| 7F23    | 0000 0000     | R/W | ADRH | BIT7    | BIT6 | BIT5 | BIT4 | BIT3 | BIT2  | BIT1   | BIT0 |

# 3.24.3 Circuit Configuration

#### 3.24.3.1 AD conversion control

1) The AD conversion control circuit runs in two modes: 12- and 8-bit AD conversion modes.

#### 3.24.3.2 Comparator circuit

1) This circuit consists of a comparator that compares the analog input with the reference voltage and a control circuit that controls the reference voltage generator circuit and the conversion results. The conversion end flag (ENDFLG) of the AD control register (ADCR) is set when an analog input channel is selected and the AD conversion terminates in the conversion time designated by the conversion time control register. The conversion results are placed in the AD conversion result registers (ADRH, ADRL).

## 3.24.3.3 Multiplexer 1 (MPX1)

1) Multiplexer 1 is used to select the analog signal to be subject to AD conversion from 4 channels of analog signals.

# 3.24.3.4 Automatic reference voltage generator circuit

1) This circuit consists of a network of ladder resistors and a multiplexer (MPX2) and generates the reference voltage that is supplied to the comparator circuit. Generation of the reference voltage is automatically started when an AD conversion starts and automatically stopped when the conversion ends. The reference voltage output ranges from VDD to VSS.

# 3.24.4 Related Registers

# 3.24.4.1 AD converter control register (ADCR)

1) This register is an 8-bit register that controls the operation of the AD converter.

| Address | Initial value | R/W | Name | BIT7  | BIT6 | BIT5 | BIT4 | BIT3 | BIT2  | BIT1   | BIT0 |
|---------|---------------|-----|------|-------|------|------|------|------|-------|--------|------|
| 7F20    | 0000 0000     | R/W | ADCR | CHSEL |      |      |      | СМР  | START | ENDFLG | IE   |

# CHSEL (bits 7 to 4): AD conversion input signal select

These 4 bits are used to select the signal to be subject to AD conversion.

| CHSEL | Signal Input Pin |
|-------|------------------|
| 0000  | P60/AN0          |
| 0001  | P61/AN1          |
| 0010  | P62/AN2          |
| 0011  | P63/AN3          |
| 0100  | P64/AN4          |
| 0101  | P65/AN5          |
| 0110  | P66/AN6          |
| 0111  | P67/AN7          |
| 1000  | P70/AN8          |
| 1001  | P71/AN9          |
| 1010  | P72/AN10         |
| 1011  | -                |
| 1100  | -                |
| 1101  | -                |
| 1110  | -                |
| 1111  | -                |

#### CMP (bit 3): AD converter/comparator operating mode select

This bit selects the 8-bit comparator (1) or AD converter (0) operating mode. When this bit is set to 1, the AD converter runs as an 8-bit comparator. The conversion time must be specified using the mode register and the conversion result register low byte, and the channel must be specified using the input channel bits of this register. The comparison data is compared with the digital value defined in the conversion result register high byte (ADRH) and the comparison results are placed in bit 7 of the conversion result register low byte (ADRL).

When this bit is set to 0, the AD converter functions as a 12- or 8-bit AD converter. Either the 12- or 8-bit AD conversion mode must be selected through the mode register, the conversion time must be specified using the mode register and the conversion result register low byte, and the channel must be specified using the input channel bits of this register. The conversion results are placed in the conversion result register high byte (ADRH). In the 12-bit mode, the low-order 4 bits of the conversion results are placed in bits 7 to 4 of the conversion result register low byte (ADRL).

#### START (bit 2): AD converter/comparator operation control

This bit starts (1) and stops (0) the AD converter/comparator operation. The AD converter/comparator operation starts when this bit is set to 1. This bit is automatically reset when the AD converter/comparator operation ends. The time specified by the conversion time control register is required to complete the conversion. The conversion time is defined using the MD2 bit of the AD conversion result register low byte (ADRL) and the MD10 bits of the AD mode register (ADMR).

The AD converter/comparator operation is stopped when this bit is set to 0. No correct conversion results can be obtained if this bit is cleared when AD converter/comparator is in operation. Never clear this bit or place the microcontroller in HALT, HOLD, or HOLDX mode while the AD converter/comparator operation is in progress.

#### ENDFLG (bit 1): AD converter/comparator operation end flag

This bit identifies the end of an AD converter/comparator operation. It is set (1) when the AD converter/ comparator operation is terminated.

An interrupt request to vector address 8030H is generated when IE is set to 1. When IE is set to 0, it indicates that no AD converter/comparator operation is in progress.

This flag must be cleared with an instruction.

#### IE (bit 0): AD converter/comparator interrupt request enable control

An interrupt request to vector address 8030H is generated when this bit and ENDFLG are set to 1.

Notes:

- Do not place the microcontroller in HALT, HOLD, or HOLDX mode with START set to 1. Make sure that START is set to 0 before putting the microcontroller in HALT, HOLD, or HOLDX mode.
- When using in comparator operating mode, RESOL and ADJ of the AD mode register (ADMR) need to be set to 0 and 1, respectively.

#### 3.24.4.2 AD mode register (ADMR)

1) This register is an 8-bit register for controlling the operating mode of the AD converter.

| Address | Initial value | R/W | Name | BIT7 | BIT6  | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|------|------|-------|------|------|------|------|------|------|
| 7F21    | 0000 0000     | R/W | ADMR | -    | RESOL | -    | -    | -    | ADJ  | MD   | 010  |

#### (Bit 7): Fixed bit.

This bit must always be set to 0.

#### RESOL (bit 6): AD conversion mode control (resolution select)

This bit selects the AD converter resolution between 12-bit AD conversion mode (0) and 8-bit AD conversion mode (1).

When this bit is set to 1, the AD converter functions as an 8-bit AD converter. The conversion results are placed only in the AD conversion result register high byte (ADRH); the contents of the AD conversion result register low byte (ADRL) remain unchanged.

When this bit is set to 0, the AD converter functions as a 12-bit AD converter. The conversion results are placed in the AD conversion result register high byte (ADRH) and AD conversion result register low byte (ADRL).

#### (Bits 5 to 3): Fixed bits

These bits must always be set to 0.

#### ADJ (bit 2): Automatic offset compensation control

When used in AD conversion mode, this bit must be set to 0.

When used in comparator mode, this bit must be set to 1.

#### MD10 (bits 1, 0): AD conversion time control

These bits and MD2 (bit 0) of the AD conversion result register low byte define the conversion time.

| MD2 | MD10 | Frequency Division Ratio |
|-----|------|--------------------------|
| 0   | 00   | $\frac{1}{1}$            |
| 0   | 01   | $\frac{1}{2}$            |
| 0   | 10   | $\frac{1}{4}$            |
| 0   | 11   | $\frac{1}{8}$            |
| 1   | 00   | $\frac{1}{16}$           |
| 1   | 01   | $\frac{1}{32}$           |
| 1   | 10   | $\frac{1}{64}$           |
| 1   | 11   | $\frac{1}{128}$          |

Conversion time calculation formula

| • | 12-bit AD conversion mode: | Conversion time = $((52/(division ratio)) + 2) \times Tcyc$ |
|---|----------------------------|-------------------------------------------------------------|
|---|----------------------------|-------------------------------------------------------------|

• 8-bit AD conversion mode:

Conversion time =  $((32/(\text{division ratio})) + 2) \times \text{Tcyc}$ 

#### Notes:

- The conversion time is doubled in the following cases:
  - 1) The AD conversion is carried out in 12-bit AD conversion mode for the first time after a system reset.
  - 2) The AD conversion is carried out for the first time after the AD conversion mode is switched from 8-bit to 12-bit AD conversion mode.
- The conversion time determined by the above formula is required in the second and subsequent conversions or in AD conversions that are carried out in 8-bit AD conversion mode.

#### 3.24.4.3 AD conversion result register low byte (ADRL)

- 1) This register is used to hold the low-order 4 bits of the results of an AD conversion carried out in the 12-bit AD conversion mode and to control the conversion time.
- 2) Since the data in this register is not established during an AD conversion, the conversion results must be read out only after the AD conversion is completed.

| Address | Initial value | R/W | Name | BIT7 | BIT6  | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|------|------|-------|------|------|------|------|------|------|
| 7F22    | 0000 0000     | R/W | ADRL |      | DATAL |      |      |      | -    | -    | MD2  |

#### DATAL (bits 7 to 4): AD conversion result low byte

These bits hold the low-order 4 bits of the AD conversion results. The comparator comparison results are stored in bit 7 in comparator operation mode. This register can be used as a general-purpose read/write register when no AD conversion is to be performed.

#### (Bits 3 to 1): Fixed bit.

These bits must always be set to 0.

#### MD2 (bit 0): AD conversion time control

This bit and AD mode register bits MD10 are used to control the conversion time. See the subsection on the AD mode register for the procedure to set the conversion time.

#### Note:

The conversion result data contains errors (quantization error + combination error). Be sure to use only valid conversion results based on the specifications provided in the latest "ON Semiconductor Data Sheet."

#### 3.24.4.4 AD conversion result register high byte (ADRH)

- 1) This register is used to hold the high-order 8 bits of the results of an AD conversion that is carried out in 12-bit AD conversion mode. The register stores the entire 8 bits of the AD conversion result that is carried out in 8-bit AD conversion mode.
- Since the data in this register is not established during an AD conversion, the conversion results must be read out only after the AD conversion is completed.

| Address | Initial value | R/W | Name | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|------|------|------|------|------|------|------|------|------|
| 7F23    | 0000 0000     | R/W | ADRH | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

This register can be used as a general-purpose read/write register when no AD conversion is to be performed.

# 3.24.5 AD Conversion Examples

#### 3.24.5.1 12-bit AD conversion mode

- 1) Setting up the AD conversion mode
  - Set RESOL of the AD mode register (ADMR) to 0.
- 2) Setting up the conversion time
  - To set the conversion time to 1/32 frequency division, set MD2 (bit 0) of the AD conversion result register low byte to 1, and MD10 (bits 1 and 0) of the AD mode register to 01.
- 3) Setting up the input channel
  - When using AD channel input AN1, set CHSEL (bits 7 to 4) of the AD control register (ADCR) to 0001.
- 4) Starting AD conversion
  - Set START (bit 2) of the AD control register (ADCR) to 1.
- 5) Detecting the AD conversion end flag
  - Monitor ENDFLG (bit 1) of the AD control register (ADCR) until it is set to 1.
  - Clear the conversion end flag (ENDFLG) to 0.
- 6) Reading the AD conversion results
  - Read the AD conversion result register high byte (ADRH).
  - Read the AD conversion result register low byte (ADRL).
  - Send the above read data to application software processing.
  - Return to step 4) to repeat conversion processing.

# 3.24.5.2 Comparator operating example

- 1) Setting up the comparator operating mode
  - Set CMP (bit 3) of the AD control register (ADCR) to 1.
  - Set ADJ (bit 2) of the AD mode register (ADMR) to 1.
  - Set RESOL (bit 6) of the AD mode register (ADMR) to 0.
- 2) Setting up the conversion time
  - To set the conversion time to 1/32 frequency division, set MD2 (bit 0) of the AD conversion result register low byte to 1 and MD10 (bits 1 and 0) of the AD mode register to 01.

Conversion time calculation formula

Conversion time =  $((28/(division ratio)) + 2) \times Tcyc$ 

- 3) Setting up the input channel
  - To use the AD input channel AN1, set CHSEL (bits 7 to 4) of the AD control register (ADCR) to 0001.
- 4) Setting up comparison data
  - Load the AD conversion result register high byte (ADRH) with 8-bit comparison data.
- 5) Starting comparison processing.
  - Set START (bit 2) of the AD control register (ADCR) to 1.
- 6) Detecting the AD conversion end flag
  - Monitor ENDFLG (bit 1) of the AD control register (ADCR) until it is set to 1.
  - Clear the conversion end flag (ENDFLG) to 0.
- 7) Reading the AD conversion data
  - Read bit 7 of the AD conversion result register low byte (ADRL). The bit is set high if REF<AIN and set low if REF>AIN.
  - Send the above read data to application software processing.
  - Return to step 4) to repeat conversion processing.

# 3.24.6 Hints on the Use of the AD Converter

- The conversion time that the user can select varies depending on the frequency of the cycle clock. When preparing a program, refer to the latest edition of the "ON Semiconductor Data Sheet" to select the appropriate conversion time.
- 2) Setting START to 0 while conversion is in progress will stop the conversion function.
- 3) Do not place the microcontroller in HALT, HOLD, or HOLDX mode while AD conversion processing is in progress. Make sure that START is set to 0 before putting the microcontroller in HALT, HOLD, or HOLDX mode.
- 4) START is automatically reset and the AD converter stops operation if a reset is triggered while AD conversion processing is in progress.
- 5) When conversion is finished, the AD conversion end flag (ENDFLG) is set and, at the same time, the AD conversion operation control bit (START) is reset. The end of conversion condition can be identified by monitoring ENDFLG. An interrupt request to vector address 8030H is generated at the end of conversion by setting IE.

# <u>ADC</u>

Make sure that only input voltages that fall within the specified range are supplied to pins P60/AN0 to P67/AN7 and P70/AN8 to P72/AN10.
 Application of a voltage higher than VDD or lower than VSS to an input pin may exert an adverse

influence on the conversion value of the channel in question or of other channels.

- 7) As countermeasures to prevent a reduction in conversion accuracy due to noise interferences, add an external capacitor of 1000 pF or so to each analog input pin, or perform conversion operations several times and take an average of their results.
- 8) If digital pulses are applied to pins adjacent to the analog input pin that is being subject to conversion or if the state of output data at the adjacent pins is changed, expected conversion results may not be obtained due to coupling noises caused by such actions.
- 9) Correct conversion results may not be obtained because of noise interferences if the state of port outputs is changing. To minimize the adverse influences of noise interferences, it is necessary to keep line resistance across the power supply and the VDD pins of the microcontroller at a minimum. This should be kept in mind when designing an application circuit.

# 3.25 Real-time Service (RTS)

# 3.25.1 Overview

This series of microcontrollers performs continuous data processing using the processing module and the real-time service controller (RTS).

Continuous data processing takes place in two modes: Bus steal operation and wait operation

- 1) RTS accepts a bus steal request issued by each processing module and performs the bus steal operation.
- 2) RTS accepts a wait request issued by each processing module and performs the wait operation.

\* In this series, the processing modules are referred to as follows:

Processing module 1 = SIO0 Processing module 2 = SIO1

# 3.25.2 Functions

# 3.25.2.1 Bus steal operation and wait operation

1) Bus steal operation

Transfers data between the processing module and RAM via the internal data bus when the CPU is not using the internal data bus while executing an instruction.

2) Wait operation

Suspends the CPU instruction execution and transfers data between the processing module and RAM via the internal data bus.

#### 3.25.2.2 RAM buffer address

1) The address of the transfer RAM buffer is determined by the values of the base address register and transfer count counter set for each of the processing modules.

#### 3.25.2.3 Transfer count

- 1) The transfer count of processing module 1 is set by the RTS1 transfer count setting register (RTS1CTR).
- 2) The transfer count of processing module 2 is set by the RTS2 transfer count setting register (RTS2CTR).

#### 3.25.2.4 Special function register (SFR) manipulation

1) It is necessary to manipulate the following special function registers (SFRs) to control RTS.

RTS1ADRL, RTS1ADRH, RTS1CTR RTS2ADRL, RTS2ADRH, RTS2CTR RTSTST, RTSCNT

| Address | Initial value | R/W | Name     | BIT7 | BIT6 | BIT5   | BIT4   | BIT3   | BIT2 | BIT1      | BIT0 |
|---------|---------------|-----|----------|------|------|--------|--------|--------|------|-----------|------|
| 7FE0    | 0000 0000     | R/W | RTS1ADRL | BIT7 | BIT6 | BIT5   | BIT4   |        | С    | TRH       |      |
| 7FE1    | LLL0 0000     | R/W | RTS1ADRH | -    | -    | -      | BIT4   | BIT3   | 7FE1 | LLL0 0000 | R/W  |
| 7FE2    | 0000 0000     | R/W | RTS2ADRL | BIT7 | BIT6 | BIT5   | BIT4   | CTRH   |      |           |      |
| 7FE3    | LLL0 0000     | R/W | RTS2ADRH | -    | -    | -      | BIT4   | BIT3   | 7FE3 | LLL0 0000 | R/W  |
| 7FE4    | 0000 0000     | R/W | RTS1CTR  | BIT7 | BIT6 | BIT5   | BIT4   | BIT3   | 7FE4 | 0000 0000 | R/W  |
| 7FE5    | 0000 0000     | R/W | RTS2CTR  | BIT7 | BIT6 | BIT5   | BIT4   | BIT3   | 7FE5 | 0000 0000 | R/W  |
| 7FFE    | 0000 0000     | R/W | RTSTST   | BIT7 | BIT6 | BIT5   | BIT4   | BIT3   | 7FFE | 0000 0000 | R/W  |
| 7FFF    | LL00 0000     | R/W | RTSCNT   | -    | -    | INHWT2 | INHBS2 | INHWT1 | 7FFF | LL00 0000 | R/W  |

# 3.25.3 Circuit Configuration

3.25.3.1 RTS1 base address register (RTS1ADRL, RTS1ADRH) (16-bit register)

This register sets the address of the transfer RAM buffer for the processing module 1.

- **3.25.3.2 RTS1 transfer count setting register** (**RTS1ADRL**, **RTS1CTR**) (12-bit register) This register sets the transfer count for the processing module 1.
- 3.25.3.3 RTS1 transfer count counter (RTS1ADRL, RTS1C) (12-bit register)

This is the transfer count counter for the processing module 1.

3.25.3.4 RTS2 base address register (RTS2ADRL, RTS2ADRH) (16-bit register)

This register sets the address of the transfer RAM buffer for the processing module 2.

3.25.3.5 RTS2 transfer count setting register (RTS2ADRL, RTS2CTR) (12-bit register)

This register sets the transfer count for the processing module 2.

3.25.3.6 RTS2 transfer count counter (RTS2ADRL, RTS2C) (12-bit register)

This is the transfer count counter for the processing module 2.

#### 3.25.3.7 RTS test register (RTSTST) (8-bit register)

This is a RTS test register. This register must always be set to 0.

### 3.25.3.8 RTS control register (RTSCNT) (8-bit register)

This register enables or disables the RTS operation.

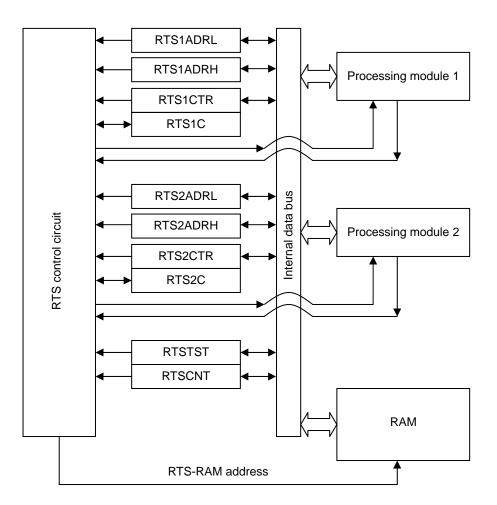



Figure 3.25.1 RTS Block Diagram

# 3.25.4 Related Registers

#### 3.25.4.1 RTS1 base address register (RTS1ADRL, RTS1ADRH)

1) This register is used to set the address of the transfer RAM buffer for the processing module 1.

| Address | Initial value | R/W | Name     | BIT7 | BIT6 | BIT5 | BIT4 | BIT3                | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|----------|------|------|------|------|---------------------|------|------|------|
| 7FE0    | 0000 0000     | R/W | RTS1ADRL | BIT7 | BIT6 | BIT5 | BIT4 | CTRH                |      |      |      |
| 7FE1    | LLL0 0000     | R/W | RTS1ADRH | -    | -    | -    | BIT4 | BIT3 BIT2 BIT1 BIT0 |      |      | BIT0 |

RTS1 base address = ((RTS1ADRH) << 8) & 0xFF00 + ((RTS1ADRL) & 0x00F0)

\* Do not change the base address while RTS1 is running.

#### 3.25.4.2 RTS2 base address register (RTS2ADRL, RTS2ADRH)

1) This register is used to set the address of the transfer RAM buffer for the processing module 2.

| Address | Initial value | R/W | Name     | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|----------|------|------|------|------|------|------|------|------|
| 7FE2    | 0000 0000     | R/W | RTS2ADRL | BIT7 | BIT6 | BIT5 | BIT4 | CTRH |      |      |      |
| 7FE3    | LLL0 0000     | R/W | RTS2ADRH | -    | -    | -    | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

RTS2 base address = ((RTS2ADRH) <<8) & 0xFF00 + ((RTS2ADRL) & 0x00F0)

\* Do not change the base address while the RTS2 is running.

#### 3.25.4.3 RTS1 transfer count setting register (RTS1ADRL, RTS1CTR)

1) This register sets the transfer count for the processing module 1.

| Address | Initial value | R/W | Name     | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|----------|------|------|------|------|------|------|------|------|
| 7FE0    | 0000 0000     | R/W | RTS1ADRL | BIT7 | BIT6 | BIT5 | BIT4 | CTRH |      |      |      |
| 7FE4    | 0000 0000     | R/W | RTS1CTR  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

<1> When the processing module 1 is in byte mode:

Processing module 1 transfer count = ((RTS1ADRL) << 8) & 0x0F00 + ((RTS1CTR) & 0x00FF) + 2The RTS1 transfer count counter is incremented by 1 every time a transfer operation is performed.

<2> When the processing module 1 is in word mode:

Processing module 1 transfer count =

((((RTS1ADRL) << 8) & 0x0F00 + ((RTS1CTR) & 0x00FE)) / 2) + 2

The RTS1 transfer count counter is incremented by 2 every time a transfer operation is performed.

