
To learn more about onsemi™, please visit our website at
www.onsemi.com

ON Semiconductor

Is Now

onsemi and       and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or
subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi
product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without
notice. The information herein is provided “as-is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality,
or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all
liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws,
regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/
or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application
by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized
for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for
implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees,
subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative
Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.

© Semiconductor Components Industries, LLC, 2015

April, 2018 − Rev. 0
1 Publication Order Number:

AND9735/D

AND9735/D

FUSB307B Integration Guide

INTRODUCTION

The FUSB307 Type−C/PD core is a platform−agnostic
code base which, when supplied platform information, can
be rapidly integrated into any platform. The core code is
contained within the directory, called core/. The core
exposes its functionality through core/core.h, and the
platform must define its functionality as declared in
core/platform.h.

The core supports the Type−C and PD features listed in
Table 1 − Supported Features and Platforms, and has been
tested against the indicated platforms − included as
examples. The core can be customized for specific subsets of
the total functionality, which is often desirable for
platform−specific optimization. See the Feature Selection
section for details on selecting which core features to include
at compile time.

Table 1. SUPPORTED FEATURES AND PLATFORMS

Features / Platforms

Firmware Linux / Android

ARM M0 QCOM

Type−C SNK � �

SNK + ACC �* �*

SRC � �

SRC + ACC �* �*

DRP � �

DRP + ACC �* �*

Try. SNK � �

Try. SRC � �

PD PD � �

VDM � �

DP �* �*

NOTE: �* Items may not be fully tested / validated.

QUICK START

For the fastest integration, take the following steps.
1. Get the latest code release, which includes a
core/ directory and platform−specific directories

2. Choose a platform − if unsure, choose
“PLATFORM_NONE”, which has the bare minimum
set up. See the Feature Selection section for build
configuration details

3. Copy your selected platform code into your own
platform−specific directory

4. Fill in the stubs located in platform.c. See the
Platform Functions section for details

5. At run time, initialize the Platform
(PlatformInitialize()), the core variables
(InitializeVars(…)) , and once the device is
powered up and communicating, the port behavior
(InitializePort(…)). See Platform_None/main.c for
an example.

www.onsemi.com

APPLICATION NOTE

This document, and the information contained herein,
is CONFIDENTIAL AND PROPRIETARY and the
property of Semiconductor Components Industries,
LLC., dba ON Semiconductor. It shall not be used,
published, disclosed or disseminated outside of the
Company, in whole or in part, without the written
permission of ON Semiconductor. Reverse
engineering of any or all of the information contained
herein is strictly prohibited.

� 2017, SCILLC. All Rights Reserved.

 http://www.onsemi.com/

AND9735/D

www.onsemi.com
2

PLATFORM REQUIREMENTS

There are two things to be done with core/platform.h. The first is to supply a definition for the types that the core uses.
The second is to implement the platform−specific functions.

Platform Type Definition
Some core functions require precise bit−widths. The core uses abstracted types which must be defined by the platform. The

reference platforms define their types in a file in their own directory, which is included in core/platform.h. Select the
desired platform by defining the platform’s preprocessor symbol at build time. See the Compilation Options section for details.
The types that must be defined in core/platform.h are described in Table 2 − Platform Type Definitions.

Table 2. PLATFORM TYPE DEFINITIONS

Type Description

FSC_S8 Signed 8−bit integer

FSC_U8 Unsigned 8−bit integer

FSC_S16 Signed 16−bit integer

FSC_U16 Unsigned 16−bit integer

FSC_S32 Signed 32−bit integer

FSC_U32 Unsigned 32−bit integer

FSC_BOOL Boolean

TRUE Used with FSC_BOOL data type (must be non−zero)

FALSE Used with FSC_BOOL data type (must be zero)

Platform Functions
The platform must implement the following functions, as defined in core/platform.h.

I2C
I2C should be run at a minimum of 400 kHz. It is recommended to issue multi−byte I2C reads and writes when possible,

where the start register address is RegisterAddress and the total number of addresses to read/write is DataLength.
Multi−byte reads/writes must be to contiguous, valid address ranges.
FSC_BOOL platform_i2c_write(FSC_U8 SlaveAddress,

�������FSC_U8 RegisterAddress,

�������FSC_U8 DataLength,

�������FSC_U8 *Data);

Return TRUE if write is successful, FALSE otherwise.
FSC_BOOL platform_i2c_read(FSC_U8 SlaveAddress,

�����FSC_U8 RegisterAddress,

�����FSC_U8 DataLength,

�����FSC_U8 *Data);

Return TRUE if read is successful, FALSE otherwise. If successful, then DataLength bytes of read data will be stored in
Data.

Interrupts

FSC_BOOL platform_get_device_irq_state(FSC_U8 portID)

Returns TRUE if the device interrupt line is active. The value of portID is the index of the interrupt line associated with
the struct port (for multiport systems). Note that the FUSB307 features an active−low interrupt pin.

Timers

FSC_BOOL platform_enable_timer(FSC_BOOL enable)

(Optional) Enables platform timers if enable is set to TRUE, disables timers otherwise. This allows the system to save
power during periods of inactivity.

 http://www.onsemi.com/

AND9735/D

www.onsemi.com
3

void platform_delay(FSC_U32 delay)

Causes the platform to delay for delay microseconds. This function may either sleep or block, but no device interrupts
should be serviced during the delay. Used rarely, so shouldn’t cause issues of wasted CPU time.
FSC_U32 platform_current_time(void)

A platform specific implementation that returns a running global unsigned 32−bit time in microseconds. This value should
preferably be implemented using a system or hardware timer. It is possible to reduce the resolution of this time value as low
as 1ms but this may cause unreliable behavior depending on interrupt latency, etc. and should be tested. System time constants
are defined in milliseconds so the constant kMSTimeFactor should be defined in core/platform.h as shown below. The global
timer may sleep when platform_enable_timer(FALSE) is called.

Timer Resolution KMSTimeFactor Value

1 ms 1

0.1 ms 10

0.01 ms 100

1 �s 1000

FSC_U32 platform timestamp(void)

Returns a system timestamp value for logging in the format 0xSSSSTTTT where 0xSSSS represents seconds and 0xTTTT
represents tenths of milliseconds. This is an optional function and may be implemented with a lower resolution as long as the
LSB of the value remains at 0.1 ms.

Platform EVENT Notifications
Platform event notifications are called from within the core state machine functions and used to communicate a status or

event with the embedded or application processor.

Defining event handlers
An event handler is a function of the following prototype void handle_core_event(int event, int portId,

void *usr_ctx, void *app_ctx). The event and port ID identify the port which has signaled the event in a multi−port
system. The default implementation passes the numerical value starting at 1 for the first port. The user_ctx is a pointer to data
that is passed during registration. The app_ctx data is passed by the core. For example a PD_NEW_CONTRACT event passes
the current contract PDO to the event handler as an app_ctx data.

void PlatformEventHandler(Event_t event, FSC_U16 port_id, void *usr_ctx, void *app_ctx)

{

struct Port *port = &g_ports[port_id - 1];

/* Process all events */

/* Check for attach events */

if (CHECK_EVENT(event, EVENT_TYPEC_ATTACH))

{

��platform_printf(port_ID, "EVENT:Attach", -1);

}

}

Registering event handlers
An event can be registered using the function register_observer.

register_observer(EVENT_ALL, handle_core_event, 0)

It is also possible to register handler for only selected events.
register_observer (EVENT_TYPEC_ATTACH | EVENT_TYPEC_ATTACH, handle core event, 0)

Following events are defined in the core code. A total of 32 events can exist in the system.

 http://www.onsemi.com/

AND9735/D

www.onsemi.com
4

Table 3. CORE DEFINED EVENTS

Event ID Description

EVENT_TYPEC_ATTACH New plug attached.

EVENT_TYPEC_DETACH Plug detached.

EVENT_CC1_ORIENT Orientation of plug is CC1.

EVENT_CC2_ORIENT Orientation of plug is CC2.

EVENT_CC_NO_ORIENT Orientation of plug could not be determined.

EVENT_PD_NEW_CONTRACT PD contract has been negotiated.

EVENT_PD_CONTRACT_FAILED PD contract negotiation has failed.

EVENT_SRC_CAPS_UPDATED Source capability of port partner has been updated,

EVENT_DATA_ROLE_DFP Current port data role is DFP.

EVENT_DATA_ROLE_UFP Current port data role is UFP.

EVENT_BIST_ENABLED BIST mode has been enabled for port.

EVENT_BIST_DISABLED BIST mode has been disabled for port.

EVENT_ALERT_RECEIVED Alert PD message received from port partner.

EVENT_PPS_STATUS_RECEIVED PPS Status message received from port partner.

EVENT_IDENTITY_RECEIVED VDM Identity received from port partner.

EVENT_CBL_IDENTITY_RECEIVED VDM Identity for cable received.

EVENT_SVID_RECEIVED SVID for port partner received.

EVENT_MODES_RECEIVED Modes for port partner received.

EVENT_MODE_ENTER_SUCCESS Enter mode request from port on port partner succeeded.

EVENT_MODE_EXIT_SUCCESS Exit mode request from port on port partner succeeded.

EVENT_MODE_VDM_ATTENTION VDM attention received from port partner.

EVENT_HARD_RESET Hardreset sent by port on port partner.

EVENT_UNSUPPORTED_ACCESSORY Unsupported accessory plugged into port receptacle.

EVENT_DEBUG_ACCESSORY Debug accessory plugged into port receptacle.

EVENT_AUDIO_ACCESSORY Audio accessory plugged into port receptacle.

EVENT_ILLEGAL_CBL Illegal cable plugged into port receptacle.

EVENT_ALL Notify on all events.

Removing observer
The observer handler can be unregistered using the function remove_observer(EventHandler handler).

Adding new events
While the events that are already defined may be adequate in some platforms, others will require more events notification

from the firmware. To add a new event, create a #define in the platform file.

#define USER_EVENT1 PLATFORM_EVENT_ID(USER_EVENT_ID)

#define USER_EVENT2 PLATFORM_EVENT_ID(USER_EVENT_ID + 1)

#define USER_EVENT_ALL USER_EVENT1 | USER_EVENT2

 http://www.onsemi.com/

AND9735/D

www.onsemi.com
5

CORE FUNCTION

All functions available to the platform are declared in core/core.h. Some functions may only be available if the symbol
FSC_DEBUG is defined in the build process.
void core_initialize(struct Port *port)

Initializes the core. This function must be called before calling core_state_machine().
void core_enable_typec(struct Port *port, FSC_BOOL enable)

Enables/Disables the core Type−C state machine of the port. TRUE to enable and FALSE to disable. Enable after calling
core_initialize(), but before calling core_state_machine() for the first time.
void core_state_machine(struct Port *port)

Runs the core state machine. In polling mode, call at least once every 4 ms. In interrupt mode, call when the FUSB307B
interrupt line is active or when a timer interrupt occurs. The platform should not handle any FUSB307B interrupts until this
function returns. The core must first be initialized by calling core_initialize().
FSC_U32 core_get_next_timeout(struct Port *port)

Returns the time until the next active timer expires which can be used to set a match timer interrupt and allow the system
to idle. A return of 0 indicates no waiting timers. A return of 1 indicates a timer has expired so continue running
core_state_machine rather than set a timer interrupt.
FSC_U8 core_get_rev_lower(void)

Returns the lower 8 bits of the core version number (prerelease or patch).
FSC_U8 core_get_rev_middle(void)

Returns the middle 8 bits of the core version number (minor).
FSC_U8 core_get_rev_upper(void)

Returns the upper 8 bits of the core version number (major).
void core_set_state_unattached(Port *port)

Force state machine to detach.

POLLING VS. INTERRUPT

The FUSB307 communicates with the embedded controller (EC). It does this using the I2C bus and the INT_N signal. When
the FUSB307 needs to report to the EC that something (like a device attach) is happening, it sets the INT_N pin low. It is up
to the EC to monitor the INT_N pin and perform the needed I2C reads at the appropriate time.

It is possible to run the state machines in a pseudo polling mode, where core_state_machine() is assumed to be called
repeatedly and consistently and the I2C alert and status registers are read with each call to look for new events.

To save on power and prevent excessive traffic on the I2C bus, an interrupt−driven methodology is recommended.
The core assumes the interrupt handler is falling−edge−sensitive to the FUSB307 INT_N pin. The platform is responsible

for calling core_state_machine() again if the INT_N pin remains low after returning from a previous call into
core_state_machine(). Note − it is not safe to make concurrent calls into core_state_machine().

There is an idle_ flag in the port structure that will indicate when it is safe and appropriate to stop repeated calls of
core_state_machine(). When idle_ is TRUE, and no timers are active, the EC can be put into a low power mode or be allowed
to service other tasks. In this state, however, it is important that the INT_N pin interrupt and system timer interrupt be enabled
and ready to process new events. For examples of how this is implemented, please see main() in Platform_ARM/main.c or
work_function() in Platform_Linux/platform_helpers.c

 http://www.onsemi.com/

AND9735/D

www.onsemi.com
6

FEATURE SELECTION

The different features of the FUSB307 can be optionally compiled in order to conserve memory on devices that only need
a subset of the total functionality. This is configured by defining preprocessor symbols in the build system as described in
Table 4 − Valid Feature Configurations.

Table 4. VALID FEATURE CONFIGURATIONS

Build Configuration Requirements Description

FSC_HAVE_SRC Source only

FSC_HAVE_SNK Sink only

FSC_HAVE_SNK + FSC_HAVE_SRC Source or sink (not DRP)

FSC_HAVE_DRP FSC_HAVE_SNK + FSC_HAVE_SRC DRP capable source or sink

FSC_HAVE_VDM Enable VDM support

FSC_HAVE_DP FSC_HAVE_VDM Enable DP support

FSC_HAVE_EXTENDED Any valid config Enable extended messaging for PD 3.0

FSC_HAVE_ACCMODE Any valid config Enable accessory mode

PLATFORM_NONE Any valid config Build example stub driver*

PLATFORM_ARM Any valid config Build ARM driver*

FSC_PLATFORM_LINUX Any valid config Build Linux driver*

FSC_HAVE_USBHID PLATFORM_ARM Enable debug support, including
HostComm, GUI, USB−to−Host, sysfs,

Type−C/PD state logs, etc

FSC_LOGGING Any valid config Enable timestamped logging of state and
message logs.

FSC_HAVE_UART PLATFORM_ARM Enable UART based debug terminal.

NOTE: See platform <Platform>/README.txt for details.

LIMITATIONS

• TBD

SUPPORTING MULTIPLE VBUS SOURCE LEVELS

The FUSB307B is able to support multiple Vbus source voltage levels but requires additional load switches controlled by
the EC. For implementation details, see PolicySourceTransitionSupply (policy.c), SendCommand (port.c) and the
Platform_ARM switch and PPS controls (platform.c).

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent
coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This
literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada

Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910

AND9735/D

LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local
Sales Representative

◊

 http://www.onsemi.com/
www.onsemi.com/site/pdf/Patent-Marking.pdf

