ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

AX8052 Cryptographic Functions Programming Manual

Introduction

AX8052 features cryptographic hardware, namely a True Random Number Generator (RNG) and a high speed Advanced Encryption Standard (AES) encryption/decryption engine.

The True Random Number Generator produces, after postprocessing, cryptographic quality random numbers that pass the NIST Statistical Test Suite for Random Number Generators.

The AES engine supports AES-128, AES-192 and AES-256 international standards, as well as programmable round numbers and software key schedule generation to allow longer key lengths for higher security applications. It supports ECB, CFB and OFB chaining modes directly in hardware. Multi-Megabit/s data rates can be achieved thanks to the dedicated DMA controller that reads input data and the keystream directly from X RAM and stores output data into X RAM.

ON Semiconductor®

www.onsemi.com

APPLICATION NOTE

A software support library, libmfcrypto, software support routines, such as AES keystream expansion, as well as additional, software-only, algorithms, such as DES.

Address Space

For a description of the AX8052 memory architecture and address spaces, please refer to the AX8052 Family Programming Manual.

Table 1. X REGISTER ADDRESS MAP

Address		Register									
Hex	0	1	2	3	4	5	6	7			
	8	9	Α	В	С	D	E	F			
0x7080 -	RNGMODE	RNGBYTE	RNGCLKSRC0	RNGCLKSRC1	-	-	_	-			
0x708F	-	-	-	-	-	-	-	-			
0x7090 -	AESMODE	AESCONFIG	AESKEYADDR0	AESKEYADDR1	AESINADDR0	AESINADDR1	AESOUTADDR0	AESOUTADDR1			
0x709F	AESCURBLO CK	-	-	-	-	-	-	-			

Table 2. REGISTER OVERVIEW

Add								E	3it				
Hex		Reset	7	6	5	4	3	2	1	0	Description		
Rand	om Number Gene	rator											
7080	RNGMODE	RW	R	1110	RNG AVAIL	-	-	-	RNGENTRO	DPY(2:0)		RNG IRQ EN	Random Number Generator Mode
7081	RNGBYTE	R	R		RNGBYTE(7	IGBYTE(7:0)						Random Byte	
7082	RNGCLKSRC0	RW	R	001111	-	-	RNGCLKDIV0(2:0) RNGCLKSRC0(2:0)				Random Number Generator Clock Source 0		
7083	RNGCLKSRC1	RW	R	000111	-	-	RNGCLKDIV1(2:0) RNGCLKSRC1(2:0)				Random Number Generator Clock Source 1		
AES	-			•	•	•	•			•			•
7090	AESMODE	RW	R	00000000	AES RUN	AES INV	AESCOUNT	(5:0)					AES Mode
7091	AESCONFIG	RW	R	00001010	AESCMODE	(1:0)	AESROUNDS(5:0)				AES Cipher Configuration		
7092	AESKEYADDR0	RW	R	00000000	AESKEYADE	AESKEYADDR(7:0)						AES Keystream Buffer Address	

Table 2. REGISTER OVERVIEW

Add						Bit							
Hex	Name	Dir	R	Reset	7	6	5	4	3	2	1	0	Description
7093	AESKEYADDR1	RW	R	00000000	AESKEYADD								AES Keystream Buffer Address
7094	AESINADDR0	RW	R	00000000	AESINADDR	SINADDR(7:0)							AES Input Buffer Address
7095	AESINADDR1	RW	R	00000000	AESINADDR							AES Input Buffer Address	
7096	AESOUTADDR0	RW	R	00000000	AESOUTADE	ESOUTADDR(7:0)						AES Output Buffer Address	
7097	AESOUTADDR1	RW	R	00000000	AESOUTADE	AESOUTADDR(15:8)						AES Output Buffer Address	
7098	AESCURBLOCK	R	R		AES RUN	-	AESCURBLO	CK(5:0)					AES Current Block

Random Number Generator

The Random Number Generator uses on-chip noise sources to generate a string of random bits. This is in contrast to pseudo-random number generators often used, which only look random but are in fact generated by a deterministic algorithm.

The output of the Random Number Generator passes the FIPS Test Suite. For high security applications, bits from the RNGBYTE should not be used directly, however, because

each bit provides only slightly less than one bit entropy. Bits should be fed however into an entropy pool first.

The recommended settings are:

Table 3.