<3> While RTS1 is running, this register is accessible provided that the RTS1 transfer count counter is set to R/O.

\*The RTS of this series of microcontrollers runs in the byte mode.

# 3.25.4.4 RTS2 transfer count setting register (RTS2CTR)

|         | -             |     |          |      |      | -    |      |      |      |      |      |
|---------|---------------|-----|----------|------|------|------|------|------|------|------|------|
| Address | Initial value | R/W | Name     | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
| 7FE2    | 0000 0000     | R/W | RTS2ADRL | BIT7 | BIT6 | BIT5 | BIT4 | CTRH |      |      |      |
| 7FE5    | 0000 0000     | R/W | RTS2CTR  | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

1) This register sets the transfer count for the processing module 2.

<1> When the processing module 2 is in byte mode:

Processing module 2 transfer count = ((RTS2ADRL) << 8) & 0x0F00 + ((RTS2CTR) & 0x0FF) + 2The RTS2 transfer count counter is incremented by 1 every time a transfer operation is performed.

<2> When the processing module 2 is in word mode:

Processing module 2 transfer count =

((((RTS2ADRL) << 8) & 0x0F00 + ((RTS2CTR) & 0x00FE)) / 2) + 2

The RTS2 transfer count counter is incremented by 2 every time a transfer operation is performed.

<3> While RTS2 is running, this register is accessible provided that the RTS2 transfer count counter is set to R/O

\* The RTS of this series of microcontrollers runs in the byte mode.

# 3.25.4.5 RTS test register (RTSTST)

1) This is a RTS test register. It must always be set to 0.

| Address | Initial value | R/W | Name   | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|--------|------|------|------|------|------|------|------|------|
| 7FFE    | 0000 0000     | R/W | RTSTST | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

#### 3.25.4.6 RTS control register (RTSCNT)

1) This register enables or disables the RTS operation.

| Address | Initial value | R/W | Name   | BIT7 | BIT6 | BIT5   | BIT4   | BIT3   | BIT2   | BIT1   | BIT0   |
|---------|---------------|-----|--------|------|------|--------|--------|--------|--------|--------|--------|
| 7FFF    | LL00 0000     | R/W | RTSCNT | -    | -    | INHWT2 | INHBS2 | INHWT1 | INHBS1 | INHWTP | INHBSP |

#### INHWT2 (bit 5): Processing module 2 wait disable

0: Enables wait of the processing module 2.

1: Disables wait of the processing module 2.

#### INHBS2 (bit 4): Processing module 2 bus steal disable

- 0: Enables bus steal of the processing module 2.
- 1: Disables bus steal of the processing module 2.

#### INHWT1 (bit 3): Processing module 1 wait disable

- 0: Enables wait of the processing module 1.
- 1: Disables wait of the processing module 1.

#### INHBS1 (bit 2): Processing module 1 bus steal disable

- 0: Enables bus steal of the processing module 1.
- 1: Disables bus steal of the processing module 1.

#### INHWTP (bit 1): Test bit

This bit must always be set to 0.

#### INHBSP (bit 0): Test bit

This bit must always be set to 0.

# 3.26 USM0

# 3.26.1 Overview

The USM0 (motor drive signal generator module) incorporated in this series of microcontrollers supports the following types of motors:

- 1) Ultrasonic motor (4-phase driven)
- 2) Two-phase stepping motor (1-, 2-, and 1-2 phase excitation)

# 3.26.2 Functions

#### 3.26.2.1 Ultrasonic motor drive signal generation

- 1) Generates four-phase pulses of which one period consists of Ph0 to Ph3.
- 2) The PLL clock (40MHz/48MHz) is used as the count clock source.
- 3) The 1-cycle period of the 4-phase outputs Ph0 to Ph3 is programmable in units of the count clock period.

Setting range of the 1-cycle period of 4-phase outputs:

 $(40 \text{ to } 4095) \times \text{count clock period}$ 

 The interval during which all Ph0 to Ph3 output is maintained low at phase switching time is programmable in units of the count clock period. Low-level interval value range:

 $(0 \text{ to } 1023) \times \text{count clock period}$ 

5) Period change and rotation reversal control during operation are possible.

#### 3.26.2.2 Stepping motor drive signal generation

- 1) Generates 2-phase stepping motor drive pulse waveforms (A, B, A, B).
- 2) The count clock source can be selected from among the system clock, timer 3 high byte match signal, and OSC0.
- 3) 1, 2, or 1-2 phase excitation can be selected.
- The step switching time for the drive waveforms is programmable in units of the count clock period. Programmable value range:

 $(2 \text{ to } 1023) \times \text{count clock period}$ 

5) The rise timing of the waveforms (A, B, A, B) can be delayed in units of the count clock period. Programmable value range:

 $(0 \text{ to } 1023) \times \text{count clock period}$ 

- 6) Period change and rotation reversal control during operation are possible.
- 7) Interrupt generation

An interrupt can be generated on a match between the USM0NPH value and the phase number counter value, on a phase number counter overflow, or at the acceptance timing of the STP bit.

### <u>USM0</u>

# 3.26.2.3 Special function register (SFR) manipulation

1) It is necessary to manipulate the following special function registers (SFRs) to control the USM0.

USM0CNT, USM0NPH, USM0TWL, USM0TWH USM0LPL, USM0LPH, USM0PSF, USMPLLC

| Address | Initial value | R/W | Name           | BIT7   | BIT6  | BIT5   | BIT4   | BIT3 | BIT2   | BIT1 | BIT0  |
|---------|---------------|-----|----------------|--------|-------|--------|--------|------|--------|------|-------|
| 7F80    | 0000 0000     | R/W | USM0CTL        | STPFLG | OVF   | NPHFLG | IE     | СК   | SL     | DIR1 | RUN   |
| 7F81    | 0000 0000     | R/W | <b>USM0NPH</b> | BIT7   | BIT6  | BIT5   | BIT4   | BIT3 | BIT2   | BIT1 | BIT0  |
| 7F82    | 0000 0000     | R/W | USM0TWL        | BIT7   | BIT6  | BIT5   | BIT4   | BIT3 | BIT2   | BIT1 | BIT0  |
| 7F83    | 00LL 0000     | R/W | USM0TWH        | DIR2   | STP   | -      | -      | BIT3 | BIT2   | BIT1 | BIT0  |
| 7F84    | 0000 0000     | R/W | USM0LPL        | BIT7   | BIT6  | BIT5   | BIT4   | BIT3 | BIT2   | BIT1 | BIT0  |
| 7F85    | L00L LL00     | R/W | USM0LPH        | -      | BRK   | MD     | -      | -    | -      | BIT1 | BIT0  |
| 7F86    | 0000 L000     | R/W | USM0PSF        | TSTA   | PWMMD | OUT    | MD     | -    |        | NPT  |       |
| 7F88    | 0L00 0000     | R/W | USMPLLC        | TSTB   | -     |        | SELREF |      | FRQSEL | VC3  | PLLON |

# 3.26.3 Circuit Configuration

# 3.26.3.1 USM0 control register (USM0CTL) (8-bit register)

1) This register controls the operation and interrupts of USM0.

# 3.26.3.2 Phase number counter (8-bit counter)

- 1) This counter counts the step number of the stepping motor waveform output.
- 2) It counts up at the timing when the USM0 output signal changes (advances 1 step).
- 3) The OVF flag (USM0CTL, bit6) is set when the counter value switches from 0FFh to 000h.
- 4) This counter is cleared to 0 on the match signal that occurs when the values of the phase number counter and the phase number setup register (USM0NPH) buffer register match.
- 5) If the phase number setup register is set to 000h, no match signal (described in 4) above), is generated and this counter becomes in a free running state.
- 6) The value of the phase number counter can be read by reading the USM0NPH register when STPFLG (bit7) of USM0CTL is set to 1.

# 3.26.3.3 Phase number setup register (USM0NPH) (8-bit register with a buffer register)

- 1) This register is used in stepping motor mode to define the number of steps during which the data for the preset rotational speed and direction are to be output continuously.
- 2) This register is not used in ultrasonic motor mode. It must be set to 0.
- 3) The step number for which data is to be output continuously is the value of USM0NPH + 1.
- 4) The phase number setup register has an 8-bit register and an 8-bit buffer register to which the value of this register is transferred.
- 5) When the value of the 8-bit buffer register matches the value of the phase number counter, a match signal is generated and the phase number counter is cleared to 0.

- 6) The 8-bit buffer register is loaded with the value of the USM0NPH register at the following timings:
  - When not operating (RUN = 0), the USM0NPH register and the buffer register have the same value.
  - When operating (RUN = 1), the value of the USM0NPH register is transferred to the buffer register when the match signal described in 3) is generated.
- 7) If the USM0NPH register is read when STPFLG (bit7) of USM0CTL is set to 1, the value of the phase number counter is read rather than the value of the USM0NPH register.

#### 3.26.3.4 Period counter (10-bit counter)

- 1) This counter controls the period of the pulse outputs.
- 2) When the value of the period counter matches the 10-bit value whose high-order 4 bits are from bits 3 to 0 of the period setup register high byte (USM0TWH) and whose low-order 6 bits are from bits 7 to 2 of the period setup register low byte (USM0TWL), a match signal is generated and the period counter is reset to 1.

#### 3.26.3.5 Period setup register (USM0TWH, USM0TWL) (14-bit register with a buffer register)

- 1) Ultrasonic mode
  - The period setup register holds a 12-bit value that defines the 1-cycle period of the 4-phase pulses Ph0 to Ph3. The high-order 4 bits of the 12-bit value are from bits 3 to 0 of the period setup register high byte (USM0TWH) and the low-order 8 bits are from bits 7 to 0 of the period setup register low byte (USM0TWL).
- 2) Stepping motor mode
  - The period setup register holds a 10-bit value that defines the interval at which steps are switched. The high-order 4 bits of the 10-bit value are from bits 3 to 0 of the period setup register high byte (USM0TWH) and the low-order 6 bits are from bits 7 to 2 of the period setup register low byte (USM0TWL).
- 3) The period setup register has a 14-bit register and a 14-bit buffer register to which the value of this register is transferred.
- 4) When the value of the period counter matches the 10-bit value whose high-order 4 bits are from bits 3 to 0 of the period setup register high byte (USM0TWH) and whose low-order 6 bits are from bits 7 to 2 of the period setup register low byte (USM0TWL), a match signal is generated and the period counter is reset to 1.
- 5) The 16-bit buffer register is loaded with the value of the register (USM0TWH, USM0TWL) at the following timings:
  - When not operating (RUN = 0), the USM0NPH register and the buffer register have the same value.
  - When operating (RUN = 1), if USM0NPH is set to 0, the value of the register (USM0TWH, USM0TWL) is transferred to the buffer register when the match signal described in 4) is generated.
  - When operating (RUN = 1), if the USM0NPH is set to a nonzero value, the value of the register (USM0TWH, USM0TWL) is transferred to the buffer register when the value of the phase number counter matches the value of USM0NPH and the match signal described in 4) is generated.

### 3.26.3.6 Low period setup register (USM0LPH, USM0LPL) (12-bit register with a buffer register)

- 1) This register defines the rise delay time of the output signals with a 10-bit value whose high-order 2 bits are from bits 1 and 0 of USM0LPH and whose low-order 8 bits are from bits 7 to 0 of USM0LPL.
- 2) The low period setup register has a 12-bit register and a 10-bit buffer register whose high-order 2 bits are from bits 1 and 0 of USM0LPH and whose low-order 8 bits are from bits 7 to 0 of USM0LPL.
- 3) The timing at which the value of this register is transferred to the 10-bit buffer register is identical to that at which the value of the period setup registers (USM0TWH, USM0TWL) is transferred to its buffer register.

# 3.26.3.7 Output waveform setup register (USM0PSF) (8-bit register)

1) This register controls the waveform of the output.

# 3.26.3.8 PLL control register (USMPLLC) (8-bit register)

1) This register controls the oscillation of the PLL circuit.

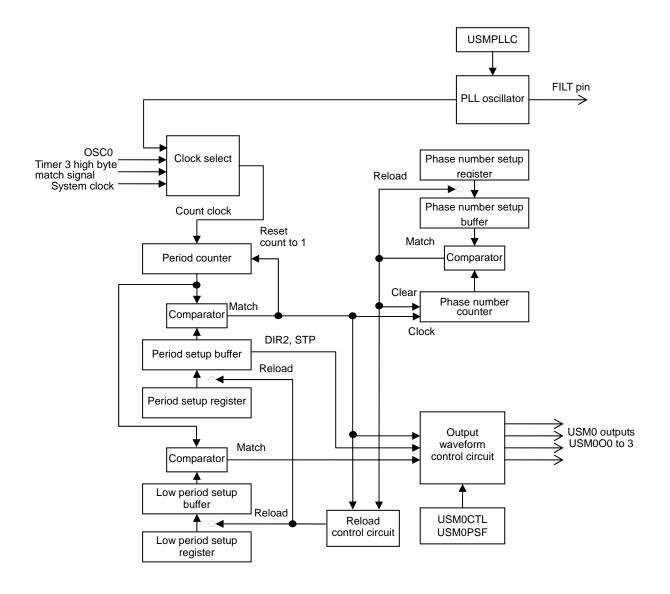



Figure 3.26.1 USM0 Block Diagram

# 3.26.4 Related Registers

#### 3.26.4.1 USM0 control register (USM0CTL)

1) This register controls the operation and interrupts of USM0.

| Address | Initial value | R/W | Name    | BIT7   | BIT6 | BIT5   | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|---------|--------|------|--------|------|------|------|------|------|
| 7F80    | 0000 0000     | R/W | USM0CTL | STPFLG | OVF  | NPHFLG | IE   | CK   | SL   | DIR1 | RUN  |

#### STPFLG (bit 7): STP bit acceptance flag

This bit is set to 1 when STP (bit 6) of USM0TWH is reloaded into the buffer register and the waveform output is stopped.

This bit is not cleared automatically. It must be cleared with an instruction.

#### OVF (bit 6): Phase number counter overflow flag

This bit is set to 1 when the value of the phase number counter switches from 0FFh to 000h.

Since the phase number counter is cleared when its value matches the value of the phase number setup register, this bit is set to 1 only when the value of the phase number setup register is set to 0FFh or 000h (counter free running).

This bit is not cleared automatically. It must be cleared with an instruction.

#### NPHFLG (bit 6): USM0NPH match flag

This bit is set to 1 when the value of the phase number counter matches the value of the phase number setup register (USM0NPH) and the phase number counter is reset to 000h.

If the phase number setup register (USM0NPH) is loaded with 000h, the phase number counter is placed in free running mode, in which case this bit is never set to 1 automatically.

This bit is not cleared automatically. It must be cleared with an instruction.

#### IE (bit 4): USM0 interrupt request enable signal

An interrupt request to vector address 8028h is generated when the result of ORing the three flag bits, i.e., STPFLG (bit 7), OVF (bit 6), and NPHFLG (bit 5) and the value of this bit are set to 1.

\* The interrupt function is not available in ultrasonic motor mode. This bit must always be set to 0 in that mode.

#### CKSL (bits 3 and 2): USM0 period counter count clock select

These two bits select the count clock for the period counter.

Select mode 2 when using the USM0 module in ultrasonic motor mode.

For stepping motor mode, select mode 0, 1, or 3.

| Mode | CKSL | Period Counter Count Clock     | Ultrasonic Motor | Stepping Motor |
|------|------|--------------------------------|------------------|----------------|
| 0    | 00   | System clock                   | ×                | 0              |
| 1    | 01   | Timer 3 high byte match signal | ×                | 0              |
| 2    | 10   | PLL clock (40MHz/48MHz)        | 0                | ×              |
| 3    | 11   | OSC0                           | ×                | 0              |

The count clock period is set as follows when mode 1 (timer 3 high byte match signal) is selected:

- 1) If timer 3 is configured for 16-bit mode, the 16-bit timer 3 period becomes the count clock period.
- 2) If timer 3 is configured for 8-bit mode, the period determined by the 8-bit timer 3 high byte becomes the count clock period.

#### DIR1 (bit 1): Ultrasonic motor rotational direction bit

This bit controls forward or reverse rotation in ultrasonic motor mode.

Setting this bit to 0 activates forward rotation mode.

Setting this bit to 1 activates reverse rotation mode.

\* This bit must always be set to 0 in stepping motor mode.

### RUN (bit 0): USM0 operation control

Setting this bit to 1 starts the USM0 module.

Setting this bit to 0 causes the USM0 module to stop operation. All USM0 outputs USM0O0 to USM0O3 are then set to low.

1) If the CKSL count clock selection is set to mode 1 (timer 3 high byte match signal) or mode 3 (OSC0) in stepping motor mode, clear this bit to 0 and, at the same time, set the CKSL mode to 0 (system clock).

In that case, all of the USM0 outputs USM000 to USM003 are all set to low 2 Tcyc after the execution of the instruction for clearing this bit to 0.

2) If this bit is cleared in ultrasonic motor mode, all of the USM0 outputs USM000 to USM003 are set to low within 2 PLL clock periods.

When stopping the USM0 module and the PLL clock, clear this bit to 0 before stopping the PLL clock.

#### 3.26.4.2 Phase number setup register (USM0NPH)

- 1) This register defines the number of steps in which the current set value is to be output continuously in stepping motor mode.
- 2) The actual step number during which data is to be output continuously is the value of USM0NPH +1.
- 3) When using the step number setup function, set USM0NPH to a value that is greater than 1. If USM0NPH is set to a minimum value of 1, the set step number is 2, which means that the minimum step number that can be specified with this function is 2. This register must be set to 00h when the step number setup function is not to be used.
- 4) Set this register to 00h when using the USM0 module in ultrasonic motor mode.

| Address | Initial value | R/W | Name           | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|----------------|------|------|------|------|------|------|------|------|
| 7F81    | 0000 0000     | R/W | <b>USM0NPH</b> | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |

If this register is read when STPFLG (bit 7) of USM0CTL is set to 1, the value of the phase number counter is read rather than the value of the USM0NPH register.

This function is used to ascertain the value of the phase number counter when the phase number counter is placed in free running state by loading USM0NPH with 00h.

Follow the procedure below when reading the value of the phase number counter:

- Set STP (bit 6) of USM0TWH to 1.
- Wait until the STP bit is reloaded and STPFLG (bit 7) of USM0CTL is set. (Reloading the STP bit stops stepping motor waveform outputs.)
- Read the USM0NPH register (the phase number counter value is read).
- Clear the STPFLG bit and set STP (bit 6) of USM0TWH to 0 to restart motor output.

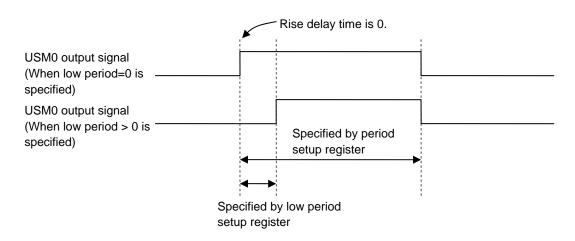
See subsection "3.26.5.1 Phase number setup register reload timing," for the timing for reloading the phase number setup register buffer.

For instructions on using this register, see subsection "3.26.8.3 USM0 Operation performed when the USM0NPH phase number setup register is used."

# 3.26.4.3 Period setup register (USM0TWH, USM0TWL)

- 1) This register defines when the output waveforms are to be switched.
- 2) In ultrasonic motor mode, the 1-cycle period of the 4-phase pulses Ph0 to Ph3 is defined by 12 register bits of which the high-order 4 bits are from bits 3 to 0 of USM0TWH and the low-order 8 bits are from bits 7 to 0 of USM0TWL. The 12-bit value must be 40 or greater.
- 3) In stepping motor mode, when steps are to be switched is defined by 10 register bits of which the high-order 4 bits are from bits 3 to 0 of USM0TWH and the low-order 6 bits are from bits 7 to 2 of USM0TWL. The 10-bit value must be 2 or greater. Bits 1 and 0 of USM0TWL must always be set to 0.
- 4) The DIR2 (bit 7) and STP (bit 6) of USM0TWH are used in stepping motor mode. The DIR2 bit controls the rotational direction and the STP bit controls suspension of the waveform output. Both the DIR2 and STP bits must always be set to 0 in ultrasonic motor mode.

| Add | dress | Initial value | R/W | Name    | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|-----|-------|---------------|-----|---------|------|------|------|------|------|------|------|------|
| 7F  | F82   | 0000 0000     | R/W | USM0TWL | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
| 7F  | F83   | 00LL 0000     | R/W | USM0TWH | DIR2 | STP  | -    | -    | BIT3 | BIT2 | BIT1 | BIT0 |


See subsection "3.26.5.2 Reload timing of the period setup register and low period setup register," for the reload timing of the period setup register buffer.

For instructions on using this register, see Sections "3.26.7 Examples of USM0 Operations in Ultrasonic Motor Mode" and "3.26.8 Examples of USM0 Operation in Stepping Motor Mode," respectively.

# 3.26.4.4 Low period setup register (USM0LPH, USM0LPL)

- 1) This register defines the rise delay time of the output waveforms.
- 2) The rise delay time is defined by 10 register bits of which the high-order 2 bits are from bits 1 and 0 of the USM0LPH and the low-order 8 bits are from bits 7 to 0 of USM0LPL.
- 3) The BRKMD (bits 6 and 5) of USM0LPH are used in stepping motor mode to define the break mode operation of the USM0 module when the debugger is used. BRKMD must always be set to 0 in ultrasonic motor mode.

| Address | Initial value | R/W | Name    | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|---------|------|------|------|------|------|------|------|------|
| 7F84    | 0000 0000     | R/W | USM0LPL | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
| 7F85    | L00L LL00     | R/W | USM0LPH | -    | BRK  | MD   | -    | -    | -    | BIT1 | BIT0 |



Low period =  $(10\text{-bit value specifying low period}) \times \text{count clock period}$ 

- \* Count clock period = 1 cycle of the count clock selected by bits 3 and 2 of USM0CTL
- \* 10-bit value specifying low period = 10-bit value of which the high-order 2 bits are from bits 1 and 0 of USM0LPH and the low-order 8 bits are from bits 7 to 0 of USM0LPL

The motor output signals can be controlled as summarized below when a break is generated in debugging mode by setting the BRKMD bits (bits 6 and 5).

| Mode | BRKMD | Break Mode Operation                                                                                  |
|------|-------|-------------------------------------------------------------------------------------------------------|
| 0    | 00    | Operation is continued.                                                                               |
| 1    | 01    | The circuit stops at the end of the current step and all outputs are held in the motor stopped state. |
| 2    | 10    | The circuit is stopped and all outputs are set to 0.                                                  |
| 3    | 11    | The circuit is stopped and the output are held in the motor stopped state.                            |

See subsection "3.26.5.2 Reload timing of the period setup register and low period setup register," for the reload timing of the period setup register buffer.

For instructions on using this register, see Sections "3.26.7 Examples of USM0 Operations in the Ultrasonic Motor Mode" and "3.26.8 Examples of USM0 Operation in the Stepping Motor Mode," respectively.

#### 3.26.4.5 Output waveform setup register (USM0PSF)

1) This register controls the output waveform.

| Address | Initial value | R/W | Name    | BIT7 | BIT6  | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|---------|------|-------|------|------|------|------|------|------|
| 7F86    | 0000 L000     | R/W | USM0PSF | TSTA | PWMMD | OUT  | MD   | -    |      | NPT  |      |

#### TSTA (bit 7): Test mode bit

This bit must always be set to 0.

#### PWMMD (bit 6): PWM waveform superimposition control bit

When this bit is set to 1, the PWM output waveforms in the timer high-order 3 bits are ANDed with the USM0 output signals.

When this bit is set to 0, the PWM output waveforms in the timer high-order 3 bits exert no influence on the USM0 output signals.

\*This bit must always be set to 0 in ultrasonic motor mode.

#### OUTMD (bits 5 and 4): Output waveform specification

These 2 bits specify the output waveform.

Mode 0 must be selected in ultrasonic motor mode.

In stepping motor mode, select one of the modes 0, 1, or 2.

| Mode | OUTMD | Output Waveform                          | Ultrasonic Motor | Stepping Motor |
|------|-------|------------------------------------------|------------------|----------------|
| 0    | 00    | Ultrasonic 4-phase/1-phase<br>excitation | 0                | 0              |
| 1    | 01    | 1-2 phase excitation                     | ×                | $\bigcirc$     |
| 2    | 10    | 2-phase excitation                       | ×                | $\bigcirc$     |
| 3    | 11    | —                                        | ×                | ×              |

#### NPT (bits 2, 1, and 0): Output port specification

These 3 bits specify the number of ports from which the waveform output is to be output. Specify NPT (bits 2, 1, 0) = (011) in both ultrasonic and stepping motor modes.

# 3.26.4.6 PLL control register (USMPLLC)

- 1) This register controls the operation of the PLL oscillator to be used in ultrasonic motor mode.
- 2) This register must always be loaded with 00h in stepping motor mode.

| Address | Initial value | R/W | Name    | BIT7 | BIT6 | BIT5 | BIT4   | BIT3 | BIT2   | BIT1 | BIT0  |
|---------|---------------|-----|---------|------|------|------|--------|------|--------|------|-------|
| 7F88    | 0L00 0000     | R/W | USMPLLC | TSTB | -    |      | SELREF |      | FRQSEL | VC3  | PLLON |

#### TSTB (bit 7): Test mode bit

This bit must always be set to 0.

#### SELREF (bits 5, 4, and 3): OSC1 clock select bits

These bits must be set according to the frequency of the OSC1 resonator connected to the CF1 and CF2 pins.

| SELREF     | OSC1 Frequency |
|------------|----------------|
| 000 or 001 | 2 MHz          |
| 010        | 4 MHz          |
| 011        | 6 MHz          |
| 100        | 8 MHz          |
| 101        | 10 MHz         |
| 110        | 12 MHz         |

#### FRQSEL (bit 2): 40MHz/48MHz select bit

A 0 in this bit sets the PLL oscillator frequency to 40 MHz.

A 1 in this bit sets the PLL oscillator frequency to 48 MHz.

### VC3 (bit 1): Supply voltage select bit

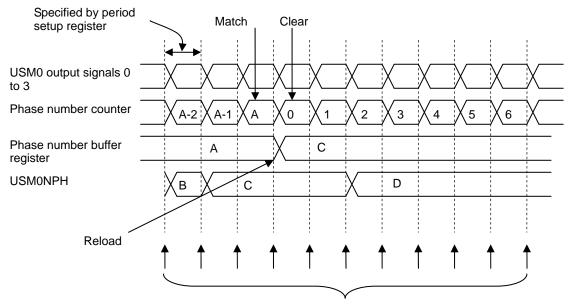
Set this bit according to the supply voltage of the microcontroller.

Set this bit to 0 for a supply voltage of 5V.

Set this bit to 1 for a supply voltage of 3V

# PLLON (bit 7): PLL oscillator operation control bit

Setting this bit to 0 stops the PLL oscillator.


Setting this bit to 1 starts the PLL oscillator.

# 3.26.5 Buffer Register Reload Timings

#### 3.26.5.1 Phase number setup register reload timing

When the values of the phase number counter and the phase number buffer register match and the values of the period counter and period buffer register match, and the period counter is reset to 1, the phase number counter is reset to 0 and the value of the phase number setup register is reloaded into the phase number buffer register.

When the phase number buffer register is set to 0, the phase number counter is in the free running state (repeating the count-up from 00h to FFh) and the phase number buffer register is not reloaded.

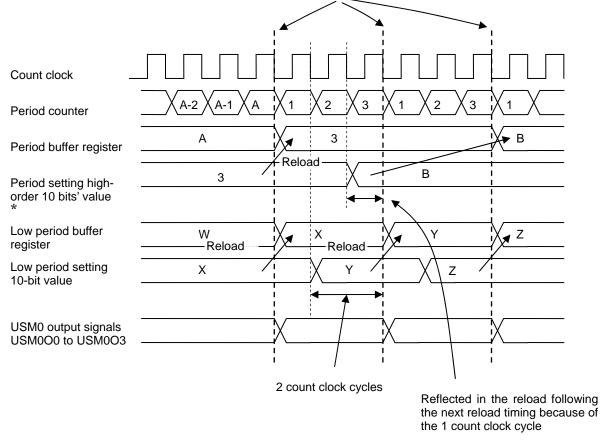


Timing at which the values of the period counter and period buffer register match and the period counter is reset to 1.

#### Figure 3.26. 2 Phase Number Setup Register Buffer Reload Timing

#### 3.26.5.2 Reload timing of the period setup register and low period setup register

1) Ultrasonic motor mode


The period setup buffer register and low period setup buffer register are reloaded when the values of the period counter and period setup buffer register match and the period counter is reset to 1.

If writing values into the period setup register and low period setup register does not occur 2 count clock cycles earlier than this reload timing, however, the written values are not reflected in the reload.

If the interval from the register write to the reload timing is less than 1 count clock, the values written into the registers are not reflected in the current reload, but are reflected in the reload timing of the time after next.

If the interval from the register write to the reload timing is from 1 to 2 count clock cycles, whether the written register values are reflected in the current reload or in the one that occurs following the next is undefined, because the count clock and system clock are asynchronous.

Timings when the period counter is reset and the buffer is reloaded as the result of the match between the values of the period counter and period buffer register\_



#### Figure 3.26.3 Ultrasonic Motor Mode Reload Timing

\* Although the period value specified in ultrasonic motor mode is 12 bits long, it is the high-order 10 bits that are used for comparison with the period count counter. The above figure shows the timing that occurs when the low-order 2 bits of the 12-bit value are set to 00. If the low-order 2 bits are set to a nonzero value, the timing when the reload occurs and when the output waveforms change for a specific phase of the four phases following a compare match is extended by 1 count clock cycle.

(See subsection "3.26.7.3 Period setup register value and 4-phase pulse waveforms."

2) Stepping motor mode (USM0NPH = 0)

The reload timing that occurs when the phase number setup register is set to 0 in stepping motor mode is identical to the one in ultrasonic motor mode described in paragraph 1). The reload occurs when the value of the period buffer register matches the period setting (10-bit value).

In this case, the data updated 2 count clock cycles earlier than the reload timing is reflected as in ultrasonic motor mode.

3) Stepping motor mode (USM0NPH = nonzero value)

If the phase number setup register is set to a nonzero value in stepping motor mode, the period setup register, low period setup register, and phase number setup register are reloaded when the values of the phase number counter and phase number buffer register match and the values of the period counter and the period buffer register match.

In this case, the data updated 2 count clock cycles earlier than the reload timing is reflected as in ultrasonic motor mode.

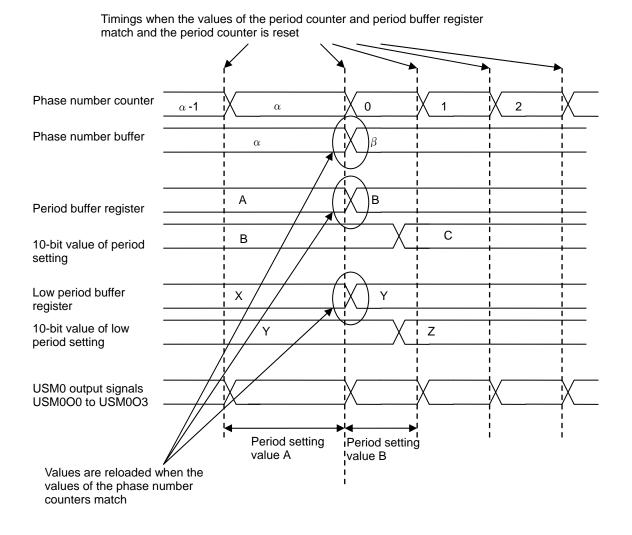



Figure 3.26.4 Stepping Motor Mode Reload Timing

# 3.26.6 USM0 Port Settings

1) USM000 (PA0)

|          | Regist   | er Data  |          | Port PA0 State                       |
|----------|----------|----------|----------|--------------------------------------|
| PAFSA<0> | PAFSB<0> | PALAT<0> | PADDR<0> | Output                               |
| 1        | 0        | 1        | 0        | USM000 output (CMOS inverted)        |
| 1        | 0        | 0        | 1        | USM000 output (CMOS)                 |
| 1        | 1        | 1        | 0        | USM000 output (slow CMOS change)     |
| 1        | 1        | 0        | 1        | USM000 output (N-channel open drain) |

2) USM001 (PA1)

| Register Data |          |          |                        | Port PA1 State                       |
|---------------|----------|----------|------------------------|--------------------------------------|
| PAFSA<1>      | PAFSB<1> | PALAT<1> | PADDR<1>               | Output                               |
| 1             | 0        | 1        | 0                      | USM001 output (CMOS inverted)        |
| 1             | 0        | 0        | 1 USM001 output (CMOS) |                                      |
| 1             | 1        | 1        | 0                      | USM001 output (slow CMOS change)     |
| 1             | 1        | 0        | 1                      | USM0O1 output (N-channel open drain) |

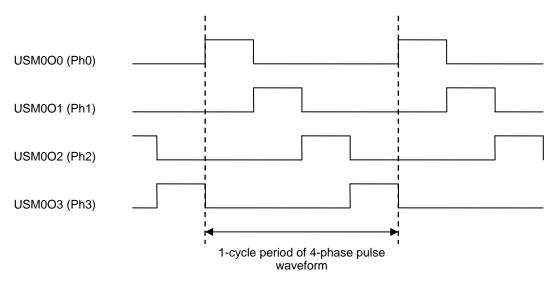
# 3) USM0O2 (PA2)

| Register Data |          |          |          | Port PA2 State                       |
|---------------|----------|----------|----------|--------------------------------------|
| PAFSA<2>      | PAFSB<2> | PALAT<2> | PADDR<2> | Output                               |
| 1             | 0        | 1        | 0        | USM0O2 output (CMOS inverted)        |
| 1             | 0        | 0        | 1        | USM0O2 output (CMOS)                 |
| 1             | 1        | 1        | 0        | USM0O2 output (slow CMOS change)     |
| 1             | 1        | 0        | 1        | USM0O2 output (N-channel open drain) |

# 4) USM0O3 (PA3)

| Register Data |          |          |          | Port PA3 State                       |
|---------------|----------|----------|----------|--------------------------------------|
| PAFSA<3>      | PAFSB<3> | PALAT<3> | PADDR<3> | Output                               |
| 1             | 0        | 1        | 0        | USM0O3 output (CMOS inverted)        |
| 1             | 0        | 0        | 1        | USM0O3 output (CMOS)                 |
| 1             | 1        | 1        | 0        | USM0O3 output (slow CMOS change)     |
| 1             | 1        | 0        | 1        | USM0O3 output (N-channel open drain) |

5) FILT (PC2)


| Regis    | ster Data | Port PC2 State |                     |                         |
|----------|-----------|----------------|---------------------|-------------------------|
| PCLAT<2> | PCDDR<2>  | Pin Data Read  | Multi-function FILT | Output                  |
| 0        | 0         | Enabled        | Enabled             | Open                    |
| 1        | 0         | Enabled        | -                   | Internally<br>pulled-up |
| 0        | 1         | Enabled        | _                   | LOW                     |
| 1        | 1         | Enabled        | _                   | HIGH                    |

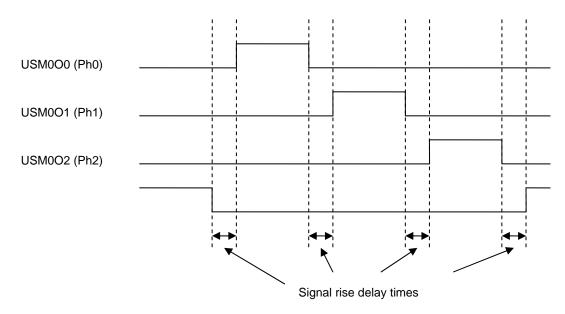
\* When using this port in ultrasonic motor mode, it is necessary to set PCLAT<2> and PCDDR<2> to 0 and connect an external filter circuit.

# 3.26.7 Examples of USM0 Operations in Ultrasonic Motor Mode

### 3.26.7.1 Ultrasonic motor mode programming example

- 1) Set up USM0 output ports PA0 to PA3.
- 2) Set SELREF (bits 5, 4, and 3) of the USMPLLC PLL control register according to the frequency of the OSC1 resonator.
- 3) Set VC3 (bit 1) of the USMPLLC PLL control register according to the supply voltage.
- 4) Select the PLL output frequency according to the setting of FRQSEL (bit 2) of the USMPLLC PLL control register.
- 5) Set PLLON (bit 0) of the USMPLLC PLL control register to 1.
- 6) Wait until the PLL oscillation is stabilized.
- 7) Load the USM0PSF output waveform setup register with 03h.
- 8) Set CKSL (bits 3 and 2) of the USM0CTL USM0 control register to (1, 0) to designate the USM0 count clock as the PLL clock source.
- 9) Load the period setup register with the 1-cycle period of the 4-phase pulses Ph0 to Ph3. Keep DIR2 (bit 7) and STP (bit 6) of the USM0TWH period setup register high byte at 0. Make sure that the period value you set is 40 or greater.




The 1-cycle period of the 4-phase pulses shown in the above figure is determined by the period setup register as follows:

1-cycle period of 4-phase pulses = (12-bit period setting value) × count clock period

\*Count clock period = 1 cycle of the count clock selected by USM0CTL (bits 3 and 2)

\*12-bit period setting value = 12-bit value of which the high-order 4 bits are from bits 3 to 0 of USM0TWH and the low-order 8 bits are from bits 7 to 0 of USM0TWL

10) Load the low setup register with the rise delay time for signals Ph0 to Ph3. Keep BRKMD (bits 6 and 5) of USM0LPH low period setup register high byte at 0.

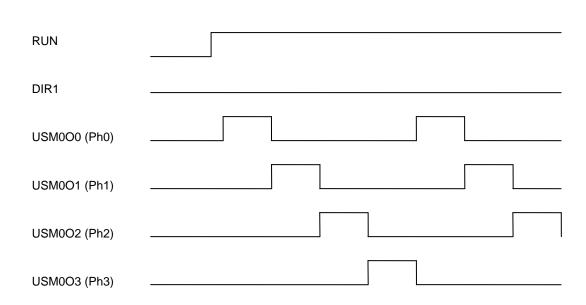


The signal rise delay time shown in the above figure is determined by the low period setup register as follows:

Signal rise delay time = (10-bit low period setting value) × count clock period

\*Count clock period = 1 cycle of the count clock selected by USM0CTL (bits 3 and 2)

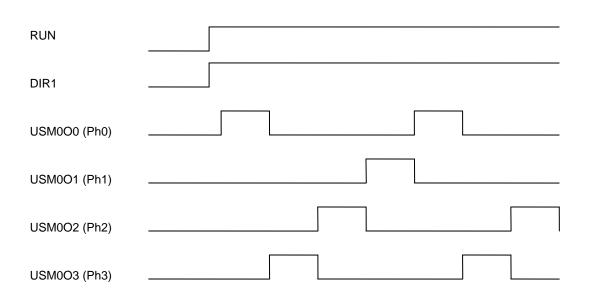
\*10-bit low period setting value = 10-bit value of which the high-order 2 bits are from bits 1 and 0


of USM0LPH and the low-order 8 bits are from bits 7 to 0 of USM0LPL

11) Set DIR1 (bit 1) of the USM0CTL USM0 control register according to the required rotational direction.

DIR1 = 0 for forward rotation

DIR1 = 1 for reverse rotation


- 12) Set RUN (bit 0) of the USM0CTL USM0 control register to 1, and the USM0 module will start and generate waveform outputs at USM000 to USM003.
- 13) To change the period or signal rise delay time during operation, write the required value in the low period time field of the period setup register. When rewriting a value during operation, however, be sure to use a word accessing instruction when rewriting data in the period setup register and low period setup register.
- 14) To change the rotational direction during operation, rewrite DIR1 (bit 1) of the USM0CTL USM0 control register.
- 15) To stop the USM0 module, set RUN (bit 0) of the USM0CTL USM0 control register to 0. The USM0 module will then stop operation within 2 count clock cycles and set the USM0 outputs USM0O0 to USM0O3 to the low level.



### 3.26.7.2 Specifying the rotational direction with the DIR1 bit

The rotational direction of the motor can be specified by setting DIR1 bit (bit 1) of the USM0CTL USM0 control register at start time.





#### Figure 3.26.6 Operation Start Time Waveforms (Reverse Rotation)

It is possible to change the rotational direction during operation by rewriting the DIR1 bit. When the DIR1 bit is rewritten during operation, the USM0 module stops operation for 1 to 2 count clock cycles within 2 count clock cycles after the execution of the write instruction terminates, then it restarts operation in the reverse direction.

#### <u>USM0</u>

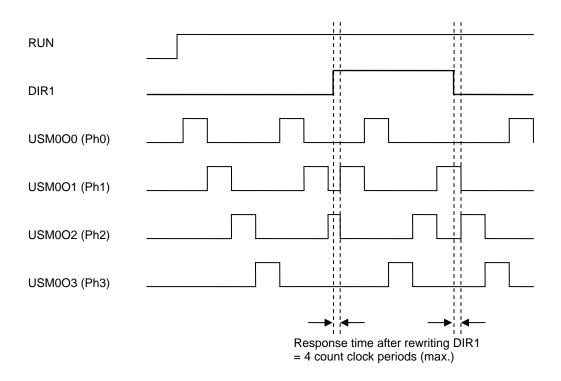



Figure 3.26.7 Reverse Rotation as Controlled by DIR1

# 3.26.7.3 Period setup register value and 4-phase pulse waveforms

The 1-cycle period of the 4-phase pulse waveform is determined by the 12-bit period setting value. Suppose that the high-order 10 bits of the 12-bit period setting value are given by W and that Tw and T(w+1) are defined as shown below, the pulse width of outputs USM000 (Ph0) to USM003 (Ph3) is calculated as shown below.

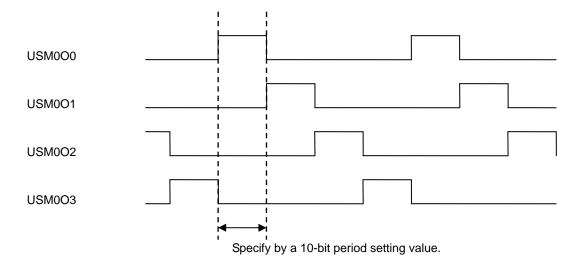
Tw 
$$=$$
 W  $\times$  count clock period

 $T(w+1) = (W+1) \times count clock period$ 

| Period Setting<br>Low 2-bit Value | USM0O0 Pulse<br>Width (Ph0) | USM0O1 Pulse<br>Width (Ph1) | USM0O2 Pulse<br>Width (Ph2) | USM0O3 Pulse<br>Width (Ph3) |
|-----------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| 00                                | Tw                          | Tw                          | Tw                          | Tw                          |
| 01                                | Tw                          | T(w+1)                      | Tw                          | Tw                          |
| 10                                | T(w+1)                      | Tw                          | T(w+1)                      | Tw                          |
| 11                                | T(w+1)                      | T(w+1)                      | T(w+1)                      | Tw                          |

# 3.26.8 Examples of USM0 Operation in Stepping Motor Mode

# 3.26.8.1 Stepping motor mode programming example


- 1) Set up USM0 output ports PA0 to PA3.
- 2) Load the USMPLLC PLL control register with 00h.
- 3) When using the timer high-order 3 match signal as the count clock, set up and enable timer 3.
- 4) Load NPT (bits 2 to 0) of the USM0PSF output waveform setup register to 03h.
- 5) Set OUTMD (bits 5 and 4) of the USM0PSF output waveform setup register.

| Mode | OUTMD | Output Waveform      |
|------|-------|----------------------|
| 0    | 00    | 1 phase excitation   |
| 1    | 01    | 1-2 phase excitation |
| 2    | 10    | 2 phase excitation   |

6) Set CKSL (bits 3 and 2) of the USM0CTL USM0 control register to select the USM0 count clock.

| Mode | CKSL | Period Counter Count Clock      |
|------|------|---------------------------------|
| 0    | 00   | System clock                    |
| 1    | 01   | Timer 3 high-order match signal |
| 3    | 11   | OSC0                            |

7) Load a 10-bit value into the period setup register to specify the 1-step switching time.



The 1-step switching time shown in the above figure is defined in the period setup register as follows:

Switching time = (10-bit period setting value) × count clock period

\*Count clock period = 1 cycle of the count clock selected by USM0CTL (bits 3 and 2)

\*10-bit period setting value = 10-bit value of which the high-order 4 bits are from bits 3 and 0 of USM0TWH and the low-order 6 bits are from bits 7 to 2 of USM0TWL.

\*Bits 1 and 0 of USM0TWL must always be set to 0.

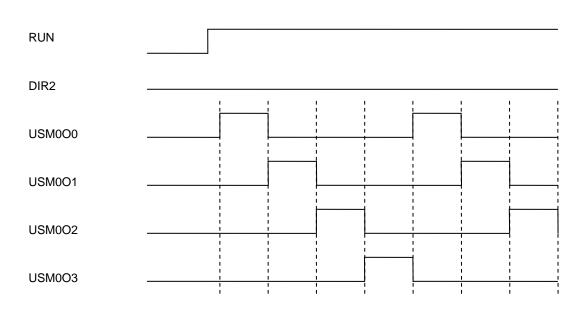
Set DIR2 (bit 7) of USM0TWH according to the required rotational direction as follows:

DIR2 = 0 for forward rotation

DIR2 = 1 for reverse rotation

Set STP (bit 6) of the USM0TWH to 0.

8) Load the low setup register with the signal rise delay time for outputs Ph0 to Ph3. BRKMD (bits 5 and 6) of the USM0LPH low period setup register high byte can be used to specify the break mode operation when using the debugger.


| Mode | BRKMD | Break Mode Operation                                                                                  |
|------|-------|-------------------------------------------------------------------------------------------------------|
| 0    | 00    | Operation is continued.                                                                               |
| 1    | 01    | The circuit stops at the end of the current step and the outputs are held in the motor stopped state. |
| 2    | 10    | The circuit is stopped and all outputs are set to 0.                                                  |
| 3    | 11    | The circuit is stopped and outputs are held in the motor stopped state.                               |

- 9) Load the USM0NPH phase number setup register with the necessary data. Set USM0NPH to 0 when the step number setting function is not to be used.
- 10) Set RUN (bit 0) of the USM0CTL USM0 control register to 1, and the USM0 module will start and generate waveform outputs at USM0O0 to USM0O3.
- 11) To change the period, signal rise delay time, or rotational direction during operation, write the required value in the low period time field of the period setup register. When rewriting a value during operation, however, be sure to use a word accessing instruction when rewriting data in the period setup register and low period setup register.

(See subsection "3.26.9 Notes on Setting Registers.")

- 12) To stop the motor in the middle of operation, set STP (bit 6) of USM0TWH to 1. Clear STP to restart the motor.
- 13) To stop the USM0 module, set RUN (bit 0) of the USM0CTL USM0 control register to 0. At the same time, set CKSL (bits 3 and 2) of USM0CTL to 00 to assign the count clock to the system clock. The USM0 module will then stop operation within 2 count clock cycles and set the USM0 outputs USM000 to USM0O3 to the low level.





1) Mode 0: Stepping motor 1 phase excitation



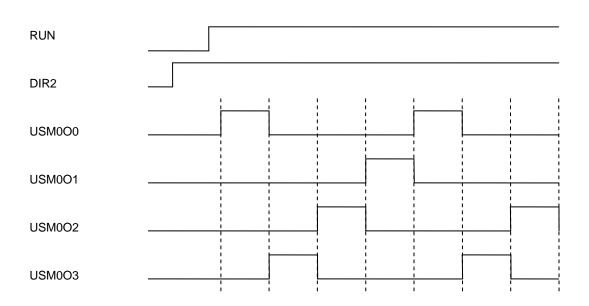



Figure 3.26.9 Mode 0 Operation Start Time Waveforms (Reverse Rotation)

#### <u>USM0</u>

2) Mode 1: Stepping motor 1-2 phase excitation

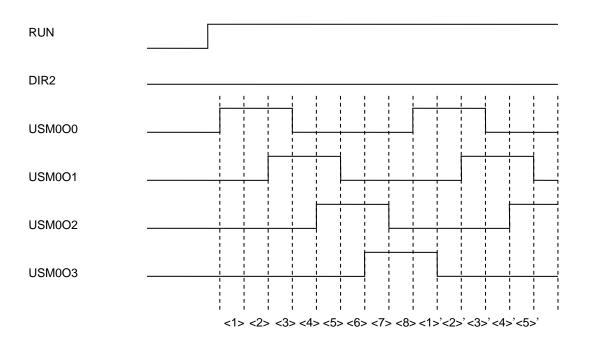



Figure 3.26.10 Mode 1 Operation Start Time Waveforms (Forward Rotation)

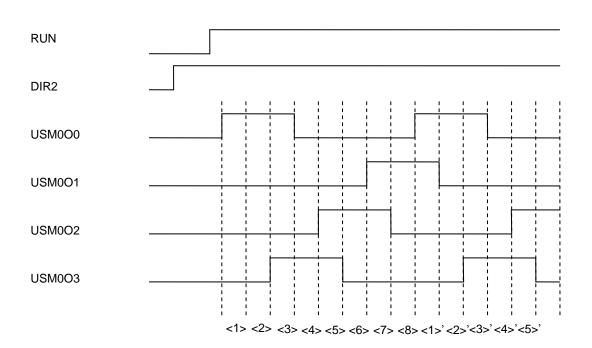



Figure 3.26.11 Mode 1 Operation Start Time Waveforms (Reverse Rotation)

There are waveform differences at time points <1> and <1>' in both forward and reverse rotation modes. This occurs only once immediately after operation starts. Normal waveforms are output at <1>' and subsequent time points in the cycles after the first cycle. 3) Mode 2: Stepping motor 2 phase excitation

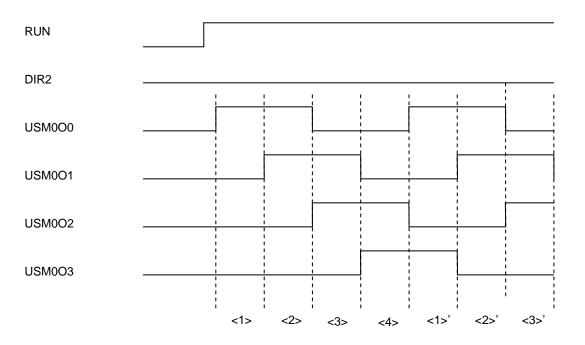
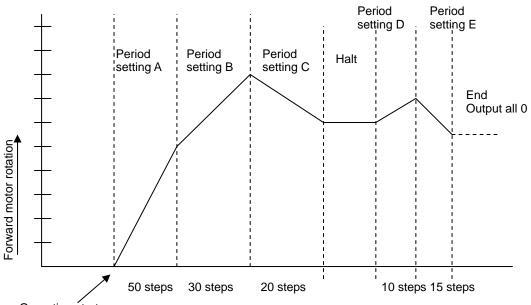



Figure 3.26.12 Mode 2 Operation Start Time Waveforms (Forward Rotation)





Figure 3.26.13 Mode 2 Operation Start Time Waveforms (Reverse Rotation)

There are waveform differences at time points <1> and <1>' in both forward and reverse rotation modes. This occurs only once immediately after operation starts. Normal waveforms are output at <1>'and subsequent time points in the cycles after the first cycle.

#### 3.26.8.3 USM0 Operation performed when the USM0NPH phase number setup register is used

It is possible to control the number of steps to be output up to the time the period setup register and low period setup register are reloaded next by making use of the USM0NPH register and interrupt facility. A sample procedure for controlling the number of steps is given below.

- 1) Advance 50 steps with a step width of 'A' after the USM0 module is started.
- 2) Advance the next 30 steps with a step width of 'B'.
- 3) Advance the next 20 steps in reverse rotation with a step width of 'C'.
- 4) Halt (maintaining the outputs) at the end of the 20th step in 3).
- 5) Advance the next 10 steps in forward rotation with a step width of 'D'.
- 6) Advance the next 15 steps in reverse rotation with a step width of 'E'.
- 7) After 15 steps, stop the USM0 module and set all outputs to 0.



Operation start

The USM0NPH register and interrupt facility are used to control the USM0 module operation shown in the above figure.

- 1. Set necessary ports and registers, and enable USM0 interrupts.
- 2. Load USM0NPH with 49.
  - (To advance USM0NPH+1 step)
- 3. Set the period setup register to specify period A, DIR2 = 0, and STP = 0.
- 4. Start the USM0 module.
- 5. Load USM0NPH with the next step number of 29.
- 6. Set up the period setup register to specify period B, DIR2 = 0, and STP = 0.
- 7. Wait until an interrupt occurs after the USM0 module advances 50 steps with a step period of A. (USM0NPH is reloaded with 29 and period setting B.)
- 8. Load USM0NPH with the next step number of 19.
- 9. Set the period setup register to specify period B, DIR2 = 1, and STP = 0.
- 10. Wait until an interrupt occurs after the USM0 module advances 30 steps with a step period of B. (USM0NPH is reloaded with 19 and period setting C.)
- 11. Set the STP bit of the period setup register to 1.
- 12. After the USM0 module advances 20 steps with a step period of C, STP is set to 1 and the waveform output is stopped (output port state is maintained).

- 13. When the waveform output is stopped, STPFLG (bit 7) of USM0CTL is set and an interrupt is generated. Wait until that occurs.
- 14. Wait until the USM0 module exits the stopped state and the next restart timing occurs.
- 15. Load USM0NPH with 9.
- 16. Set the period setup register to specify period D, DIR2 = 0, and STP = 0.
- 17. Reloading occurs and the USM0 module restarts the generation of waveform outputs within 4 count clock cycles after STP of the period setup register is set to 0.
- 18. After the USM0 module is restarted, NPHFLG is set and an interrupt occurs. Wait until that occurs.
- 19. Load USMONPH with 14.
- 20. Set the period setup register to specify period E, DIR2 = 1, and STP = 0.
- 21. Wait until an interrupt occurs after the USM0 module advances 10 steps with a step period of D.
- 22. Set STP of the period setup register to 1.
- 23. After the USM0 module advances 15 steps with a step period of E, STP is set to 1 and the waveform output is stopped (output port state is maintained).
- 24. When the waveform output is stopped, STPFLG (bit 7) of USM0CTL is set and an interrupt is generated. Wait until that occurs.
- 25. Set RUN (bit 0) of the USM0CTL USM0 control register to 0 and CKSL (bits 3 and 2) to 00.
- 26. The USM0 module stops operation within 2 count clock cycles and sets the USM0 outputs USM000 to USM003 to the low level.

#### 3.26.9 Notes on Setting Registers

Be sure to use a word accessing instruction when rewriting data in the period setup register (USM0TWL, USM0TWH) or low period setup register (USM0LPL, USM0LPH) while the USM0 module is running (RUN = 1).

1) When using an assembler

Use the MOV. W instruction.

2) When using C, access these registers as follows:

\_\_SFRW(USM0TWL) = xxxx \_\_SFRW(USM0LPL) = xxxx <u>USM0</u>

# 4. Control Functions

## 4.1 Interrupt Function

### 4.1.1 Overview

This series of microcontrollers has the capability to support interrupt sources which are generated by external inputs and those which are generated as the result of internal block operations.

Three levels of interrupts are provided for each interrupt source which can be enabled or disabled by an interrupt-specific enable flag and the overall enable flag.

An exception processing interrupt which is not affected by the global enable flag is also provided.

## 4.1.2 Functions

- 1) Interrupt processing
  - Peripheral modules generate an interrupt request to the predetermined vector address when the interrupt request and interrupt request enable flags are set to 1.
  - When the microcontroller receives an interrupt request from a peripheral module, it determines the interrupt level, priority and interrupt enable status of the interrupt. If the interrupt request is legitimate for processing, the microcontroller saves the value of PC and PSW in the stack and causes a branch to the predetermined vector address. This takes 3 cycles.
  - The return from the interrupt routine is accomplished by the IRET instruction, which restores the old state of the PC and interrupt level.
- 2) Interrupt request enable acceptance control
  - IE (PSW, bit 7) can be used to provide enable/disable control over all types of interrupt requests except for the highest level of interrupt.
- 3) Multilevel interrupt control
  - The interrupt level setting registers (IL1L, IL1H, IL2L, and IL2H) can be used to set three levels of interrupts.
  - The interrupt function will not accept any interrupt request of the same level or lower level than the level of the interrupt that is currently being processed.
  - The priority level of the current interrupt is defined in bits 8 to 10 of PSW.
- 4) Interrupt priority
  - When interrupts of different priority levels occur at the same time, the interrupt request of the highest level takes precedence over the other interrupt requests. If interrupts with the same priority level occur at the same time, the one whose vector address is the smallest is given priority.
- 5) Interrupt disable period
  - The interrupt occurring during 2 Tcyc after HOLD or HOLDX mode is released is not accepted.
  - Interrupts are disabled immediately before the CPU executes a HALT, HOLD, or HOLDX instruction.
  - No interrupt can occur during the interval between the execution of an IRET instruction and the execution of the next instruction.

- 6) Interrupt level control
  - The interrupt level setting registers (IL1L, IL1H, IL2L, and IL2H) can be used to enable or disable interrupts on a vector address basis and to define 3 levels of interrupt priority.
- 7) Exception processing interrupts
  - Exception processing interrupts are enabled and disabled through the exception interrupt control registers (EXCPL, EXCPH). They are not affected by the global enable flag.
  - Processing of exception interrupts takes precedence over processing of peripheral interrupts. For this reason, none of general interrupts are accepted while an exception interrupt is being processed.
- 8) It is necessary to manipulate R14 (PSW) and the following special function registers (SFRs) to enable or disable interrupts or to specify priority levels.

| • | R14, | IL1L | IL1H, | IL2L, | IL2H, | EXCPL, | EXCPH |
|---|------|------|-------|-------|-------|--------|-------|
|---|------|------|-------|-------|-------|--------|-------|

| Address | Initial value | R/W | Name  | BIT7        | BIT6   | BIT5   | BIT4   | BIT3   | BIT2   | BIT1   | BIT0    |  |
|---------|---------------|-----|-------|-------------|--------|--------|--------|--------|--------|--------|---------|--|
| 7F02    | 0000 0000     | R/W | IL1L  | IR          | IRQ3   |        | T0     |        | BT     |        | WDT     |  |
| 7F03    | 0000 0000     | R/W | IL1H  | IR          | IRQ7   |        | Q6     | IRQ5   |        | IRQ4   |         |  |
| 7F04    | 0000 0000     | R/W | IL2L  | IR          | IRQB   |        | QA     | IRQ9   |        | IRQ8   |         |  |
| 7F05    | 0000 0000     | R/W | IL2H  | IR          | QF     | IR     | IRQE   |        | IRQD   |        | IRQC    |  |
| 7F08    | 0000 0000     | R/W | EXCPL | CLKSTP      | CLKSTP | ADDERR | ADDERR | ODDACC | ODDACC | NONINS | NONINS  |  |
|         |               |     |       | _FLG        | _IE    | _FLG   | _IE    | _FLG   | _IE    | _FLG   | _IE     |  |
| 7F09    | LL00 L0L0     | R/W | EXCPH | UART1 UART1 |        | UART0  | UART0  | UART1  | UART0  | _      | MOVEVEC |  |
|         |               |     |       | _FLG        | _IE    | _FLG   | _IE    | _ITYPE | _ITYPE |        |         |  |

## 4.1.3 Table of Interrupts

1) Interrupts supported by this series of microcontrollers

| No. | Vector<br>Address | Interrupts (Peripheral Modules)     |  |  |  |  |
|-----|-------------------|-------------------------------------|--|--|--|--|
| 1   | 8000H             | Watchdog timer (1)                  |  |  |  |  |
| 2   | 8004H             | Base timer (2)                      |  |  |  |  |
| 3   | 8008H             | Timer 0 (2)                         |  |  |  |  |
| 4   | 800CH             | INT0 (1)                            |  |  |  |  |
| 5   | 8010H             |                                     |  |  |  |  |
| 6   | 8014H             | INT1 (1)                            |  |  |  |  |
| 7   | 8018H             | INT2 (1) / Timer 1 (2) / UART2 (4)  |  |  |  |  |
| 8   | 801CH             | INT3 (1) / Timer 2 (4) / SMIIC0 (1) |  |  |  |  |
| 9   | 8020H             | INT4 (1) / Timer 3 (2)              |  |  |  |  |
| 10  | 8024H             | INT5 (1) / Timer 4 (1) / SIO1 (2)   |  |  |  |  |
| 11  | 8028H             | USM0 (3)                            |  |  |  |  |
| 12  | 802CH             | PWM0 (1)                            |  |  |  |  |
| 13  | 8030H             | ADC (1) / Timer 5 (1)               |  |  |  |  |
| 14  | 8034H             | INT6 (1)                            |  |  |  |  |
| 15  | 8038H             | INT7(1) / SIO0 (2)                  |  |  |  |  |
| 16  | 803CH             | Port0 (3)                           |  |  |  |  |

- The number in parentheses indicates the number of interrupt sources available for the module.
- Priority levels: 3 > 2 > 1 >
- When interrupts of the same level occur at the same time, the interrupt with the smallest vector address is given priority.

2) Exception processing interrupts supported by this series of microcontrollers

| No. | Vector Address | Exception Interrupts (Exception Processing) |
|-----|----------------|---------------------------------------------|
| 1   | 8080H          | Exception processing (5)                    |

- The number in parentheses indicates the number of interrupt sources.
- The exception processing interrupt takes precedence over all other interrupts arising from the peripheral modules described in 1) above.

## 4.1.4 Related Registers

#### 4.1.4.1 R14 (PSW)

- 1) The R14 (PSW) is a 16-bit register that is used to store the status information of the CPU.
- 2) Bits 7 to 10 are used to control interrupts.

| Bit | Symbol | Function                                                                                                 |
|-----|--------|----------------------------------------------------------------------------------------------------------|
| 0   | Z8     | Set to 1 when the low-order 8 bits of the result of a data transfer or operation are 0.                  |
| 1   | Z16    | Set to 1 when the result of a data transfer or operation is 0.                                           |
|     |        | This bit behaves in the same manner as Z8 during an 8-bit transfer.                                      |
| 2   | CY     | The value of this bit changes in the following two cases:                                                |
|     |        | • Loaded with the carry or borrow from bit15 as the result of arithmetic operation.                      |
|     |        | • The value changes according to the shift or rotate instruction.                                        |
| 3   | HC     | Loaded with the carry or borrow from bit 3 as the result of arithmetic operation.                        |
| 4   | OV     | Loaded with the overflow bit of an operation.                                                            |
| 5   | Р      | Set to 1 when the total number of data 1 occurring as the result of a data transfer or operation is odd. |
| 6   | S      | Stores the most significant bit of the last handled data.                                                |
| 7   | IE     | Enables interrupts.                                                                                      |
|     |        | * No interrupts can occur unless this bit is set to 1.                                                   |
| 8   | IL0    | Control the interrupt level.                                                                             |
| 9   | IL1    | * When $IE = 1$ , the CPU accepts the interrupt requests that have an interrupt level higher             |
| 10  | IL2    | than the one that is specified by IL2 to IL0.                                                            |
| 11  | WS     | Controls writing into the exception interrupt control registers (0/1: disable/enable)                    |
| 12  | N0     | Referenced by the instructions that designate registers with the values of N3 to N0.                     |
| 13  | N1     | These bits are loaded with the address of the general-purpose register that was used in a                |
| 14  | N2     | data transfer or operation.                                                                              |
| 15  | N3     |                                                                                                          |

Note: When MUL, DIV, DIVLH, SDIV, and SDIVLH instructions are executed, the flags change as follows. Z8, Z16, P, S: Changes according to the arithmetic operation results R0.

HC, OV, N0 to N3: Cleared.

CY: The same value as S flag in SDIV or SDIVLH instruction. Cleared in other instructions.

#### Interrupts

#### 4.1.4.2 Interrupt level setting register 1L

1) This register is used to define the interrupt level of the individual vector addresses.

| Address | Initial value | R/W | Name | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|------|------|------|------|------|------|------|------|------|
| 7F02    | 0000 0000     | R/W | IL1L | IRQ3 |      | Т    | 0    | В    | Т    | W    | DT   |

### IRQ3 (bits 7 and 6): Vector address 800CH interrupt level setting

These 2 bits set the interrupt level of the interrupt at vector address 800CH.

| IRQ3 | Interrupt Level (800CH) |
|------|-------------------------|
| 11   | 3                       |
| 10   | 2                       |
| 01   | 1                       |
| 00   | Disabled                |

#### T0 (bits 5 and 4): Vector address 8008H interrupt level setting

These 2 bits set the interrupt level of the interrupt at vector address 8008H.

| ТО | Interrupt Level (8008H) |
|----|-------------------------|
| 11 | 3                       |
| 10 | 2                       |
| 01 | 1                       |
| 00 | Disabled                |

#### BT (bits 3 and 2): Vector address 8004H interrupt level setting

These 2 bits set the interrupt level of the interrupt at vector address 8004H.

| ВТ | Interrupt Level (8004H) |
|----|-------------------------|
| 11 | 3                       |
| 10 | 2                       |
| 01 | 1                       |
| 00 | Disabled                |

#### WDT (bits 1 and 0): Vector address 8000H interrupt level setting

These 2 bits set the interrupt level of the interrupt at vector address 8000H.

| WDT | Interrupt Level (8000H) |
|-----|-------------------------|
| 11  | 3                       |
| 10  | 2                       |
| 01  | 1                       |
| 00  | Disabled                |

#### 4.1.4.3 Interrupt level setting register 1H

1) This register is used to define the interrupt level of the individual vector addresses.

| Address | Initial value | R/W | Name | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|------|------|------|------|------|------|------|------|------|
| 7F03    | 0000 0000     | R/W | IL1H | IRQ7 |      | IR   | Q6   | IR   | Q5   | IR   | Q4   |

#### IRQ7 (bits 7 and 6): Vector address 801CH interrupt level setting

These 2 bits set the interrupt level of the interrupt at vector address 801CH.

| IRQ7 | Interrupt Level (801CH) |
|------|-------------------------|
| 11   | 3                       |
| 10   | 2                       |
| 01   | 1                       |
| 00   | Disabled                |

#### IRQ6 (bits 5 and 4): Vector address 8018H interrupt level setting

These 2 bits set the interrupt level of the interrupt at vector address 8018H.

| IRQ6 | Interrupt Level (8018H) |
|------|-------------------------|
| 11   | 3                       |
| 10   | 2                       |
| 01   | 1                       |
| 00   | Disabled                |

#### IRQ5 (bits 3 and 2): Vector address 8014H interrupt level setting

These 2 bits set the interrupt level of the interrupt at vector address 8014H.

| IRQ5 | Interrupt Level (8014H) |
|------|-------------------------|
| 11   | 3                       |
| 10   | 2                       |
| 01   | 1                       |
| 00   | Disabled                |

#### IRQ4 (bits 1 and 0): Vector address 8010H interrupt level setting

These 2 bits set the interrupt level of the interrupt at vector address 8010H.

| IRQ4 | Interrupt Level (8010H) |
|------|-------------------------|
| 11   | 3                       |
| 10   | 2                       |
| 01   | 1                       |
| 00   | Disabled                |

#### 4.1.4.4 Interrupt level setting register 2L

1) This register is used to define the interrupt level of the individual vector addresses.

| Address | Initial value | R/W | Name | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|------|------|------|------|------|------|------|------|------|
| 7F04    | 0000 0000     | R/W | IL2L | IRQB |      | IR   | QA   | IR   | Q9   | IR   | Q8   |

### IRQB (bits 7 and 6): Vector address 802CH interrupt level setting

These 2 bits set the interrupt level of the interrupt at vector address 802CH.

| IRQB | Interrupt Level (802CH) |
|------|-------------------------|
| 11   | 3                       |
| 10   | 2                       |
| 01   | 1                       |
| 00   | Disabled                |

#### IRQA (bits 5 and 4): Vector address 8028H interrupt level setting

These 2 bits set the interrupt level of the interrupt at vector address 8028H.

| IRQA | Interrupt Level (8028H) |
|------|-------------------------|
| 11   | 3                       |
| 10   | 2                       |
| 01   | 1                       |
| 00   | Disabled                |

#### IRQ9 (bits 3 and 2): Vector address 8024H interrupt level setting

These 2 bits set the interrupt level of the interrupt at vector address 8024H.

| IRQ9 | Interrupt Level (8024H) |
|------|-------------------------|
| 11   | 3                       |
| 10   | 2                       |
| 01   | 1                       |
| 00   | Disabled                |

#### IRQ8 (bits 1 and 0): Vector address 8020H interrupt level setting

These 2 bits set the interrupt level of the interrupt at vector address 8020H.

| IRQ8 | Interrupt Level (8020H) |
|------|-------------------------|
| 11   | 3                       |
| 10   | 2                       |
| 01   | 1                       |
| 00   | Disabled                |

#### 4.1.4.5 Interrupt level setting register 2H

1) This register is used to define the interrupt level of the individual vector addresses.

| Address | Initial value | R/W | Name | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|---------|---------------|-----|------|------|------|------|------|------|------|------|------|
| 7F05    | 0000 0000     | R/W | IL2H | IRQF |      | IR   | QE   | IR   | QD   | IR   | QC   |

#### IRQF (bits 7 and 6): Vector address 803CH interrupt level setting

These 2 bits set the interrupt level of the interrupt at vector address 803CH.

| IRQF | Interrupt Level (803CH) |
|------|-------------------------|
| 11   | 3                       |
| 10   | 2                       |
| 01   | 1                       |
| 00   | Disabled                |

#### IRQE (bits 5 and 4): Vector address 8038H interrupt level setting

These 2 bits define the interrupt level of the interrupt at vector address 8038H.

| IRQE | Interrupt Level (8038H) |
|------|-------------------------|
| 11   | 3                       |
| 10   | 2                       |
| 01   | 1                       |
| 00   | Disabled                |

#### IRQD (bits 3 and 2): Vector address 8034H interrupt level setting

These 2 bits set the interrupt level of the interrupt at vector address 8034H.

| IRQD | Interrupt Level (8034H) |
|------|-------------------------|
| 11   | 3                       |
| 10   | 2                       |
| 01   | 1                       |
| 00   | Disabled                |

#### IRQC (bits 1 and 0): Vector address 8030H interrupt level setting

These 2 bits set the interrupt level of the interrupt at vector address 8030H.

| IRQC | Interrupt Level (8030H) |
|------|-------------------------|
| 11   | 3                       |
| 10   | 2                       |
| 01   | 1                       |
| 00   | Disabled                |

#### 4.1.4.6 Exception interrupt control register low byte

| /       |               | 5   |       |        |        |        | 0      |        | ,,     |        |        |
|---------|---------------|-----|-------|--------|--------|--------|--------|--------|--------|--------|--------|
| Address | Initial value | R/W | Name  | BIT7   | BIT6   | BIT5   | BIT4   | BIT3   | BIT2   | BIT1   | BIT0   |
| 7F08    | 0000 0000     | R/W | EXCPL | CLKSTP | CLKSTP | ADDERR | ADDERR | ODDACC | ODDACC | NONINS | NONINS |
|         |               |     |       | _FLG   | _IE    | _FLG   | _IE    | _FLG   | _IE    | _FLG   | _IE    |

1) This register is allowed to be written when bit 11 of the register R14 (PSW) is set to 1.

#### CLKSTP\_FLG (bit 7): Oscillation stop detection flag

This flag bit is set if the system clock is stopped when CLKSTP\_IE is set to 1. This bit must be cleared to 0 with an instruction.

#### CLKSTP\_IE (bits 6): Oscillation stop interrupt enable flag

An interrupt request to vector address 8080H is generated when this bit and CLKSTP\_FLG are set to 1. Setting this bit to 1 activates the low-speed RC oscillator circuit and oscillation stop detector circuit.

#### ADDERR\_FLG (bit 5): Address error flag

This flag is set when an access is made to a memory location outside the installed memory space. This bit must be cleared to 0 with an instruction.

#### ADDERR\_IE (bit 4): Address error interrupt enable flag

An interrupt request to vector address 8080H is generated when this bit and ADDERR\_FLG are set to 1.

#### ODDACC\_FLG (bit 3): Word instruction odd address access flag

This flag bit is set when an access is made to an odd address with a word accessing instruction. This bit must be cleared to 0 with an instruction.

#### ODDACC\_IE (bit 2): Word instruction odd address access interrupt enable flag

An interrupt request to vector address 8080H is generated when this bit and ODDACC\_FLG are set to 1.

#### NONINS\_FLG (bit 1): Undefined instruction check flag

This flag bit is set when an undefined instruction code is executed. This bit must be cleared to 0 with an instruction.

#### NONINS\_IE (bit 0): Undefined instruction check interrupt enable flag

An interrupt request to vector address 8080H is generated when this bit and NONINS\_FLG are set to 1.

#### 4.1.4.7 Exception interrupt control register high byte

1) This register is allowed to be written when bit 11 of the register R14 (PSW) is set to 1.

| Address | Initial value | R/W | Name  | BIT7  | BIT6  | BIT5  | BIT4  | BIT3   | BIT2   | BIT1 | BIT0    |
|---------|---------------|-----|-------|-------|-------|-------|-------|--------|--------|------|---------|
| 7F09    | LL00 L0L0     | R/W | EXCPH | UART1 | UART1 | UART0 | UART0 | UART1  | UART0  | _    | MOVEVEC |
|         |               |     |       | _FLG  | _IE   | _FLG  | _IE   | _ITYPE | _ITYPE |      |         |

#### UART1\_FLG (bit 7): Reserved bit

This bit must always be set to 0.

#### UART1\_IE (bits 6): Reserved bit

This bit must always be set to 0.

#### USRT0\_FLG (bit 5): UART0 interrupt flag

This register is used to check for UART0 interrupt request flag. This bit is read-only.

#### UART0\_IE (bit 4): UART0 interrupt enable

An interrupt request to vector address 8080H is generated when this bit and UART0\_FLG are set to 1.

#### UART1\_ITYPE (bit 3): Reserved bit

This bit must always be set to 0.

#### UART0 \_ITYPE (bit 2): UART0 interrupt mask control

When this bit is set to 1, UARTO interrupts are enabled or disabled by the state of IE. When this bit is set to 0, UARTO interrupts are always enabled regardless of the state of IE.

#### MOVEVEC (bit 0): Reserved bit

This bit must always be set to 0.

## 4.2 System Clock Generator Function

## 4.2.1 Overview

This series of microcontrollers incorporates three systems of clocks that are selected under program control, i.e., the OSC1, OSC0, and RC oscillator as the system clock sources. The RC oscillator circuit has built-in resistors and capacitors and no external circuit is necessary. The frequency-divided output of the system clock can also be used as the clock source for the base timer.

- 1) OSC1: CF oscillator circuit
- 2) OSC0: Crystal oscillator circuit

### 4.2.2 Functions

- 1) System clock select
  - The system clock is selected from three systems of clocks, i.e. OSC1, OSC0, and RC oscillator.
- 2) System clock frequency division
  - Divides the frequency of the oscillator clock selected as the system clock and supplies the resultant clock to the system as the system clock.
  - The frequency division ratio can be selected from  $\frac{1}{1}$ ,  $\frac{1}{2}$ ,  $\frac{1}{4}$ ,  $\frac{1}{8}$ ,  $\frac{1}{16}$ ,  $\frac{1}{32}$ ,  $\frac{1}{64}$ , and  $\frac{1}{128}$ .
- 3) Oscillator circuit control
  - Start/stop of the above-mentioned three systems of clock sources can be controlled independently of one another with instructions.
- 4) Clock supply to the base timer
  - Can supply the frequency-divided output of the system clock to the base timer.
  - The frequency division ratio can be selected from  $\frac{1}{32}$ ,  $\frac{1}{64}$ ,  $\frac{1}{128}$ , and  $\frac{1}{256}$ .
- 5) Clock supply to the peripheral modules
  - The above-mentioned three systems of clocks can be used by the peripheral modules. For details, see the documents on the individual peripheral modules.
- 6) It is necessary to manipulate the following special function registers (SFRs) to control the system clock.

| Address | Initial value | R/W | Name | BIT7      | BIT6 | BIT5 | BIT4   | BIT3      | BIT2     | BIT1   | BIT0   |
|---------|---------------|-----|------|-----------|------|------|--------|-----------|----------|--------|--------|
| 7F0A    | 0000 0000     | R/W | OCR0 | OSC1TYPE1 | SCK  | SEL  | RCSTOP | OSC1TYPE0 | OSCOTYPE | ENOSC1 | ENOSC0 |
| 7F0B    | 0L00 L000     | R/W | OCR1 | BTCKSEL2  | -    | BTCK | SEL1   | -         |          | SCKDIV |        |

## 4.2.3 Circuit Configuration

#### 4.2.3.1 OSC1

#### 4.2.3.1.1 CF oscillator circuit

1) The OSC1 becomes enabled for oscillation by connecting a ceramic resonator and a capacitor to the CF1 and CF2 pins.

### 4.2.3.2 OSC0

#### 4.2.3.2.1 XT oscillator circuit

 The OSC0 becomes enabled for oscillation by connecting a crystal resonator (32.768 kHz), a capacitor, feedback resistors, and a damping resistor to the XT1 and XT2 pins.

#### 4.2.3.3 RC oscillator circuit

- 1) The RC oscillator circuit oscillates according to the built-in resistors and capacitors.
- 2) The clock from the RC oscillator is designated as the system clock after the microcontroller is reset or released from HOLD mode.
- 3) The RC oscillator starts oscillation at a normal frequency immediately after the start of oscillation.

#### 4.2.3.4 Oscillation control register 0

1) This register selects the active oscillator circuit and controls the start and stop operation.

#### 4.2.3.5 Oscillation control register 1

- 1) This register controls the operation of the system clock frequency divider circuit.
- 2) It is used to select the clock supplied to the base timer.

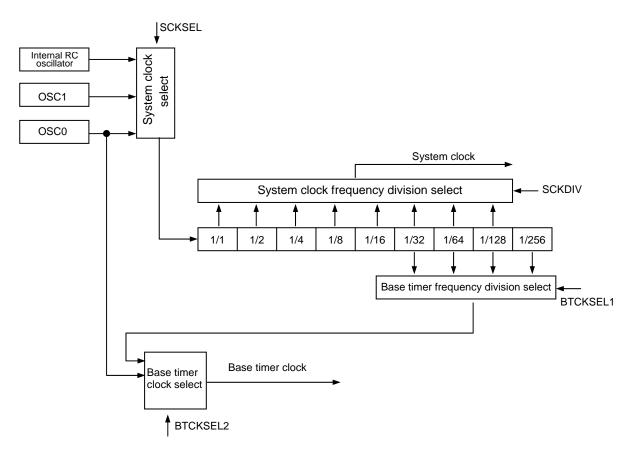



Figure 4.2.1 System Clock Generator Block Diagram

## 4.2.4 Related Registers

#### 4.2.4.1 Oscillation control register 0

1) This register is used to select the active oscillator circuit and to control the start/stop operation of the circuit.

| Address | Initial value | R/W | Name | BIT7      | BIT6 | BIT5 | BIT4   | BIT3      | BIT2     | BIT1   | BIT0   |
|---------|---------------|-----|------|-----------|------|------|--------|-----------|----------|--------|--------|
| 7F0A    | 0000 0000     | R/W | OCR0 | OSC1TYPE1 | SCK  | SEL  | RCSTOP | OSC1TYPE0 | OSCOTYPE | ENOSC1 | ENOSC0 |

#### SCKSEL (bits 6 and 5): System clock select

These 2 bits are used to select the system clock source.

| SCKSEL | System Clock  |
|--------|---------------|
| 11     | OSC0          |
| 10     | OSC1          |
| 01     | RC oscillator |
| 00     | RC oscillator |

#### RCSTOP (bit 4): RC oscillator operation control

Setting this bit to 1 stops the RC oscillator.

Setting this bit to 0 starts the RC oscillator.

## OSC1TYPE1 (bit 7): OSC1 circuit select 1

#### OSC1TYPE0 (bit 3): OSC1 circuit select 0

These 2 bits are used to select the OSC1.

| OSC1TYPE1 | OSC1TYPE0 | OSC1 Circuit Select   |
|-----------|-----------|-----------------------|
| 1         | 1         | CF oscillator circuit |
| 1         | 0         | Setting disabled      |
| 0         | 1         | Setting disabled      |
| 0         | 0         | Oscillation stopped   |

#### OSC0TYPE (bit 2): OSC0 circuit select

This bit is used to select the OSCO.

| OSC0TYPE | OSC0 Circuit Select   |
|----------|-----------------------|
| 1        | XT oscillator circuit |
| 0        | General-purpose port  |

#### ENOSC1 (bit 1): OSC1 operation control

Setting this bit to 1 starts the selected OSC1 circuit. Setting this bit to 0 stops the OSC1 circuit.

#### ENOSC0 (bit 0): OSC0 operation control

Setting this bit to 1 starts the selected OSC0 circuit. Setting this bit to 0 stops the OSC0 circuit.

#### 4.2.4.2 Oscillation control register 1

- 1) This register is used to control the system clock frequency divider circuit.
- 2) This register is used to select the clock supplied to the base timer.

| Address | Initial value | R/W | Name | BIT7     | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1   | BIT0 |
|---------|---------------|-----|------|----------|------|------|------|------|------|--------|------|
| 7F0B    | 0L00 L000     | R/W | OCR1 | BTCKSEL2 | -    | BTCK | SEL1 | -    |      | SCKDIV |      |

#### BTCKSEL2 (bit 7): Base timer clock select

This bit is used to select the clock to the base timer.

| BTCKSEL2 | Base Timer Clock                                |
|----------|-------------------------------------------------|
| 1        | Frequency-divided output of system clock (Note) |
| 0        | OSC0                                            |

Note: The frequency division ratio is defined by bits 5 and 4.

#### BTCKSEL1 (bits 5 and 4): Base timer clock frequency division ratio select

This bit is used to select the frequency division ratio of the clock supplied to the base timer.

| BTCKSEL1 | Frequency Division Ratio |
|----------|--------------------------|
| 00       | $\frac{1}{32}$           |
| 01       | $\frac{1}{64}$           |
| 10       | $\frac{1}{128}$          |
| 11       | $\frac{1}{256}$          |

#### SCKDIV (bits 2 to 0): System clock frequency division ratio select

| SCKDIV | Frequency Division Ratio |
|--------|--------------------------|
| 000    | $\frac{1}{1}$            |
| 001    | $\frac{1}{2}$            |
| 010    | $\frac{1}{4}$            |
| 011    | $\frac{1}{8}$            |
| 100    | $\frac{1}{16}$           |
| 101    | $\frac{1}{32}$           |
| 110    | $\frac{1}{64}$           |
| 111    | $\frac{1}{128}$          |

## 4.3 Standby Function

## 4.3.1 Overview

This series of microcontrollers supports three standby modes, i.e., HALT, HOLD, and HOLDX modes, that are used to reduce current consumption at power-failure time or in standby mode. In the standby state, the execution of all instructions is suspended.

## 4.3.2 Functions

- 1) HALT mode
  - The microcontroller suspends the execution of instructions but its peripheral circuits continue processing.
  - HALT mode is entered by executing the HALT instruction.
  - The microcontroller returns to normal operating mode when a reset occurs or an interrupt request is accepted.
- 2) HOLD mode
  - All oscillations are suspended. The microcontroller suspends the execution of instructions and its peripheral circuits stop operation.
  - HOLD mode is entered by executing the HOLD instruction.
  - The microcontroller switches to HALT mode when a reset occurs or a HOLD release signal is generated.
- 3) HOLDX mode
  - All oscillations except the OSC0 oscillation are suspended. The microcontroller suspends the execution of instructions and all the peripheral circuits running on the clocks except the OSC0 clock stop operation.
  - HOLDX mode is entered by executing the HOLDX instruction.
  - The microcontroller switches to HALT mode when a reset occurs or a HOLDX release signal is generated.
  - When HOLDX mode is released, the OSC1 and RC oscillation and the system clock selection restore the state that is established when HOLDX mode is entered. If the CF resonator is connected to the OSC1, the OCS0 or RC oscillator must be selected as the system clock before HOLDX mode is entered because the CF oscillation needs time to secure stable oscillation.
- \*The HOLD/HOLDX release signals are interrupt request signals generated by peripheral circuits. For this reason, the microcontroller will immediately exit HOLD or HOLDX mode and switch to another mode even when HOLD or HOLDX instruction is executed with an interrupt request from a peripheral circuit established.
  - Switches to normal operating mode if interrupts are enabled for acceptance.
  - Switches to HALT mode if interrupts are disabled for acceptance.

*Note: See Section 4.1 for information about interrupt acceptance.* 

- \*To restore the microcontroller from HOLD or HOLDX mode via a peripheral circuit, disable all the interrupt requests from the peripheral circuits except the interrupt source that is to release HOLD or HOLDX mode before placing the microcontroller into HOLD or HOLDX mode.
- \*To allow the microcontroller to be restored from HOLD or HOLDX mode only on a reset condition, disable all the interrupt requests from the peripheral circuits before placing the microcontroller into HOLD or HOLDX mode.

\* Do not write HALT, HOLD, and HOLDX instructions twice or more consecutively. Example)

```
:
HOLD
HALT
:
HALT
NOP
HALT
:
```

| Item/Mode                | Reset State                                                  | HALT Mode                                                                                     | HOLD Mode                                                                                                                                            | HOLDX Mode                                                                                                                                                                          |
|--------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Entry conditions         | RESB signal applied     Reset from     watchdog timer        | HALT instruction executed                                                                     | HOLD instruction executed                                                                                                                            | HOLDX instruction executed                                                                                                                                                          |
| Data changed on<br>entry | Initialized as shown<br>in separate table.<br>(Table 2.6.1)  | None                                                                                          | <ul> <li>WDTCR, bit 0 is<br/>cleared if WDTCR,<br/>bit 3 is set.</li> <li>OCR0 and OCR1<br/>registers are loaded<br/>with 00.</li> </ul>             | • WDTCR, bit 0 is<br>cleared if WDTCR,<br>bit 3 is set.                                                                                                                             |
| OCR0, OCR1               | Initialized                                                  | No change                                                                                     | Initialized                                                                                                                                          | No change                                                                                                                                                                           |
| OSC0                     | Stopped                                                      | State established at<br>entry time                                                            | Stopped                                                                                                                                              | State established at entry time                                                                                                                                                     |
| OSC1                     | Stopped                                                      | State established at entry time                                                               | Stopped                                                                                                                                              | Stopped                                                                                                                                                                             |
| RC oscillator            | Stopped                                                      | State established at entry time                                                               | Stopped                                                                                                                                              | Stopped                                                                                                                                                                             |
| CPU                      | Initialized                                                  | Stopped                                                                                       | Stopped                                                                                                                                              | Stopped                                                                                                                                                                             |
| I/O pin state            | See Table 4.3.2                                              | ←                                                                                             | <i>←</i>                                                                                                                                             | <i>←</i>                                                                                                                                                                            |
| RAM                      | RESB: Undefined     Watchdog timer     reset: Data preserved | Data preserved                                                                                | Data preserved                                                                                                                                       | Data preserved                                                                                                                                                                      |
| Peripheral module        | Stopped                                                      | State established at<br>entry time                                                            | Stopped                                                                                                                                              | Modules running on<br>OSC0: State<br>established at entry<br>time<br>Others: Stopped                                                                                                |
| Exit conditions          | Entry conditions<br>cleared                                  | <ul> <li>Interrupt request<br/>accepted</li> <li>Reset conditions<br/>established.</li> </ul> | <ul> <li>Interrupt request from<br/>INT0 to INT7, P0INT,<br/>UART2, SIO0 or SIO1<br/>accepted.</li> <li>Reset conditions<br/>established.</li> </ul> | <ul> <li>Interrupt request from<br/>INT0 to INT7, POINT,<br/>UART2, SIO0, SIO1,<br/>or a module running<br/>on OSC0 accepted.</li> <li>Reset conditions<br/>established.</li> </ul> |
| Returned mode            | Normal mode                                                  | Normal mode                                                                                   | HALT mode<br>(Note 1)                                                                                                                                | HALT mode<br>(Note1)                                                                                                                                                                |
| Data changed on exit     | None                                                         | None                                                                                          | None                                                                                                                                                 | None                                                                                                                                                                                |

Table 4.3.1 Standby Mode Operations

Note 1: The CPU switches into the reset state if it exits the current mode on the establishment of reset/entry conditions.

| Pin<br>Name | Reset Time                                                                                              | Normal Mode                                                                                                                                                                                                                                         | HALT Mode    | HOLD Mode                                                                                                                                                   | On Exit from<br>HOLD                                                                                |
|-------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| RESB        | Input pin                                                                                               | $\leftarrow$                                                                                                                                                                                                                                        | $\leftarrow$ | ←                                                                                                                                                           | ←                                                                                                   |
| PC0         | <ul> <li>Input mode</li> <li>X'tal oscillator<br/>will not start.</li> <li>Feedback resistor</li> </ul> | <ul> <li>Controlled by register<br/>OCR0 (7F0AH) as<br/>X'tal oscillator input.</li> <li>I/O is controlled by a<br/>program.</li> <li>*PC0 output function is<br/>disabled when used<br/>as an oscillator pin</li> <li>Feedback resistor</li> </ul> | ←            | The state of<br>PC0-related registers<br>established at entry<br>time     * Oscillation state<br>maintained in<br>HOLDX mode.     Feedback resistor         | • HOLD mode state                                                                                   |
|             | between PC0 and<br>PC1 is turned off.                                                                   | between PC0 and<br>PC1 is controlled by<br>a program.                                                                                                                                                                                               |              | between PC0 and PC1 is turned off.                                                                                                                          |                                                                                                     |
| PC1         | <ul> <li>Input mode</li> <li>X'tal oscillator<br/>will not start.</li> </ul>                            | <ul> <li>Controlled by register<br/>OCR0 (7F0AH) as<br/>X'tal oscillator output</li> <li>I/O is controlled by a<br/>program.</li> <li>*PC1 output function is<br/>disabled when used as<br/>an oscillator pin</li> </ul>                            | ←            | <ul> <li>The state of<br/>PC1-related registers<br/>established at entry<br/>time</li> <li>* Oscillation state<br/>maintained in<br/>HOLDX mode.</li> </ul> | • HOLD mode state                                                                                   |
|             | • Feedback resistor<br>between PC0 and<br>PC1 is turned off.                                            | • Feedback resistor<br>between PC0 and<br>PC1 is controlled by a<br>program.                                                                                                                                                                        |              | • Feedback resistor<br>between PC0 and PC1<br>is turned off.                                                                                                |                                                                                                     |
| CF1         | CF oscillator<br>inverter input                                                                         | <ul> <li>CF oscillator inverter<br/>input</li> <li>Enabled/disabled by<br/>register OCR0<br/>(7F0AH)</li> </ul>                                                                                                                                     | <i>←</i>     | Oscillation suspended                                                                                                                                       | • Same as reset time<br>*The state<br>established at<br>entry time on exit<br>from HOLDX<br>mode.   |
|             | • Feedback resistor present between CF1 and CF2.                                                        | • Feedback resistor present between CF1 and CF2.                                                                                                                                                                                                    |              | • Feedback resistor<br>present between CF1<br>and CF2.                                                                                                      |                                                                                                     |
| CF2         | <ul> <li>CF oscillator<br/>inverter output</li> <li>Oscillation<br/>enabled</li> </ul>                  | <ul> <li>CF oscillator inverter<br/>output</li> <li>Enabled/disabled by<br/>register OCR0<br/>(7F0AH)</li> <li>Always set to VDD<br/>level regardless of<br/>CF1 state when<br/>oscillation is<br/>suspended.</li> </ul>                            | ←            | <ul> <li>Oscillation suspended</li> <li>Always set to VDD<br/>level regardless of CF1<br/>state.</li> </ul>                                                 | Same as reset<br>time     *The state<br>established at<br>entry time on exit<br>from HOLDX<br>mode. |
| P00-P07     | <ul><li> Input mode</li><li> Pull-up resistor off</li></ul>                                             | • Input/output/pull-up resistor controlled by a program.                                                                                                                                                                                            | ←            | ←                                                                                                                                                           | ←                                                                                                   |
| P10-P17     | <ul><li> Input mode</li><li> Pull-up resistor off</li></ul>                                             | • Input/output/pull-up resistor controlled by a program.                                                                                                                                                                                            | ←            | ←                                                                                                                                                           | ←                                                                                                   |
| P20-P27     | <ul><li> Input mode</li><li> Pull-up resistor off</li></ul>                                             | • Input/output/pull-up resistor controlled by a program.                                                                                                                                                                                            | ←            | ←                                                                                                                                                           | ←                                                                                                   |
| P30-P33     | <ul><li> Input mode</li><li> Pull-up resistor off</li></ul>                                             | • Input/output/pull-up resistor controlled by a program.                                                                                                                                                                                            | ←            | ←                                                                                                                                                           | ←                                                                                                   |

 Table 4.3.2
 Pin States and Operating Modes (This Series)

Continued on next page.

## Standby Function

| Pin<br>Name | Reset Time                                                  | Normal Mode                                              | HALT Mode | HOLD Mode | On Exit from<br>HOLD |
|-------------|-------------------------------------------------------------|----------------------------------------------------------|-----------|-----------|----------------------|
| P40-P47     | <ul><li> Input mode</li><li> Pull-up resistor off</li></ul> | • Input/output/pull-up resistor controlled by a program. | <i>←</i>  | ←         | ←                    |
| P60-P67     | <ul><li> Input mode</li><li> Pull-up resistor off</li></ul> | • Input/output/pull-up resistor controlled by a program. | ←         | ←         | ←                    |
| P70-P72     | <ul><li> Input mode</li><li> Pull-up resistor off</li></ul> | • Input/output/pull-up resistor controlled by a program. | <i>←</i>  | ←         | ←                    |
| PA0-PA3     | <ul><li> Input mode</li><li> Pull-up resistor off</li></ul> | • Input/output/pull-up resistor controlled by a program. | <i>←</i>  | ←         | ←                    |
| PC2         | <ul><li> Input mode</li><li> Pull-up resistor off</li></ul> | • Input/output/pull-up resistor controlled by a program. | ←         | ←         | ←                    |
| TEST        | • On-chip debugger<br>pin                                   | ←                                                        | ←         | ←         | ←                    |

## Pin States and Operating Modes (continued from preceding page)

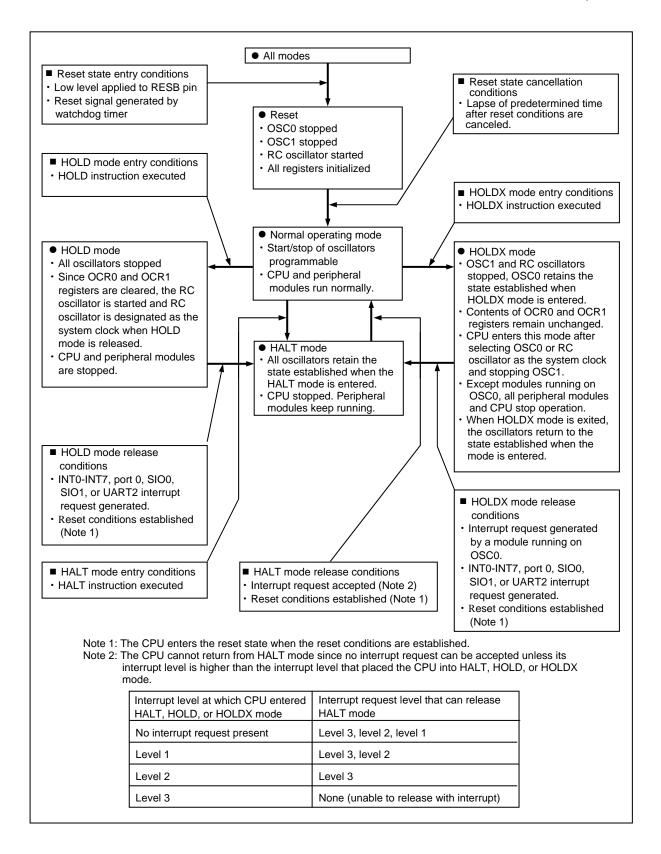



Figure 4.3.1 Standby Mode State Transition Diagram

## 4.4 Reset Function

## 4.4.1 Overview

The reset function initializes the microcontroller when it is powered on or while it is running.

## 4.4.2 Functions

This series of microcontrollers provides the following three modes of reset function:

- 1) External reset via the RESB pin
  - The microcontroller is reset without fail by applying and holding a low level to the RESB pin for  $10\mu s$  or longer after the power source is stabilized. Note, however, that a low level of a small duration is likely to trigger a reset.
  - The RESB pin can serve as a power-on reset pin when it is provided with external time constant elements.
- 2) Runaway detection/reset function using a watchdog timer
- 3) Software reset function performed by executing the RESET instruction from within a program

## 4.4.3 Reset Time State

- When a reset is generated by the RESB pin, watchdog timer, or software, the hardware functional blocks of the microcontroller are initialized by a reset signal that is in synchronization with the system clock.
- No wait time is required at power-on time since the system clock is automatically assigned to the RC oscillator clock output on a reset. The system clock must not be switched until the target clock is stabilized.

<Notes and precautions>

- The R15 (SP) is initialized to 0000H.
- Data RAM is never initialized by a reset. Consequently, the contents of RAM are undefined at power-on time.

## 4.5 Watchdog Timer Function

## 4.5.1 Overview

This series of microcontrollers incorporates a base-timer-based watchdog timer that detects program runaway conditions.

This watchdog timer can trigger a reset or interrupt, assuming that a program runaway occurred if the relevant program fails to detect a clear signal in a predetermined period of time.

## 4.5.2 Functions

1) Detection of a runaway condition

A program that periodically clears the watchdog timer needs to be prepared. If a program runaway occurs, it will not execute the instructions that clears the watchdog timer. This causes the timer to generate an overflow condition, setting the runaway detection flag.

2) Actions to be taken following the detection of a runaway condition

The microcontroller can take one of the following two actions when the watchdog timer detects a runaway condition:

Reset mode

The PC is initialized to 008000H. The SFRs (peripheral function control registers) are initialized.

Bits 5 to 2 of the watchdog timer control register (WDTCR), however, are not initialized by the watchdog timer reset processing. Bits 1 and 0 are initialized on a watchdog timer reset processing.

• Interrupt mode

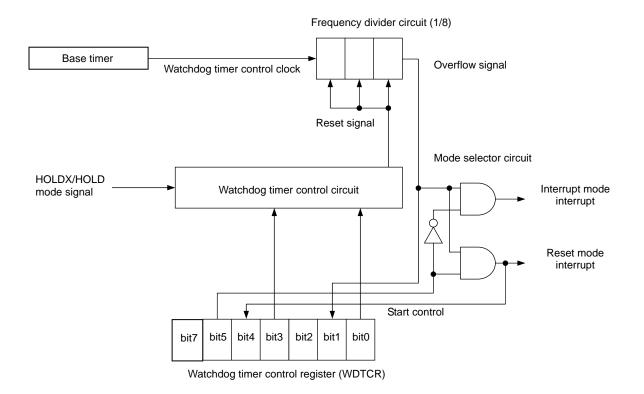
A watchdog timer interrupt is generated. The interrupt processing at vector address 008000H is performed.

The PC is set to vector address 008000H. The SFRs (peripheral function control registers) are not initialized. The watchdog timer retains the state that is established before entry into the interrupt mode.

Bit 1 of the watchdog timer control register (WDTCR) is set.

- 3) It is necessary to manipulate the following special function registers (SFRs) to control the watchdog timer.
  - WDTCR, BTCR, OCR0, OCR1

| Address | Initial value | R/W | Name  | BIT7 | BIT6 | BIT5  | BIT4  | BIT3    | BIT2    | BIT1 | BIT0  |
|---------|---------------|-----|-------|------|------|-------|-------|---------|---------|------|-------|
| 7F0C    | 0L00 0000     | R/W | WDTCR | -    | -    | MDSEL | SRFLG | PDNSTOP | USERFLG | OVF  | START |


## 4.5.3 Circuit Configuration

#### 4.5.3.1 3-bit binary up counter

1) This counter counts the number of base timer outputs.

#### 4.5.3.2 Watchdog timer control register

1) This register controls the operation of the watchdog timer.





## 4.5.4 Related Registers

#### 4.5.4.1 Watchdog timer control register

1) This register controls the operation of the watchdog timer.

| Address | Initial value | R/W | Name  | BIT7 | BIT6 | BIT5  | BIT4  | BIT3    | BIT2    | BIT1 | BIT0  |
|---------|---------------|-----|-------|------|------|-------|-------|---------|---------|------|-------|
| 7F0C    | 0L00 0000     | R/W | WDTCR | -    | -    | MDSEL | SRFLG | PDNSTOP | USERFLG | OVF  | START |

#### (Bits 7 and 6): Fixed bit.

These bits must always be set to 0.

#### MDSEL (bit 5): Runaway detection mode select

When this bit is set to 1, the watchdog timer is in reset mode.

When this bit is set to 0, the watchdog timer is in interrupt mode.

#### SRFLG (bit 4): Reset execution detection flag

If a runaway condition is detected when MDSEL is set to 1 (reset mode) or if the watchdog timer is started in an improper configuration state, the microcontroller performs a reset operation and sets this bit. Since this bit is not cleared by the reset sequence, it is possible to determine whether the reset has been executed by the watchdog timer by monitoring this bit.

#### PDNSTOP (bit 3): HOLDX/HOLD mode time function control

This bit controls the start (0)/stop (1) operation of the watchdog timer when the microcontroller enters HOLDX or HOLD mode. If this bit is set to 1, START is reset in HOLDX or HOLD mode and the watchdog timer is stopped. If this bit is set to 0, START is not changed and the watchdog timer continues operation even in HOLDX mode.

#### USERFLG (bit 2): General-purpose flag

#### OVF (bit 1): Runaway detection flag

This flag bit is set when a runaway condition is detected by an overflow in the watchdog timer.

#### START (bit 0): Watchdog timer operation control

This bit controls the operation of watchdog timer. Setting this bit to 1 starts the watchdog timer. After the watchdog timer is started, the WDTCR register is disabled for writes. Consequently, it is not possible to stop the watchdog timer by setting this bit to 0 under program control.

See Table 4.5.1 for the conditions under which the START bit is cleared and the watchdog timer is stopped.

Note: The clock to the watchdog timer is supplied by the 16-bit counter in the base timer block. Consequently, the watchdog timer will not function unless the base timer is active (a clock being supplied to the 16-bit counter).

To use these functions, it is necessary to set the base timer operation control bit (bit 6) of the base timer control register BTCR (at address 7F0EH) to 1 (operation) before starting the watchdog timer.

A watchdog timer reset signal will be generated if the watchdog timer is started when the base timer operation control bit (bit 6) is set to 0 (stopped) or when the oscillator which is selected as the base timer clock source is disabled.

| WDTCR   | External<br>Reset | -             | imer Runaway<br>tected | RESET<br>Instruction | HOLDX/HOLD<br>Execu |                     |
|---------|-------------------|---------------|------------------------|----------------------|---------------------|---------------------|
|         | Occurred          | Reset<br>Mode |                        |                      | PDNSTOP Set<br>to 1 | PDNSTOP<br>Set to 0 |
| Bit7    | 0                 | Retained      | Retained               | Retained             | Retained            | Retained            |
| Bit6    | L                 | L             | L                      | L                    | L                   | L                   |
| MDSEL   | 0                 | 1 is retained | 0 is retained          | Retained             | Retained            | Retained            |
| SRFLG   | 0                 | 1             | Retained               | Retained             | Retained            | Retained            |
| PDNSTOP | 0                 | Retained      | Retained               | Retained             | 1 is retained       | 0 is retained       |
| USERFLG | 0                 | Retained      | Retained               | Retained             | Retained            | Retained            |
| OVF     | 0                 | 0             | 1                      | 0                    | Retained            | Retained            |
| START   | 0                 | 0             | 1 is retained          | 0                    | 0                   | Retained            |

| Table 4.5.1 WDTCR State after Each Event | Table 4.5.1 | WDTCR State after Each Event |
|------------------------------------------|-------------|------------------------------|
|------------------------------------------|-------------|------------------------------|

## 4.5.5 Using the Watchdog Timer

Code a program so that instructions for clearing the watchdog timer periodically are executed.

- 1) Setting up the state before executing the watchdog timer
  - The microcontroller will perform a reset if the watchdog timer is started without making the following settings:
    - <1> Enable the oscillator that serves as the base timer clock source.
    - <2> Start the base timer.
- 2) Starting the watchdog timer

Perform the following register setup steps <1> to <3> at the same time:

- <1> Set bit 0 (START) to 1.
- <2> Also set bit 5 (MDSEL) to 1 if a reset is to be effected on detection of a runaway condition.
- <3> To suspend the operation of the watchdog timer in HOLDX mode, set bit 3 (PDNSTOP) to 1 at the same time.

The watchdog timer starts functioning when bit 0 (START) is set to 1. Once the watchdog timer starts operation, <u>the register (WDTCR) is disabled for writes</u> and it is only possible to clear the watchdog timer counter and to read WDTCR. Consequently, the watchdog timer cannot be stopped by setting bit 0 (START) to 0 with a program. See Table 4.5.1 for the conditions under which the START bit is cleared and the watchdog timer is stopped.

3) Clearing the watchdog timer counter

When the watchdog timer starts operation, the counter starts counting up. When this counter overflows, a reset signal or interrupt request is generated according to the settings of the watchdog timer control register (WDTCR). To run the program in the normal mode, therefore, it is necessary to periodically clear the counter before the counter causes an overflow. Execute the following instruction to clear the watchdog timer while it is running.

The watchdog timer cannot be cleared by other instruction than this.

C language:

#### \_\_SFR\_BITCLR (\_\_WDTCR, 0);

Assembler:

#### CLR1\_\_WDTCR, #0

4) Detecting a runaway condition

Unless the above-mentioned instruction is executed periodically, the counter overflows because the watchdog timer is not cleared. Once an overflow condition occurs, the watchdog timer considers that a program runaway has occurred and triggers a reset signal or interrupt request. In this case, the runaway detection flag OVF is set.

If MDSEL is found to be 1 in this case, a reset occurs. If MDSEL is 0, an interrupt request is generated and program is executed from address 8000H.

5) Setting timer values

The interrupt generation period needs to be set when using the watchdog timer. At the same time, during the main routine, the watchdog timer counter needs to be cleared with a period shorter than the interrupt generation period.

Formulae for calculating the interrupt generation period are as follows:

<1> When the base timer control register (BTCR) bits FST is set to 1, and CNT is set to 00 or 01,

```
T_{WDT} = (1 / fBST) \times 32 \times 8
```

<2> When the base timer control register (BTCR) bits FST and CNT are set to the values other than those of <1>,

 $T_{WDT} = (1 / fBST) \times 8192 \times 8$ 

- \* fBST: Input clock frequency selected with the base timer clock select register (OCR1)  $T_{WDT}$ : Watchdog timer interrupt generation period
- Example 1: When the system clock is 1/1 of OSC1(1MHz), the base timer clock is 1/64 of the system clock, and the base timer control register(BTCR) bits, FST is set to 0 and CNT is set to 00,

 $T_{WDT} = 1 \times 10^{-6} \times 64 \times 8192 \times 8 = 4.194304s$ 

Example 2: When the system clock is 1/1 of OSC1(1MHz), the base timer clock is 1/1 of the OSC0 (32.768kHz), and the base timer control register (BTCR) bits, FST is set to 1 and CNT is set to 00,

 $T_{WDT} = (1 / 32.768) \times 10^{-3} \times 32 \times 8 = 7.8125 \mu s$ 

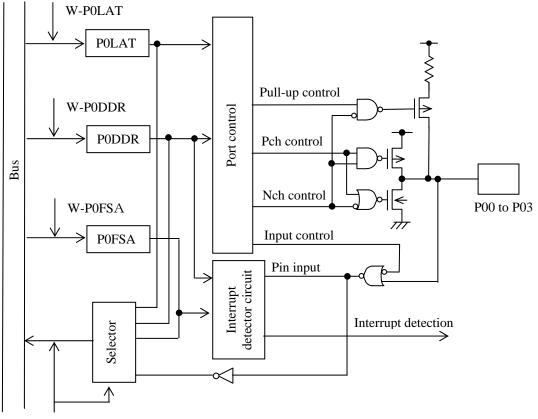
Watchdog Timer

| Address | Initial value | R/W | LC885800 | Remarks         | BIT7       | BIT6      | BIT5       | BIT4      | BIT3       | BIT2      | BIT1       | BITO      |
|---------|---------------|-----|----------|-----------------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|
| 0-17FF  | XXXX XXXX     | R/W | RAM6KB   |                 |            |           |            |           |            |           |            |           |
| 7F00    |               |     |          |                 |            |           |            |           |            |           |            |           |
| 7F01    |               |     |          |                 |            |           |            |           |            |           |            |           |
| 7F02    | 0000 0000     | R/W | IL1L     |                 | IF         | 03        | Т          | 0         | В          | T         | WI         | DT        |
| 7F03    | 0000 0000     | R/W | IL1H     |                 | IF         | Q7        | IR         | Q6        | IR         | Q5        | IR         | G4        |
| 7F04    | 0000 0000     | R/W | IL2L     |                 | IF         | QB        | IR         | QA        | IR         | Q9        | IR         | Q8        |
| 7F05    | 0000 0000     | R/W | IL2H     |                 | IF         | QF        | IR         | QE        | IR         | QD        | IR         | QC        |
| 7F06    |               |     |          |                 |            |           |            |           |            |           |            |           |
| 7F07    |               |     |          |                 |            |           |            |           |            |           |            |           |
| 7F08    | 0000 0000     | R/W | EXCPL    |                 | CLKSTP_FLG | CLKSTP_IE | ADDERR_FLG | ADDERR_IE | ODDACC_FLG | ODDACC_IE | NONINS_FLG | NONINS_IE |
| 7F09    | LLOO LOLO     | R/W | EXCPH    |                 | UART1_FLG  | UART1_IE  | UARTO_FLG  | UARTO_IE  | UART1      | UARTO     | -          | MOVEVEC   |
|         |               |     |          |                 |            |           |            |           | _ITYPE     | _ITYPE    |            |           |
| 7F0A    | 0000 0000     | R/W | OCRO     |                 | OSC1TYPE1  | SCK       | SEL        | RCSTOP    | OSC1TYPE0  | OSCOTYPE  | ENOSC1     | ENOSCO    |
| 7F0B    | 0L00 L000     | R/W | OCR1     |                 | BTCKSEL2   | -         | BTCK       | SEL1      | -          |           | SCKDIV     | -         |
| 7F0C    | 0L00 0000     | R/W | WDTCR    |                 | -          | -         | MDSEL      | SRFLG     | PDNSTOP    | USERFLG   | OVF        | START     |
| 7F0D    |               |     | RAND     | System reserved |            |           |            |           |            |           |            |           |
| 7F0E    | 0000 0000     | R/W | BTCR     |                 | FST        | RUN       | CI         | NT        | FLG1       | IE1       | FLGO       | IE0       |
| 7F0F    |               |     | PWRDET   | System reserved |            |           |            |           |            |           |            |           |
| 7F10    | 0000 0000     | R/W | TOLR     |                 | BIT7       | BIT6      | BIT5       | BIT4      | BIT3       | BIT2      | BIT1       | BITO      |
| 7F11    | 0000 0000     | R/W | TOHR     |                 | BIT7       | BIT6      | BIT5       | BIT4      | BIT3       | BIT2      | BIT1       | BITO      |
| 7F12    | 0000 0000     | R/W | TOCNT    |                 | SISTS      | SIFLG     | SIIE       | CLK       | SEL        | RUN       | FLG        | IE        |
| 7F13    | 0000 0000     | R/W | TOPR     |                 |            | MODE      |            |           | -          | PR        |            | -         |
| 7F14    | 0000 0000     | R/W | T1LR     |                 | BIT7       | BIT6      | BIT5       | BIT4      | BIT3       | BIT2      | BIT1       | BITO      |
| 7F15    | 0000 0000     | R/W | T1HR     |                 | BIT7       | BIT6      | BIT5       | BIT4      | BIT3       | BIT2      | BIT1       | BITO      |
| 7F16    | 0000 0000     | R/W | T1CNT    |                 | HRUN       | HFLG      | HIE        | CLK       | SEL        | RUN       | FLG        | IE        |
| 7F17    | 0000 0000     | R/W | T1PR     |                 | MDSELRD    | MDSELBIT  | MDSELCP    |           |            | PR        |            |           |
| 7F18    | 0000 0000     | R/W | T2LR     |                 | BIT7       | BIT6      | BIT5       | BIT4      | BIT3       | BIT2      | BIT1       | BITO      |
| 7F19    | 0000 0000     | R/W | T2HR     |                 | BIT7       | BIT6      | BIT5       | BIT4      | BIT3       | BIT2      | BIT1       | BITO      |
| 7F1A    | 0000 0000     | R   | T2L      |                 | BIT7       | BIT6      | BIT5       | BIT4      | BIT3       | BIT2      | BIT1       | BITO      |
| 7F1B    | 0000 0000     | R   | T2H      |                 | BIT7       | BIT6      | BIT5       | BIT4      | BIT3       | BIT2      | BIT1       | BITO      |
| 7F1C    | 0000 0000     | R/W | T2CNT0   |                 | HRUN       | HFLG      | HIE        | CTR8      | SLCPRD     | RUN       | FLG        | IE        |
| 7F1D    | LLL0 0000     | R/W | T2CNT1   |                 | -          | -         | -          | CP        | DSL        | CPOHFLG   | CPOLFLG    | CPIE      |

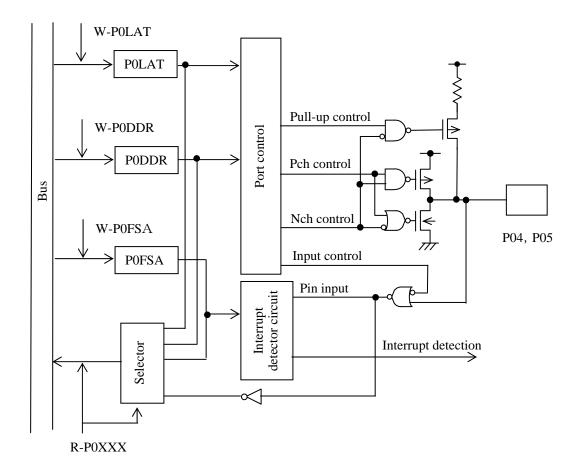
| Address | Initial value | R/W | LC885800 | Remarks | BIT7   | BIT6  | BIT5     | BIT4   | BIT3    | BIT2   | BIT1    | BITO |
|---------|---------------|-----|----------|---------|--------|-------|----------|--------|---------|--------|---------|------|
| 7F1E    | 000L 0000     | R/W | T2CNT2   |         | CK     | SL    | EXISL    | -      |         | F      | ŶŔ      |      |
| 7F1F    |               |     |          |         |        |       |          |        |         |        |         |      |
| 7F20    | 0000 0000     | R/W | ADCR     |         |        | CH    | SEL      |        | CMP     | START  | ENDFLG  | IE   |
| 7F21    | 0000 0000     | R/W | ADMR     |         | -      | RESOL | -        | -      | -       | ADJ    | MD      | 10   |
| 7F22    | 0000 0000     | R/W | ADRL     |         |        | DA    | TAL      |        | -       | -      | -       | MD2  |
| 7F23    | 0000 0000     | R/W | ADRH     |         | BIT7   | BIT6  | BIT5     | BIT4   | BIT3    | BIT2   | BIT1    | BITO |
| 7F24    |               |     |          |         |        |       |          |        |         |        |         |      |
| 7F25    |               |     |          |         |        |       |          |        |         |        |         |      |
| 7F26    |               |     |          |         |        |       |          |        |         |        |         |      |
| 7F27    |               |     |          |         |        |       |          |        |         |        |         |      |
| 7F28    | 0000 0000     | R/W | T3LR     |         | BIT7   | BIT6  | BIT5     | BIT4   | BIT3    | BIT2   | BIT1    | BITO |
| 7F29    | 0000 0000     | R/W | T3HR     |         | BIT7   | BIT6  | BIT5     | BIT4   | BIT3    | BIT2   | BIT1    | BITO |
| 7F2A    | 0000 0000     | R   | T3L      |         | BIT7   | BIT6  | BIT5     | BIT4   | BIT3    | BIT2   | BIT1    | BITO |
| 7F2B    | 0000 0000     | R   | T3H      |         | BIT7   | BIT6  | BIT5     | BIT4   | BIT3    | BIT2   | BIT1    | BITO |
| 7F2C    | 0000 0000     | R/W | T3CNT0   |         | HRUN   | HFLG  | HIE      | CK     | SL      | RUN    | FLG     | IE   |
| 7F2D    | LLLL L000     | R/W | T3CNT1   |         | -      | _     | -        | -      | -       | EXISL  | М       | D    |
| 7F2E    | 0000 0000     | R/W | T3PR     |         |        |       |          | Р      | R       |        |         |      |
| 7F2F    |               |     |          |         |        |       |          |        |         |        |         |      |
| 7F30    | 0000 0000     | R/W | SOCNT    |         | WAKEUP | REC   | RUN      | AUTO   | MSB     | OVRRUN | FLG     | IE   |
| 7F31    | 0000 0000     | R/W | SOBG     |         | BIT7   | BIT6  | BIT5     | BIT4   | BIT3    | BIT2   | BIT1    | BITO |
| 7F32    | 0000 0000     | R/W | SOBUF    |         | BIT7   | BIT6  | BIT5     | BIT4   | BIT3    | BIT2   | BIT1    | BITO |
| 7F33    | 0000 0000     | R/W | SOINTVL  |         | -      |       | SNBIT    |        | XCHNG   |        | INTVL   |      |
| 7F34    | 0000 0000     | R/W | S1CNT    |         | WAKEUP | REC   | RUN      | AUTO   | MSB     | OVRRUN | FLG     | IE   |
| 7F35    | 0000 0000     | R/W | S1BG     |         | BIT7   | BIT6  | BIT5     | BIT4   | BIT3    | BIT2   | BIT1    | BITO |
| 7F36    | 0000 0000     | R/W | S1BUF    |         | BIT7   | BIT6  | BIT5     | BIT4   | BIT3    | BIT2   | BIT1    | BITO |
| 7F37    | 0000 0000     | R/W | S1INTVL  |         | -      |       | SNBIT    |        | XCHNG   |        | INTVL   |      |
| 7F38    | 0000 1000     | R/W | UOCR     |         | RUN    | OVRUN | BAUDRATE | PARITY | TXEMPTY | TXIE   | RXREADY | RXIE |
| 7F39    |               |     |          |         |        |       |          |        |         |        |         |      |
| 7F3A    | 0000 0000     | R/W | UORXL    |         | BIT7   | BIT6  | BIT5     | BIT4   | BIT3    | BIT2   | BIT1    | BITO |
| 7F3B    | LLLL LL00     | R/W | UORXH    |         | -      | -     | -        | -      | -       | -      | BIT1    | BITO |
| 7F3C    | 0000 0000     | R/W | UOTXL    |         | BIT7   | BIT6  | BIT5     | BIT4   | BIT3    | BIT2   | BIT1    | BITO |
| 7F3D    | LLLL LLHO     | R/W | UOTXH    |         | -      | -     | -        | _      | _       | -      | BIT1    | BITO |

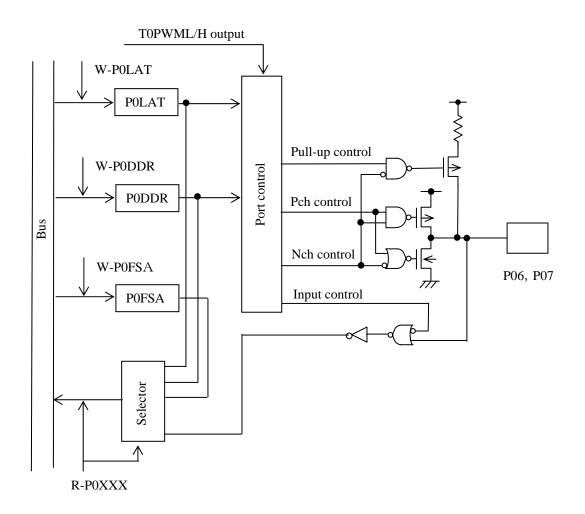
| Address | Initial value | R/W | LC885800 | Remarks | BIT7  | BIT6   | BIT5  | BIT4  | BIT3   | BIT2  | BIT1  | BITO |
|---------|---------------|-----|----------|---------|-------|--------|-------|-------|--------|-------|-------|------|
| 7F3E    |               |     |          |         |       |        |       |       |        |       |       |      |
| 7F3F    |               |     |          |         |       |        |       |       |        |       |       |      |
| 7F40    | 0000 0000     | R/W | POLAT    |         | BIT7  | BIT6   | BIT5  | BIT4  | BIT3   | BIT2  | BIT1  | BITO |
| 7F41    | XXXX XXXX     | R   | POIN     |         | BIT7  | BIT6   | BIT5  | BIT4  | BIT3   | BIT2  | BIT1  | BITO |
| 7F42    | 0000 0000     | R/W | PODDR    |         | BIT7  | BIT6   | BIT5  | BIT4  | BIT3   | BIT2  | BIT1  | BITO |
| 7F43    | 0000 0000     | R/W | POFSA    |         | P05IL | P05FLG | P05IE | P04IL | P04FLG | P04IE | POFLG | POIE |
| 7F44    | 0000 0000     | R/W | P1LAT    |         | BIT7  | BIT6   | BIT5  | BIT4  | BIT3   | BIT2  | BIT1  | BITO |
| 7F45    | XXXX XXXX     | R   | P1IN     |         | BIT7  | BIT6   | BIT5  | BIT4  | BIT3   | BIT2  | BIT1  | BITO |
| 7F46    | 0000 0000     | R/W | P1DDR    |         | BIT7  | BIT6   | BIT5  | BIT4  | BIT3   | BIT2  | BIT1  | BITO |
| 7F47    | 0000 0000     | R/W | P1FSA    |         | BIT7  | BIT6   | BIT5  | BIT4  | BIT3   | BIT2  | BIT1  | BITO |
| 7F48    | 0000 0000     | R/W | P2LAT    |         | BIT7  | BIT6   | BIT5  | BIT4  | BIT3   | BIT2  | BIT1  | BITO |
| 7F49    | XXXX XXXX     | R   | P2IN     |         | BIT7  | BIT6   | BIT5  | BIT4  | BIT3   | BIT2  | BIT1  | BITO |
| 7F4A    | 0000 0000     | R/W | P2DDR    |         | BIT7  | BIT6   | BIT5  | BIT4  | BIT3   | BIT2  | BIT1  | BITO |
| 7F4B    | 0000 0000     | R/W | P2FSA    |         | BIT7  | BIT6   | BIT5  | BIT4  | BIT3   | BIT2  | BIT1  | BITO |
| 7F4C    | LLLL 0000     | R/W | P3LAT    |         | -     | -      | _     | _     | BIT3   | BIT2  | BIT1  | BITO |
| 7F4D    | LLLL XXXX     | R   | P3IN     |         | _     | -      | -     | -     | BIT3   | BIT2  | BIT1  | BITO |
| 7F4E    | LLLL 0000     | R/W | P3DDR    |         | _     | -      | -     | -     | BIT3   | BIT2  | BIT1  | BITO |
| 7F4F    | LLLL 0000     | R/W | P3FSA    |         | -     | -      | -     | -     | BIT3   | BIT2  | BIT1  | BITO |
| 7F50    | 0000 0000     | R/W | P4LAT    |         | BIT7  | BIT6   | BIT5  | BIT4  | BIT3   | BIT2  | BIT1  | BITO |
| 7F51    | XXXX XXXX     | R   | P4IN     |         | BIT7  | BIT6   | BIT5  | BIT4  | BIT3   | BIT2  | BIT1  | BITO |
| 7F52    | 0000 0000     | R/W | P4DDR    |         | BIT7  | BIT6   | BIT5  | BIT4  | BIT3   | BIT2  | BIT1  | BITO |
| 7F53    | 0000 0000     | R/W | P4FSA    |         | BIT7  | BIT6   | BIT5  | BIT4  | BIT3   | BIT2  | BIT1  | BITO |
| 7F54    |               |     |          |         |       |        |       |       |        |       |       |      |
| 7F55    |               |     |          |         |       |        |       |       |        |       |       |      |
| 7F56    |               |     |          |         |       |        |       |       |        |       |       |      |
| 7F57    |               |     |          |         |       |        |       |       |        |       |       |      |
| 7F58    | 0000 0000     | R/W | P6LAT    |         | BIT7  | BIT6   | BIT5  | BIT4  | BIT3   | BIT2  | BIT1  | BITO |
| 7F59    | XXXX XXXX     | R   | P6IN     |         | BIT7  | BIT6   | BIT5  | BIT4  | BIT3   | BIT2  | BIT1  | BITO |
| 7F5A    | 0000 0000     | R/W | P6DDR    |         | BIT7  | BIT6   | BIT5  | BIT4  | BIT3   | BIT2  | BIT1  | BITO |
| 7F5B    |               |     |          |         |       |        |       |       |        |       |       |      |
| 7F5C    | LLLL L000     | R/W | P7LAT    |         | -     | -      | -     | -     | -      | BIT2  | BIT1  | BITO |
| 7F5D    | LLLL LXXX     | R   | P7IN     |         | -     | -      | -     | -     | -      | BIT2  | BIT1  | BITO |

| Address | Initial value | R/W | LC885800  | Remarks         | BIT7 | BIT6   | BIT5   | BIT4     | BIT3 | BIT2 | BIT1   | BITO  |
|---------|---------------|-----|-----------|-----------------|------|--------|--------|----------|------|------|--------|-------|
| 7F5E    | LLLL L000     | R/W | P7DDR     |                 | -    | -      | -      | -        | -    | BIT2 | BIT1   | BITO  |
| 7F5F    |               |     |           |                 |      |        |        |          |      |      |        |       |
| 7F60    | 0000 0000     | R/W | SMICOCNT  |                 | RUN  | MST    | TRX    | SCL8     | MKC  | BB   | END    | IE    |
| 7F61    | 0000 0000     | R/W | SMICOSTA  |                 | SMD  | RQL9   | STD    | SPD      | AL   | OVR  | TAK    | RAK   |
| 7F62    | 0000 0000     | R/W | SMICOBRG  |                 | В    | RP     | BRDQ   |          |      | BRD  |        |       |
| 7F63    | 0000 0000     | R/W | SMICOBUF  |                 | BIT7 | BIT6   | BIT5   | BIT4     | BIT3 | BIT2 | BIT1   | BITO  |
| 7F64    |               |     |           |                 |      |        |        |          |      |      |        |       |
| 7F65    |               |     |           |                 |      |        |        |          |      |      |        |       |
| 7F66    |               |     |           |                 |      |        |        |          |      |      |        |       |
| 7F67    |               |     |           |                 |      |        |        |          |      |      |        |       |
| 7F68    | LLLL 0000     | R/W | SMICOPCNT |                 | _    | _      | -      | _        | SHDS | P5V  | PCLV   | PSLW  |
| 7F69    |               |     |           |                 |      |        |        |          |      |      |        |       |
| 7F6A    |               |     |           |                 |      |        |        |          |      |      |        |       |
| 7F6B    |               |     |           |                 |      |        |        |          |      |      |        |       |
| 7F6C    | 0010 0000     | R/W | U2CNT0    |                 | TEND | TENDIE | TEMPTY | TEMPTYIE | RUN  | RERR | RREADY | RIE   |
| 7F6D    | 0000 0000     | R/W | U2CNT1    |                 | TSTB | DIV    | S      | CK       | PODD | PEN  | WUPFLG | WUPIE |
| 7F6E    | 0000 0000     | R/W | U2TBUF    |                 | BIT7 | BIT6   | BIT5   | BIT4     | BIT3 | BIT2 | BIT1   | BITO  |
| 7F6F    | 0000 0000     | R   | U2RBUF    |                 | BIT7 | BIT6   | BIT5   | BIT4     | BIT3 | BIT2 | BIT1   | BITO  |
| 7F70    |               |     |           |                 |      |        |        |          |      |      |        |       |
| 7F71    |               |     |           |                 |      |        |        |          |      |      |        |       |
| 7F72    |               |     |           |                 |      |        |        |          |      |      |        |       |
| 7F73    |               |     |           |                 |      |        |        |          |      |      |        |       |
| 7F74    | 0000 0000     | R/W | U2BG      |                 | BIT7 | BIT6   | BIT5   | BIT4     | BIT3 | BIT2 | BIT1   | BITO  |
| 7F75    |               |     |           |                 |      |        |        |          |      |      |        |       |
| 7F76    |               |     | FSR0      | System reserved |      |        |        |          |      |      |        |       |
| 7F77    |               |     |           |                 |      |        |        |          |      |      |        |       |
| 7F78    |               |     |           |                 |      |        |        |          |      |      |        |       |
| 7F79    |               |     |           |                 |      |        |        |          |      |      |        |       |
| 7F7A    |               |     |           |                 |      |        |        |          |      |      |        |       |
| 7F7B    |               |     |           |                 |      |        |        |          |      |      |        |       |
| 7F7C    |               |     |           |                 |      |        |        |          |      |      |        |       |


| Address | Initial value | R/W | LC885800 | Remarks | BIT7   | BIT6  | BIT5   | BIT4   | BIT3 | BIT2   | BIT1 | BITO  |
|---------|---------------|-----|----------|---------|--------|-------|--------|--------|------|--------|------|-------|
| 7F7D    |               |     |          |         |        |       |        |        |      |        |      |       |
| 7F7E    |               |     |          |         |        |       |        |        |      |        |      |       |
| 7F7F    |               |     |          |         |        |       |        |        |      |        |      |       |
| 7F80    | 0000 0000     | R/W | USMOCTL  |         | STPFLG | 0VF   | NPHFLG | IE     | CK   | (SL    | DIR1 | RUN   |
| 7F81    | 0000 0000     | R/W | USMONPH  |         | BIT7   | BIT6  | BIT5   | BIT4   | BIT3 | BIT2   | BIT1 | BITO  |
| 7F82    | 0000 0000     | R/W | USMOTWL  |         | BIT7   | BIT6  | BIT5   | BIT4   | BIT3 | BIT2   | BIT1 | BITO  |
| 7F83    | 00LL 0000     | R/W | USMOTWH  |         | DIR2   | STP   | -      | -      | BIT3 | BIT2   | BIT1 | BITO  |
| 7F84    | 0000 0000     | R/W | USMOLPL  |         | BIT7   | BIT6  | BIT5   | BIT4   | BIT3 | BIT2   | BIT1 | BITO  |
| 7F85    | LOOL LLOO     | R/W | USMOLPH  |         | -      | BR    | KMD    | -      | -    | -      | BIT1 | BITO  |
| 7F86    | 0000 L000     | R/W | USMOPSF  |         | TSTA   | PWMMD | 00     | TMD    | _    |        | NPT  |       |
| 7F87    |               |     |          |         |        |       |        |        |      |        |      |       |
| 7F88    | 0L00 0000     | R/W | USMPLLC  |         | TSTB   | _     |        | SELREF |      | FRQSEL | VC3  | PLLON |
| 7F89    |               |     |          |         |        |       |        |        |      |        |      |       |
| 7F8A    |               |     |          |         |        |       |        |        |      |        |      |       |
| 7F8B    |               |     |          |         |        |       |        |        |      |        |      |       |
| 7F8C    |               |     |          |         |        |       |        |        |      |        |      |       |
| 7F8D    |               |     |          |         |        |       |        |        |      |        |      |       |
| 7F8E    |               |     |          |         |        |       |        |        |      |        |      |       |
| 7F8F    |               |     |          |         |        |       |        |        |      |        |      |       |
| 7F90    |               |     |          |         |        |       |        |        |      |        |      |       |
| 7F91    |               |     |          |         |        |       |        |        |      |        |      |       |
| 7F92    |               |     |          |         |        |       |        |        |      |        |      |       |
| 7F93    |               |     |          |         |        |       |        |        |      |        |      |       |
| 7F94    |               |     |          |         |        |       |        |        |      |        |      |       |
| 7F95    |               |     |          |         |        |       |        |        |      |        |      |       |
| 7F96    |               |     |          |         |        |       |        |        |      |        |      |       |
| 7F97    |               |     |          |         |        |       |        |        |      |        |      |       |
| 7F98    |               |     |          |         |        |       |        |        |      |        |      |       |
| 7F99    |               |     |          |         |        |       |        |        |      |        |      |       |
| 7F9A    |               |     |          |         |        |       |        |        |      |        |      |       |
| 7F9B    |               |     |          |         |        |       |        |        |      |        |      |       |

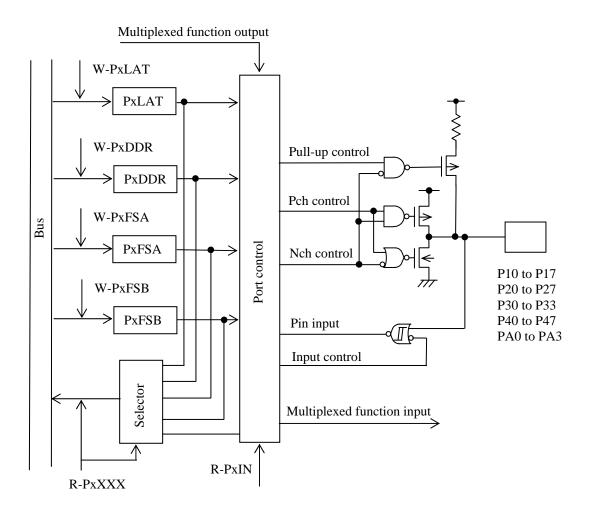
| Address | Initial value | R/W | LC885800 | Remarks | BIT7  | BIT6   | BIT5  | BIT4 | BIT3    | BIT2    | BIT1  | BITO   |
|---------|---------------|-----|----------|---------|-------|--------|-------|------|---------|---------|-------|--------|
| 7F9C    |               |     |          |         |       |        |       |      |         |         |       |        |
| 7F9D    |               |     |          |         |       |        |       |      |         |         |       |        |
| 7F9E    |               |     |          |         |       |        |       |      |         |         |       |        |
| 7F9F    |               |     |          |         |       |        |       |      |         |         |       |        |
| 7FA0    | 0000 0000     | R/W | T4LR     |         | BIT7  | BIT6   | BIT5  | BIT4 | BIT3    | BIT2    | BIT1  | BITO   |
| 7FA1    | 0000 0000     | R/W | T4HR     |         | BIT7  | BIT6   | BIT5  | BIT4 | BIT3    | BIT2    | BIT1  | BITO   |
| 7FA2    | 0000 0000     | R/W | T5LR     |         | BIT7  | BIT6   | BIT5  | BIT4 | BIT3    | BIT2    | BIT1  | BITO   |
| 7FA3    | 0000 0000     | R/W | T5HR     |         | BIT7  | BIT6   | BIT5  | BIT4 | BIT3    | BIT2    | BIT1  | BITO   |
| 7FA4    | 0000 0000     | R/W | T45CNT   |         | T5RUN | T5CKSL | T5FLG | T5IE | T4RUN   | T4CKSL  | T4FLG | T4IE   |
| 7FA5    |               |     |          |         |       |        |       |      |         |         |       |        |
| 7FA6    |               |     |          |         |       |        |       |      |         |         |       |        |
| 7FA7    |               |     |          |         |       |        |       |      |         |         |       |        |
| 7FA8    |               |     |          |         |       |        |       |      |         |         |       |        |
| 7FA9    |               |     |          |         |       |        |       |      |         |         |       |        |
| 7FAA    | 0000 LLLL     | R/W | PWMOAL   |         | BIT7  | BIT6   | BIT5  | BIT4 | _       | _       | I     | _      |
| 7FAB    | 0000 0000     | R/W | PWMOAH   |         | BIT7  | BIT6   | BIT5  | BIT4 | BIT3    | BIT2    | BIT1  | BITO   |
| 7FAC    | 0000 LLLL     | R/W | PWMOBL   |         | BIT7  | BIT6   | BIT5  | BIT4 | -       | -       | Ι     | _      |
| 7FAD    | 0000 0000     | R/W | PWMOBH   |         | BIT7  | BIT6   | BIT5  | BIT4 | BIT3    | BIT2    | BIT1  | BITO   |
| 7FAE    | 0000 0000     | R/W | PWMOC    |         |       | 0      | H     |      | ENPWMOB | ENPWMOA | ٥٧    | IE     |
| 7FAF    | 0000 0000     | R/W | PWMOPR   |         | BIT7  | BIT6   | BIT5  | BIT4 | BIT3    | BIT2    | BIT1  | BITO   |
| 7FB0    |               |     |          |         |       |        |       |      |         |         |       |        |
| 7FB1    |               |     |          |         |       |        |       |      |         |         |       |        |
| 7FB2    |               |     |          |         |       |        |       |      |         |         |       |        |
| 7FB3    |               |     |          |         |       |        |       |      |         |         |       |        |
| 7FB4    |               |     |          |         |       |        |       |      |         |         |       |        |
| 7FB5    |               |     |          |         |       |        |       |      |         |         |       |        |
| 7FB6    | 0000 00L0     | R/W | TMCLKO   |         |       | PI     | RO    |      | PR      | DCK     | -     | PWMOCK |
| 7FB7    |               |     |          |         |       |        |       |      |         |         |       |        |
| 7FB8    |               |     |          |         |       |        |       |      |         |         |       |        |
| 7FB9    |               |     |          |         |       |        |       |      |         |         |       |        |
| 7FBA    |               |     |          |         |       |        |       |      |         |         |       |        |
| 7FBB    |               |     |          |         |       |        |       |      |         |         |       |        |


| Address | Initial value | R/W | LC885800 | Remarks | BIT7   | BIT6 | BIT5   | BIT4   | BIT3   | BIT2 | BIT1   | BITO   |
|---------|---------------|-----|----------|---------|--------|------|--------|--------|--------|------|--------|--------|
| 7FBC    |               |     |          |         |        |      |        |        |        |      |        |        |
| 7FBD    |               |     |          |         |        |      |        |        |        |      |        |        |
| 7FBE    |               |     |          |         |        |      |        |        |        |      |        |        |
| 7FBF    |               |     |          |         |        |      |        |        |        |      |        |        |
| 7FC0    |               |     |          |         |        |      |        |        |        |      |        |        |
| 7FC1    |               |     |          |         |        |      |        |        |        |      |        |        |
| 7FC2    |               |     |          |         |        |      |        |        |        |      |        |        |
| 7FC3    |               |     |          |         |        |      |        |        |        |      |        |        |
| 7FC4    |               |     |          |         |        |      |        |        |        |      |        |        |
| 7FC5    |               |     |          |         |        |      |        |        |        |      |        |        |
| 7FC6    |               |     |          |         |        |      |        |        |        |      |        |        |
| 7FC7    |               |     |          |         |        |      |        |        |        |      |        |        |
| 7FC8    | 0000 0000     | R/W | PALAT    |         | BIT7   | BIT6 | BIT5   | BIT4   | BIT3   | BIT2 | BIT1   | BITO   |
| 7FC9    | XXXX XXXX     | R   | PAIN     |         | BIT7   | BIT6 | BIT5   | BIT4   | BIT3   | BIT2 | BIT1   | BITO   |
| 7FCA    | 0000 0000     | R/W | PADDR    |         | BIT7   | BIT6 | BIT5   | BIT4   | BIT3   | BIT2 | BIT1   | BITO   |
| 7FCB    | 0000 0000     | R/W | PAFSA    |         | BIT7   | BIT6 | BIT5   | BIT4   | BIT3   | BIT2 | BIT1   | BITO   |
| 7FCC    |               |     |          |         |        |      |        |        |        |      |        |        |
| 7FCD    |               |     |          |         |        |      |        |        |        |      |        |        |
| 7FCE    |               |     |          |         |        |      |        |        |        |      |        |        |
| 7FCF    |               |     |          |         |        |      |        |        |        |      |        |        |
| 7FD0    | LLLL L000     | R/W | PCLAT    |         | -      | -    | -      | _      | I      | BIT2 | BIT1   | BITO   |
| 7FD1    | LLLL LXXX     | R   | PCIN     |         | -      | -    | -      | _      | I      | BIT2 | BIT1   | BITO   |
| 7FD2    | LLLL L000     | R/W | PCDDR    |         | _      | _    | _      | _      | Ι      | BIT2 | BIT1   | BITO   |
| 7FD3    |               |     |          |         |        |      |        |        |        |      |        |        |
| 7FD4    |               |     |          |         |        |      |        |        |        |      |        |        |
| 7FD5    |               |     |          |         |        |      |        |        |        |      |        |        |
| 7FD6    |               |     |          |         |        |      |        |        |        |      |        |        |
| 7FD7    |               |     |          |         |        |      |        |        |        |      |        |        |
| 7FD8    | 0000 0000     | R/W | INT01CR  |         | INT1MD |      | INT1IF | INT1IE | INTOMD |      | INTOIF | INTOIE |
| 7FD9    | 0000 0000     | R/W | INT23CR  |         | IN     | r3MD | INT3IF | INT31E | INT2MD |      | INT2IF | INT2IE |
| 7FDA    | 0000 0000     | R/W | INT45CR  |         | IN     | ſ5MD | INT5IF | INT5IE | INT4MD |      | INT4IF | INT4IE |
| 7FDB    | 0000 0000     | R/W | INT67CR  |         | INT7MD |      | INT7IF | INT7IE | INT6MD |      | INT6IF | INT6IE |


| Address | Initial value | R/W | LC885800 | Remarks         | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BITO |
|---------|---------------|-----|----------|-----------------|------|------|------|------|------|------|------|------|
| 7FDC    |               |     | IRQREGO  | System reserved |      |      |      |      |      |      |      |      |
| 7FDD    |               |     | IRQREG1  | System reserved |      |      |      |      |      |      |      |      |
| 7FDE    |               |     |          |                 |      |      |      |      |      |      |      |      |
| 7FDF    |               |     |          |                 |      |      |      |      |      |      |      |      |
| 7FE0    | 0000 0000     | R/W | RTS1ADRL |                 | BIT7 | BIT6 | BIT5 | BIT4 |      | CT   | RH   |      |
| 7FE1    | LLL0 0000     | R/W | RTS1ADRH |                 | -    | -    | -    | BIT4 | BIT3 | BIT2 | BIT1 | BITO |
| 7FE2    | 0000 0000     | R/W | RTS2ADRL |                 | BIT7 | BIT6 | BIT5 | BIT4 |      | CT   | RH   |      |
| 7FE3    | LLL0 0000     | R/W | RTS2ADRH |                 | -    | -    | -    | BIT4 | BIT3 | BIT2 | BIT1 | BITO |
| 7FE4    | 0000 0000     | R/W | RTS1CTR  |                 | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BITO |
| 7FE5    | 0000 0000     | R/W | RTS1CTR  |                 | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BITO |
| 7FE6    |               |     |          |                 |      |      |      |      |      |      |      |      |
| 7FE7    |               |     |          |                 |      |      |      |      |      |      |      |      |
| 7FE8    |               |     |          |                 |      |      |      |      |      |      |      |      |
| 7FE9    |               |     |          |                 |      |      |      |      |      |      |      |      |
| 7FEA    |               |     |          |                 |      |      |      |      |      |      |      |      |
| 7FEB    |               |     |          |                 |      |      |      |      |      |      |      |      |
| 7FEC    |               |     |          |                 |      |      |      |      |      |      |      |      |
| 7FED    |               |     |          |                 |      |      |      |      |      |      |      |      |
| 7FEE    |               |     |          |                 |      |      |      |      |      |      |      |      |
| 7FEF    |               |     |          |                 |      |      |      |      |      |      |      |      |
| 7FF0    |               |     |          |                 |      |      |      |      |      |      |      |      |
| 7FF1    | 0000 0000     | R/W | P1FSB    |                 | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BITO |
| 7FF2    | 0000 0000     | R/W | P2FSB    |                 | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BITO |
| 7FF3    | LLLL 0000     | R/W | P3FSB    |                 | -    | -    | -    | -    | BIT3 | BIT2 | BIT1 | BITO |
| 7FF4    | 0000 0000     | R/W | P4FSB    |                 | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BITO |
| 7FF5    |               |     |          |                 |      |      |      |      |      |      |      |      |
| 7FF6    | 0000 0000     | R/W | P6FSB    |                 | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BITO |
| 7FF7    | LLLL L000     | R/W | P7FSB    |                 | -    | -    | -    | -    | -    | BIT2 | BIT1 | BITO |
| 7FF8    |               |     |          |                 |      |      |      |      |      |      |      |      |
| 7FF9    |               |     |          |                 |      |      |      |      |      |      |      |      |
| 7FFA    | 0000 0000     | R/W | PAFSB    |                 | BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BITO |
| 7FFB    |               |     |          |                 |      |      |      |      |      |      |      |      |

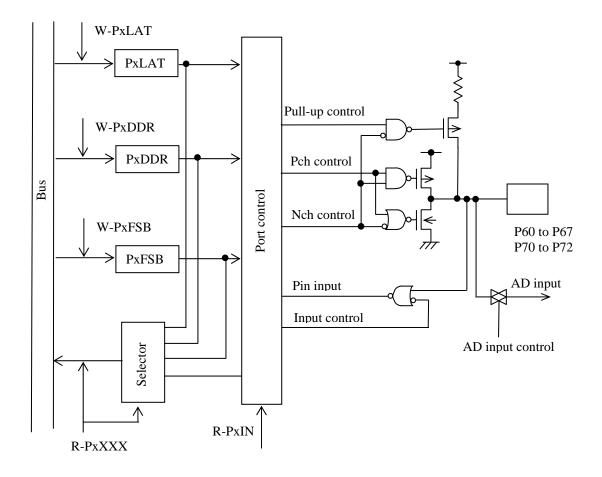
| Address | Initial value | R/W | LC885800 | Remarks | BIT7 | BIT6 | BIT5   | BIT4   | BIT3   | BIT2   | BIT1   | BITO   |
|---------|---------------|-----|----------|---------|------|------|--------|--------|--------|--------|--------|--------|
| 7FFC    |               |     |          |         |      |      |        |        |        |        |        |        |
| 7FFD    |               |     |          |         |      |      |        |        |        |        |        |        |
| 7FFE    | 0000 0000     | R/W | RTSTST   |         | BIT7 | BIT6 | BIT5   | BIT4   | BIT3   | BIT2   | BIT1   | BITO   |
| 7FFF    | LL00 0000     | R/W | RTSCNT   |         | -    | _    | INHWT2 | INHBS2 | INHWT1 | INHBS1 | INHWTP | INHBSP |





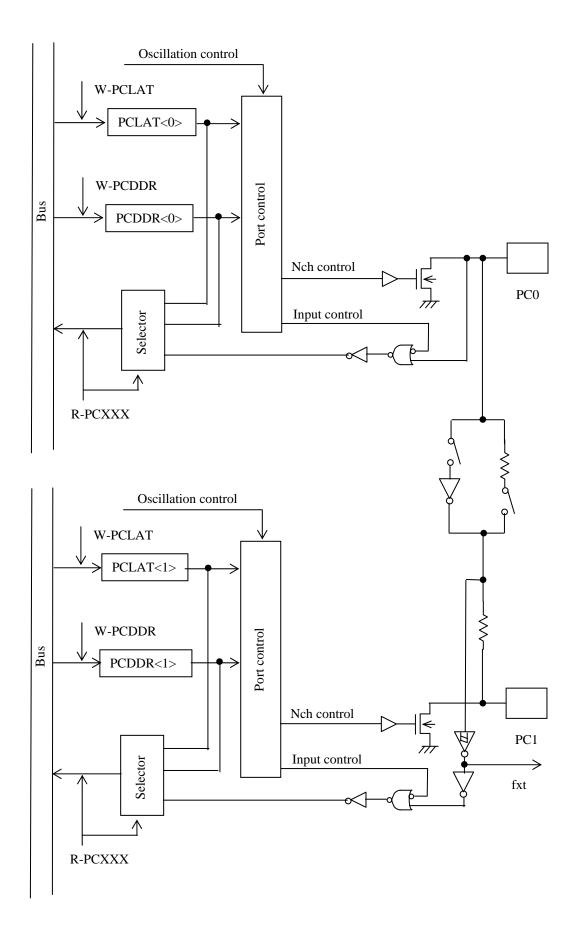


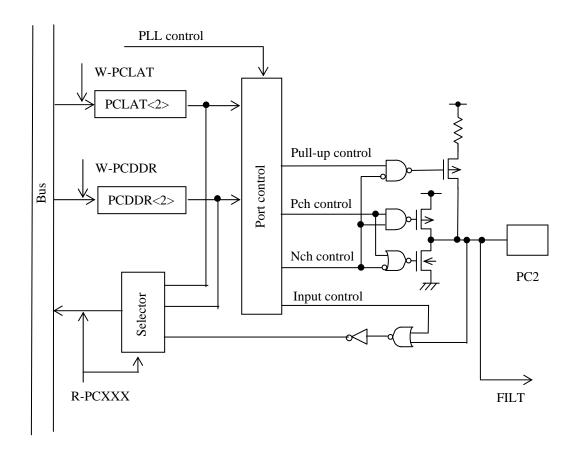




- $\boldsymbol{\cdot}$  W-P0LAT: Write control signal to the register P0LAT
- $\cdot$  W-P0DDR : Write signal to the register P0DDR
- •W-P0FSA: Write signal to the register P0FSA
- ·R-P0XXX:Readout signal of P0LAT, P0DDR, or P0FSA

## Port 0 Block Diaglam




- •W-PxLAT: Write control signal to the register PxLAT
- ·W-PxDDR: Write signal to the register PxDDR
- ·W-PxFSA: Write signal to the register PxFSA
- ·W-PxFSB: Write signal to the register PxFSB
- •R-PxXXX: Readout signal of PxLAT, PxDDR, PxFSA, or PxFSB (*Note*) x denotes 1, 2, 3, 4, or A.


#### Port 1/2/3/4/A Block Diagram



- ·W-PxLAT: Write control signal to the register PxLAT
- ·W-PxDDR: Write signal to the register PxDDR
- $\bullet W\text{-}PxFSB\text{:}Write \text{ signal to the register }PxFSB$
- R-PxXXX: Readout signal of PxLAT, PxDDR, or PxFSB (*Note*) x denotes 6 or 7.

## Port 6/7 Block Diagram





- $\bullet W\text{-PCLAT:} Write \text{ control signal to the register PCLAT}$
- •W-PCDDR: Write signal to the register PCDDR
- ·R-PCXXX: Readout signal of PCLAT or PCDDR

Port C Block Diagram

## **Important Note**

This document is designed to provide the reader with accurate information in easily understandable form regarding the device features and the correct device implementation procedures.

The sample configurations included in the various descriptions are intended for reference only and should not be directly incorporated in user product configurations.

ON Semiconductor shall bear no responsibility for obligations concerning patent infringements, safety or other legal disputes arising from prototypes or actual products created using the information contained herein.

LC885800 SERIES USER'S MANUAL Rev. 0 January, 2016 Microcontroller Business Unit ON Semiconductor