Register	Value
RNGMODE	0x0F
RNGCLKSRC0	0x09
RNGCLKSRC1	0x00

Table 4. REGISTER: RNGMODE

Name	Bits	R/W	Reset	Description	
RNGIRQEN	0	RW	0	Random Number Generator Interrupt Enable	
RNGENTROPY	3:1	RW	111	Entropy assumed to be within one input bit Bits Meaning 000 1 Bit 001 1/2 Bit 010 1/4 Bit 011 1/8 Bit 100 1/16 Bit 101 1/32 Bit 110 1/64 Bit 111 1/128 Bit	
RNGAVAIL	7	R	-	When 1, a random byte is available in RNGBYTE; this bit is cleared by reading RNGBYTE	

Table 5. REGISTER: RNGBYTE

Name	Bits	R/W	Reset	Description
RNGBYTE	7:0	R	-	Random Byte

Table 6. REGISTER: RNGCLKSRC0

Name	Bits	R/W	Reset	Description
RNGCLKSRC0	2:0	RW	111	Clock Source Bits Meaning
RNGCLKDIV0	5:3	RW	001	Clock Prescaler Bits Meaning 000 ×2 001 ×1 010 ÷2 011 ÷4 100 ÷8 101 ÷16 110 ÷32 111 ÷64

Table 7. REGISTER: RNGCLKSRC1

Name	Bits	R/W	Reset	Description
RNGCLKSRC1	2:0	RW	111	Clock Source Bits Meaning 000 FRCOSC 001 LPOSC 010 XOSC 011 LPXOSC 100 RSYSCLK 101 TOCLK 110 System Clock
RNGCLKDIV1	5:3	RW	000	111 Off Clock Prescaler Bits Meaning 000 ÷ 1 001 ÷ 2 010 ÷ 4 011 ÷ 8 100 ÷ 16 101 ÷ 32 110 ÷ 64 111 ÷ 128

AES

The AES Block implements the government mandated Advanced Encryption Standard (AES) encryption algorithm data path. It offers a programmable round number, a programmable number of 16 Byte blocks and the ECB, CFB and OFB modes are directly implemented in hardware.

It encrypts or decrypts a buffer in X memory into a buffer in X memory. Since it features 16 bit wide datapaths into X

memory, it is recommended that its buffers be even address aligned. A small performance penalty results from using odd address aligned buffers.

The key schedule must be precomputed in software and stored in a keystream buffer (up to about 256 Bytes) somewhere in X memory.

Table 8. REGISTER: AESMODE

Name	Bits	R/W	Reset	Description
AESCOUNT	5:0	RW	000000	AES Input/Output Buffer Length (number of 16 Byte or 128 Bit AES Blocks)
AESINV	6	RW	0	AES Mode; 0 = encrypt, 1 = decrypt
AESRUN	7	RW	0	AES Run; writing 1 starts encryption/decryption

Table 9. REGISTER: AESCONFIG

Name	Bits	R/W	Reset	Description		
AESROUNDS	5:0	RW	001010	Number of Rounds; usually 10 for AES-128, 12 for AES-192 and 14 for AES-256		
AESCMODE	7:6	RW	00	AES Cipher Chaining Mode Bits Meaning 00 ECB (Electronic Codebook) 01 invalid 10 CFB (Cipher Feedback) 11 OFB (Output Feedback)		

Table 10. REGISTER: AESKEYADDR0, AESKEYADDR1

Name	Bits	R/W	Reset	Description
AESKEYADDR	15:0	RW	0x0000	X Space Address of the Keystream Buffer

Table 11. REGISTER: AESINADDR0, AESINADDR1

Name	Bits	R/W	Reset	Description
AESINADDR	15:0	RW	0x0000	X Space Address of the Input Buffer

Table 12. REGISTER: AESOUTADDR0, AESOUTADDR1

Name	Bits	R/W	Reset	Description
AESOUTADDR	15:0	RW	0x0000	X Space Address of the Output Buffer

Table 13. REGISTER: AESCURBLOCK

Name	Bits	R/W	Reset	Description
AESCURBLOCK	5:0	R	-	Current Block (16 Byte, 128 Bit chunk); Processing starts at 1 and ends at AESCOUNT
AESRUN	7	R	_	AES Run; 1 means encryption/decryption ongoing, 0 means idle

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and h

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative