
To learn more about onsemi™, please visit our website at
www.onsemi.com

ON Semiconductor

Is Now

onsemi and       and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or
subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi
product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without
notice. The information herein is provided “as-is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality,
or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all
liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws,
regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/
or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application
by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized
for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for
implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees,
subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative
Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.

© Semiconductor Components Industries, LLC, 2018

December, 2018 − Rev. 8
1 Publication Order Number:

AND9836/D

AND9836

AXM0F243 MCU
Programming Manual

Table of Contents
Overview 1. .
CPU System 7. .
System Resources Subsystem (SRSS) 18. .
Digital System 57. .
Analog System 116. .
Program and Debug 155. .
Glossary 175. .

OVERVIEW

This section encompasses the following chapters:
• Introduction chapter on page 1

• Getting Started chapter on page 4

• Document Construction chapter on page 4

INTRODUCTION
AXM0F243 MCU is a programmable embedded system

controller with an ARM® Cortex®−M0+ CPU
with these characteristics:

• High−performance, 32−bit Single−cycle Cortex−M0+
CPU Core

• High−performance Analog System

• Configurable Timer/Counter/PWM Block

• Configurable Analog Blocks for Analog Signal
Conditioning

• Configurable Communication Block with I2C, SPI, and
UART Operating Modes

• Low−power Operating Modes − Sleep and Deep−Sleep
This document describes each functional block of the

AXM0F243 MCU devices in detail. This information will
help designers to create system−level designs.

Top Level Architecture
Figure 1 shows the major architecture components

www.onsemi.com

APPLICATION NOTE

http://www.onsemi.com/

AND9836

www.onsemi.com
2

SWD/TC, MTB

FAST MUL
NVIC, IRQMUX, MPU

SA R ADC
(12−bi t)

SARMUX CTBm
2 x Opamp

IO
S

S
 G

P
IO

AXM0F243 MCU

32−bit

AHB−Lite

CPU Subsystem

SPCIF

Read Accelerator

SRAM
8 KB

SRAM Controller ROM Controller

Lite

Power
Sleep Control

WIC
POR REF

PWRS

Clock

Clock Control
WDT

ILO

Reset
Reset Control

Peripherals

PCLK

System Interconnect (Single Layer AHB)

Peripheral Interconnect (MMIO)

High Speed I/O Matrix and Smart I/O
Power Modes
Active / Sleep

DeepSleep

I/O Subsystem

Up to 36x GPIOs

XRES

x1

IMO

System Resources

Cortex
M0+

48 MHz

ROM
8 KB

FLASH
64 KB

W
C

O

2x
 L

P
 C

om
pa

ra
to

r

3x
 S

C
B
−

I2
C

/S
P

I/U
A

R
T

5x
 T

C
P

W
M

Programmable
Analog

Figure 1. AXM0F243 MCU

Features
The AXM0F243 MCU Device Has these Major

Components:
• 32−bit Cortex−M0+ CPU with single−cycle multiply,

delivering up to 0.9 DMIPS/MHz
• Up to 128 KB flash and 8 KB SRAM

• Up to five center−aligned pulse−width Modulator (PWM)
with complementary, dead−band programmable outputs

• One watchdog timer and three general−purpose timers
with interrupt capability

• Twelve−bit SAR ADC (with a sampling rate of 1 Msps)
with hardware sequencing for multiple channels

• Up to two opamps that can be used for analog signal
conditioning and as a comparator

• Two low−power comparators

• Up to three serial communication blocks (SCB) that can
work as SPI, UART, I2C, and local interconnect network
(LIN) slave serial communication channels

• A smart I/O block, which provides the ability to perform
boolean functions in the I/O signal path

• Low−power operating modes: sleep and deep−sleep

• Programming and debugging system through serial wire
debug (SWD)

CPU System

 Processor
The heart of the AXM0F243 MCU is a 32−bit

Cortex−M0+ CPU core running up to 48 MHz. It is
optimized for low−power operation with extensive clock
gating. It uses 16−bit instructions and executes a subset of
the Thumb−2 instruction set. This instruction set enables
fully compatible binary upward migration of the code to
higher performance processors such as Cortex M3 and M4.

The CPU has a hardware multiplier that provides a 32−bit
result in one cycle.

Interrupt Controller
The CPU subsystem includes a nested vectored interrupt

controller (NVIC) with 20 interrupt inputs and a wakeup
interrupt controller (WIC), which can wake the processor
from Deep−Sleep mode.

http://www.onsemi.com/

AND9836

www.onsemi.com
3

Memory
The AXM0F243 MCU memory subsystem consists of

flash and SRAM. A supervisory ROM, containing boot and
configuration routines, is also present.

Flash
The AXM0F243 MCU has a flash module, with a flash

accelerator tightly coupled to the CPU, to improve average
access times from the flash block. The flash accelerator
delivers 85 percent of single−cycle SRAM access
performance on an average.

SRAM
The AXM0F243 MCU provides SRAM, which is retained

in all power modes of the device.

System−Wide Resources

Clocking System
The clocking system consists of the internal main

oscillator (IMO) and internal low−speed oscillator (ILO) as
internal clocks and has provision for an external clock, and
watch crystal oscillator (WCO).

The IMO with an accuracy of ±2 percent is the primary
source of internal clocking in the device. The default IMO
frequency is 24 MHz and can be adjusted between 24 MHz
and 48 MHz in steps of 4 MHz. Multiple clock derivatives
are generated from the main clock frequency to meet various
application needs.

The ILO is a low−power, less accurate oscillator and is
used as a source for LFCLK, to generate clocks for
peripheral operation in Deep−Sleep mode. Its clock
frequency is 40 kHz with ±60 percent accuracy.

An external clock source ranging from 1 MHz to 48 MHz
can be used to generate the clock derivatives for the
functional blocks instead of the IMO.

The WCO is a 32−kHz watch crystal oscillator. It is used
to dynamically trim the IMO to an accuracy of ±1 percent to
enable precision timing applications.

Power System
The device operates with a single external supply in the

range 1.8 V to 3.6 V. It provides multiple power supply
domains – VDDD to power digital section, and VDDA for
noise isolation of analog section. VDDD and VDDA should be
shorted externally.

The device has two low−power modes – Sleep and
Deep−Sleep – in addition to the default Active mode. In
Active mode, the CPU runs with all the logic powered. In
Sleep mode, the CPU is powered off with all other
peripherals functional. In Deep−Sleep mode, the CPU,
SRAM, and high−speed logic are in retention; the main
system clock is OFF while the low−frequency clock is ON
and the low−frequency peripherals are in operation.

Multiple internal regulators are available in the system to
support power supply schemes in different power modes.

GPIO
Every GPIO has the following characteristics:

• Eight drive strength modes

• Individual control of input and output disables

• Hold mode for latching previous state

• Selectable slew rates

• Interrupt generation – edge triggered
In addition, the device has up to three Smart I/O blocks

that provides the ability to perform Boolean functions on the
port I/Os. The Smart I/O block is available in all device
power modes, including low−power modes.

The pins are organized in a port that is 8−bit wide. A
high−speed I/O matrix is used to multiplex between various
signals that may connect to an I/O pin. Pin locations for
fixed−function peripherals are also fixed.

Watchdog Timers
The AXM0F243 MCU device has one 16−bit watchdog

timer, which is capable of automatically resetting the device
in the event of an unexpected firmware execution path or a
brownout that compromises the CPU functionality.

In addition to this, two 16−bit and one 32−bit up−counting
timers are available for general−purpose use.

Fixed−Function Digital

Timer/Counter/PWM Block
The Timer/Counter/PWM block consists of up to five

16−bit counter with user−programmable period length. The
TCPWM block has a capture register, period register, and
compare register. The block supports complementary,
deadband programmable outputs. It also has a kill input to
force outputs to a predetermined state. Other features of the
block include center−aligned PWM, clock prescaling,
pseudo random PWM, and quadrature decoding.

Serial Communication Blocks
The device has three SCBs. Each SCB can implement a

serial communication interface as I2C, UART, local
interconnect network (LIN) slave, or SPI.

The features of each SCB include:
• Standard I2C multi−master and slave function

• Standard SPI master and slave function with Motorola,
Texas Instruments, and National (MicroWire) mode

• Standard UART transmitter and receiver function with
SmartCard reader (ISO7816), IrDA protocol, and LIN

• Standard LIN slave with LIN v1.3 and LIN v2.1/2.2
specification compliance

• EZ function mode support with 32−byte buffer

http://www.onsemi.com/

AND9836

www.onsemi.com
4

Analog System

SAR ADC
The AXM0F243 MCU device has a configurable 12−bit

1−Msps SAR ADC. The ADC provides three internal
voltage references (VDDA, VDDA/2, and VREF) and an
external reference through a GPIO pin. The SAR hardware
sequencer is available, which scans multiple channels
without CPU intervention.

Continuous Time Block mini
The Continuous Time Block mini (CTBm) provides

continuous time functionality at the entry and exit points of
the analog subsystem. The CTBm has two highly
configurable and high−performance opamps with a switch
routing matrix. The opamps can also work in comparator
mode. The AXM0F243 MCU device has one such CTBm
block.

The block allows open−loop opamp, linear buffer, and
comparator functions to be performed without external
components. PGAs, voltage buffers, filters, and
trans−impedance amplifiers can be realized with external
components. The CTBm block can work in Active, Sleep,
and Deep−Sleep modes.

Low−Power Comparators
The AXM0F243 MCU device has a pair of low−power

comparators, which can operate in all device power modes.
This functionality allows the CPU and other system blocks
to be disabled while retaining the ability to monitor external
voltage levels during low−power modes. Two input voltages
can both come from pins, or one from an internal signal
through the AMUX−BUS.

Program and Debug
AXM0F243 MCU devices support programming and

debugging features of the device via the on−chip SWD
interface. The SWD interface is also fully compatible with
industry standard third−party tools.

GETTING STARTED

Support
Free support for AXM0F243 product is available online

at www.onsemi.com.

Development Kits
Development kits and software you need to successfully

develop AXM0F243 projects are available online at
www.onsemi.com.

DOCUMENT CONSTRUCTION
This document includes the following sections:

• CPU System on page 7

• System Resources Subsystem (SRSS) on page 18

• Digital System on page 57

• Analog System on page 116

• Program and Debug on page 155

Major Sections
For ease of use, information is organized into sections and

chapters that are divided according to device functionality.
• Section – Presents the top−level architecture, how to get

started, and conventions and overview information of the
product.

• Chapter – Presents the chapters specific to an individual
aspect of the section topic. These are the detailed
implementation and use information for some aspect of
the integrated circuit.

• Glossary – Defines the specialized terminology used in
this program manual.

• AXM0F243 MCU register manual – Supplies all device
register details summarized in the technical reference
manual. This is an additional document.

Register Conventions
Register conventions are detailed in the AND9835

AXM0F243 MCU Registers Manual.

Numeric Naming
Hexadecimal numbers are represented with all letters in

uppercase with an appended lowercase ‘h’ (for example,
‘14h’ or ‘3Ah’) and hexadecimal numbers may also be
represented by a ‘0x’ prefix, the C coding convention.
Binary numbers have an appended lowercase ‘b’ (for
example, ‘01010100b’ or ‘01000011b’). Numbers not
indicated by an ‘h’ or ‘b’ are decimal.

http://www.onsemi.com/
www.onsemi.com
www.onsemi.com
https://www.onsemi.com/pub/Collateral/AND9835-D.PDF
https://www.onsemi.com/pub/Collateral/AND9835-D.PDF

AND9836

www.onsemi.com
5

Units of Measure
This table lists the units of measure used in this document.

Table 1. UNITS OF MEASURE

Abbreviation Unit of Measure

bps bits per second

°C degrees Celsius

dB decibels

fF femtofarads

Hz Hertz

k kilo, 1000

K kilo, 2^10

KB 1024 bytes, or approximately one thousand
 bytes

Kbit 1024 bits

kHz kilohertz (32.000)

k� kilohms

MHz megahertz

M� megaohms

�A microamperes

�F microfarads

�s microseconds

�V microvolts

�Vrms microvolts root−mean−square

mA milliamperes

ms milliseconds

mV millivolts

nA nanoamperes

ns nanoseconds

nV nanovolts

� ohms

pF picofarads

pp peak−to−peak

ppm parts per million

SPS samples per second

� sigma: one standard deviation

V volts

Acronyms
This table lists the acronyms used in this document

Table 2. ACRONYMS

Acronym Definition

ABUS analog output bus

AC alternating current

Table 2. ACRONYMS (continued)

Acronym Definition

ADC analog−to−digital converter

AHB AMBA (advanced microcontroller bus
 architecture) high−performance bus, an ARM
 data transfer bus

API application programming interface

APOR analog power−on reset

BC broadcast clock

BOD brownout detect

BOM bill of materials

BR bit rate

BRA bus request acknowledge

BRQ bus request

CI carry in

CMP compare

CO carry out

COM LCD common signal

CPU central processing unit

CRC cyclic redundancy check

CT continuous time

CTB continuous time block

CTBm continuous time block mini

DAC digital−to−analog converter

DAP debug access port

DC direct current

DI digital or data input

DMIPS Dhrystone million instructions per second

DO digital or data output

DSI digital signal interface

DSM deep−sleep mode

DW data wire

EEPROM electrically erasable programmable read only
 memory

EMIF external memory interface

FB feedback

FIFO first in first out

FSR full scale range

GPIO general purpose I/O

HCI host−controller interface

HFCLK high−frequency clock

HSIOM high−speed I/O matrix

I2C inter−integrated circuit

IDE integrated development environment

http://www.onsemi.com/

AND9836

www.onsemi.com
6

Table 2. ACRONYMS (continued)

Acronym Definition

ILO internal low−speed oscillator

ITO indium tin oxide

IMO internal main oscillator

INL integral nonlinearity

I/O input/output

IOR I/O read

IOW I/O write

IRES initial power on reset

IRA interrupt request acknowledge

IRQ interrupt request

ISR interrupt service routine

IVR interrupt vector read

LCD liquid crystal display

LFCLK low−frequency clock

LPCOMP low−power comparator

LRb last received bit

LRB last received byte

LSb least significant bit

LSB least significant byte

LUT lookup table

MISO master−in−slave−out

MMIO memory mapped input/output

MOSI master−out−slave−in

MPU memory protection unit

MSb most significant bit

MSB most significant byte

MSP main stack pointer

NMI non−maskable interrupt

NVIC nested vectored interrupt controller

PC program counter

PCB printed circuit board

PCH program counter high

PCL program counter low

PD power down

PGA programmable gain amplifier

PM power management

POR power−on reset

PPOR precision power−on reset

PRS pseudo random sequence

PSP process stack pointer

PSRR power supply rejection ratio

Table 2. ACRONYMS (continued)

Acronym Definition

PSSDC power system sleep duty cycle

PWM pulse width modulator

RAM random−access memory

RETI return from interrupt

RF radio frequency

ROM read only memory

RMS root mean square

RW read/write

SAR successive approximation register

SC switched capacitor

SCB serial communication block

SIE serial interface engine

SIO special I/O

SE0 single−ended zero

SNR signal−to−noise ratio

SOF start of frame

SOI start of instruction

SP stack pointer

SPD sequential phase detector

SPI serial peripheral interconnect

SPIM serial peripheral interconnect master

SPIS serial peripheral interconnect slave

SRAM static random−access memory

SROM supervisory read only memory

SSADC single slope ADC

SSC supervisory system call

SYSCLK system clock

SWD single wire debug

TC terminal count

TCPWM timer, counter, PWM

TD transaction descriptors

TIA trans−impedance amplifier

UART universal asynchronous receiver/transmitter

UDB universal digital block

USB universal serial bus

USBIO USB I/O

VTOR vector table offset register

WCO watch crystal oscillator

WDT watchdog timer

WDR watchdog reset

XRES external reset

XRES_N external reset, active low

http://www.onsemi.com/

AND9836

www.onsemi.com
7

CPU SYSTEM

This section encompasses the following chapters:
• Cortex−M0+ CPU chapter on page 7

• Interrupts chapter on page 11

Top Level Architecture

System Interconnect (Single Layer AHB)

CPU Subsystem

SWD/TC, MTB

Cortex
M0+

48 MHz

FAST MUL
NVIC, IRQMUX, MPU

Figure 2. CPU System Block Diagram

CORTEX−M0+ CPU
The AXM0F243 MCU ARM Cortex−M0+ core is a

32−bit CPU optimized for low−power operation. It has an
efficient two−stage pipeline, a fixed 4−GB memory map,
and supports the ARMv6−M Thumb instruction set. The
Cortex−M0+ also features a single−cycle 32−bit multiply
instruction and low−latency interrupt handling. Other
subsystems tightly linked to the CPU core include a nested

vectored interrupt controller (NVIC), a SYSTICK timer,
and debug.

This section gives an overview of the Cortex−M0+
processor. For more details, see the ARM Cortex−M0+ user
guide or technical reference manual, both available at
www.arm.com.

Features
The AXM0F243 MCU Cortex−M0+ has the following

features:
• Easy to use, program, and debug, ensuring easier

migration from 8− and 16−bit processors
• Operates at up to 0.9 DMIPS/MHz; this helps to increase

execution speed or reduce power
• Supports the Thumb instruction set for improved code

density, ensuring efficient use of memory
• NVIC unit to support interrupts and exceptions for rapid

and deterministic interrupt response
• Implements design time configurable Memory Protection

Unit (MPU)
• Supports unprivileged and privileged mode execution

• Supports optional Vector Table Offset Register (VTOR)

• Extensive debug support including:
♦ SWD port
♦ Breakpoints
♦ Watchpoints

Block Diagram

F
ix

ed
 In

te
rr

up
ts

CPU Subsystem
Interrupt

Mux

ARM Cortex−M0+ CPU

DAP Test
Controller

System Interconnect

Flash
Programming

Interface

Flash
Accelerator

SRAM
Controller

Flash SRAM SROM CPU & Memory
Subsystem

AHB Bridge

D
S

I I
nt

er
ru

pt
s

SROM
Controller

Figure 3. CPU Subsystem Block Diagram

http://www.onsemi.com/
www.arm.com

AND9836

www.onsemi.com
8

How It Works
The Cortex−M0+ is a 32−bit processor with a 32−bit data

path, 32−bit registers, and a 32−bit memory interface. It
supports most 16−bit instructions in the Thumb instruction
set and some 32−bit instructions in the Thumb−2 instruction
set.

The processor supports two operating modes (see
Operating Modes on page 9). It has a single−cycle 32−bit
multiplication instruction.

Address Map
The ARM Cortex−M0+ has a fixed address map allowing

access to memory and peripherals using simple memory
access instructions. The 32−bit (4 GB) address space is
divided into the regions shown in Table 3. Note that code can
be executed from the code and SRAM regions.

Table 3. CORTEX−M0+ ADDRESS MAP

Address Range Name Use

0x00000000 − 0x1FFFFFFF Code Program code region. You can also place data here. Includes the exception vector
 table, which starts at address 0.

0x20000000 − 0x3FFFFFFF SRAM Data region. You can also execute code from this region.

0x40000000 − 0x5FFFFFFF Peripheral All peripheral registers. You cannot execute code from this region.

0x60000000 − 0xDFFFFFFF Not used.

0xE0000000 − 0xE00FFFFF PPB Peripheral registers within the CPU core.

0xE0100000 − 0xFFFFFFFF Device AXM0F243 MCU implementation−specific.

Registers
The Cortex−M0+ has sixteen 32−bit registers, as Table 4

shows:
• R0 to R12 – General−purpose registers. R0 to R7 can be

accessed by all instructions; the other registers can be
accessed by a subset of the instructions.

• R13 – Stack pointer (SP). There are two stack pointers,
with only one available at a time. In thread mode, the

CONTROL register indicates the stack pointer to use,
Main Stack Pointer (MSP) or Process Stack Pointer
(PSP).

• R14 – Link register. Stores the return program counter
during function calls.

• R15 – Program counter. This register can be written to
control program flow.

Table 4. CORTEX−M0+ REGISTERS

Name Type (Note 1) Reset Value Description

R0−R12 RW Undefined R0 − R12

MSP (R13) RW [0x00000000] The stack pointer (SP) is register R13. In thread mode, bit[1] of the CONTROL register
indicates which stack pointer to use:
0 = Main stack pointer (MSP). This is the reset value.
1 = Process stack pointer (PSP).
On reset, the processor loads the MSP with the value from ad

PSP (R13)

LR (R14) RW Undefined The link register (LR) is register R14. It stores the return information for subroutines,
function calls, and exceptions.

PC (R15) RW [0x00000004] The program counter (PC) is register R15. It contains the current program address.
On reset, the processor loads the PC with the value from address 0x00000004. Bit[0]
of the value is loaded into the EPSR T−bit at reset and must be 1.

PSR RW Undefined The program status register (PSR) combines:
Application Program Status Register (APSR).
Execution Program Status Register (EPSR).
Interrupt Program Status Register (IPSR).

APSR RW Undefined The APSR contains the current state of the condition flags from previous instruction
executions.

EPSR RO [0x00000004].0 On reset, EPSR is loaded with the value bit[0] of the register [0x00000004].

IPSR RO 0 The IPSR contains the exception number of the current ISR.

PRIMASK RW 0 The PRIMASK register prevents activation of all exceptions with configurable priority.

CONTROL RW 0 The CONTROL register controls the stack used when the processor is in thread mode.

1. Describes access type during program execution in thread mode and handler mode. Debug access can differ.

http://www.onsemi.com/

AND9836

www.onsemi.com
9

Table 5 shows how the PSR bits are assigned.

Table 5. CORTEX−M0+ RPSR BIT ASSIGNMENTS

Bit PSR Register Name Usage

31 APSR N Negative flag

30 APSR Z Zero flag

29 APSR C Carry or borrow flag

28 APSR V Overflow flag

27 – 25 – – Reserved

24 EPSR T Thumb state bit. Must always be 1. Attempting to execute instructions when the T bit is
 0 results in a HardFault exception.

23 – 6 – – Reserved

5 – 0 IPSR N/A Exception number of current ISR:
 0 = thread mode
 1 = reserved
 2 = NMI
 3 = HardFault
 4 – 10 = reserved
 11 = SVCall
 12, 13 = reserved
 14 = PendSV
 15 = SysTick
 16 = IRQ0
 …

 35 = IRQ19

Use the MSR or CPS instruction to set or clear bit 0 of the
PRIMASK register. If the bit is 0, exceptions are enabled. If
the bit is 1, all exceptions with configurable priority, that is,
all exceptions except HardFault, NMI, and Reset, are
disabled. See the Interrupts chapter on page 11 for a list of
exceptions.

Operating Modes
The Cortex−M0+ processor supports two operating

modes:
• Thread Mode – used by all normal applications. In this

mode, the MSP or PSP can be used. The CONTROL
register bit 1 determines which stack pointer is used:
♦ 0 = MSP is the current stack pointer
♦ 1 = PSP is the current stack pointer

• Handler Mode – used to execute exception handlers.
The MSP is always used.
In thread mode, use the MSR instruction to set the stack

pointer bit in the CONTROL register. When changing the
stack pointer, use an ISB instruction immediately after the
MSR instruction. This action ensures that instructions after
the ISB execute using the new stack pointer.

In handler mode, explicit writes to the CONTROL
register are ignored, because the MSP is always used. The
exception entry and return mechanisms automatically
update the CONTROL register.

Instruction Set
The Cortex−M0+ implements a version of the Thumb

instruction set, as Table 6 shows. For details, see the
Cortex−M0+ Generic User Guide.

An instruction operand can be an ARM register, a
constant, or another instruction−specific parameter.
Instructions act on the operands and often store the result in
a destination register. Many instructions are unable to use,
or have restrictions on using, the PC or SP for the operands
or destination register.

Table 6. THUMB INSTRUCTION SET

Mnemonic Brief Description

ADCS Add with carry

ADD{S} (Note 2) Add

ADR PC−relative address to register

ANDS Bit wise AND

ASRS Arithmetic shift right

B{cc} Branch {conditionally}

BICS Bit clear

BKPT Breakpoint

BL Branch with link

BLX Branch indirect with link

BX Branch indirect

CMN Compare negative

CMP Compare

CPSID Change processor state, disable interrupts

CPSIE Change processor state, enable interrupts

DMB Data memory barrier

http://www.onsemi.com/

AND9836

www.onsemi.com
10

Table 6. THUMB INSTRUCTION SET (continued)

Mnemonic Brief Description

DSB Data synchronization barrier

EORS Exclusive OR

ISB Instruction synchronization barrier

LDM Load multiple registers, increment after

LDR Load register from PC−relative address

LDRB Load register with word

LDRH Load register with half−word

LDRSB Load register with signed byte

LDRSH Load register with signed half−word

LSLS Logical shift left

MOV{S} (Note 2) Move

LSRS Logical shift right

MRS Move to general register from special register

MSR Move to special register from general register

MULS Multiply, 32−bit result

MVNS Bit wise NOT

NOP No operation

ORRS Logical OR

POP Pop registers from stack

PUSH Push registers onto stack

REV Byte−reverse word

REV16 Byte−reverse packed half−words

REVSH Byte−reverse signed half−word

RORS Rotate right

RSBS Reverse subtract

SBCS Subtract with carry

SEV Send event

STM Store multiple registers, increment after

STR Store register as word

STRB Store register as byte

STRH Store register as half−word

SUB{S} (Note 2) Subtract

SVC Supervisor call

SXTB Sign extend byte

SXTH Sign extend half−word

TST Logical AND−based test

UXTB Zero extend a byte

UXTH Zero extend a half−word

WFE Wait for event

WFI Wait for interrupt

2. The ‘S’ qualifier causes the ADD, SUB, or MOV instructions to
update APSR condition flags.

Address Alignment
An aligned access is an operation where a word−aligned

address is used for a word or multiple word access, or where
a half−word−aligned address is used for a half−word access.
Byte accesses are always aligned.

No support is provided for unaligned accesses on the
Cortex−M0+ processor. Any attempt to perform an
unaligned memory access operation results in a HardFault
exception.

Memory Endianness
The Cortex−M0+ uses the little−endian format, where the

least−significant byte of a word is stored at the lowest
address and the most significant byte is stored at the highest
address.

Systick Timer
The Systick timer is integrated with the NVIC and

generates the SYSTICK interrupt. This interrupt can be used
for task management in a real−time system. The timer has a
reload register with 24 bits available to use as a countdown
value. The Systick timer uses either the Cortex−M0+
internal clock or the low−frequency clock (LF_CLK) as the
source.

Debug
AXM0F243 MCU contains a debug interface based on

SWD; it features four breakpoint (address) comparators and
two watchpoint (data) comparators.

http://www.onsemi.com/

AND9836

www.onsemi.com
11

INTERRUPTS
The ARM Cortex−M0+ (CM0+) CPU in AXM0F243

MCU supports interrupts and exceptions. Interrupts refer to
those events generated by peripherals external to the CPU
such as timers, serial communication block, and port pin
signals. Exceptions refer to those events that are generated
by the CPU such as memory access faults and internal
system timer events. Both interrupts and exceptions result in
the current program flow being stopped and the exception
handler or interrupt service routine (ISR) being executed by
the CPU. The device provides a unified exception vector
table for both interrupt handlers/ISR and exception
handlers.

Features
AXM0F243 MCU supports the following interrupt

features:
• Supports 20 interrupts

• Nested vectored interrupt controller (NVIC) integrated
with CPU core, yielding low interrupt latency

• Vector table may be placed in either flash or SRAM

• Configurable priority levels from 0 to 3 for each interrupt

• Level−triggered and pulse−triggered interrupt signals

How It Works

Cortex−M0+ Processor

Interrupt
signals from

IRQ0

IRQ1

Nested
Vectored

on−chip
peripherals

Interrupt
Controller

(NVIC)

Cortex−M0+
Processor Core

Up to IRQ19

Figure 4. AXM0F243 MCU Interrupts Block Diagram

Figure 4 shows the interaction between interrupt signals
and the Cortex−M0+ CPU. AXM0F243 MCU has up to 20
interrupts; these interrupt signals are processed by the
NVIC. The NVIC takes care of enabling/disabling
individual interrupts, priority resolution, and
communication with the CPU core. The exceptions are not
shown in Figure 4 because they are part of CM0+ core
generated events, unlike interrupts, which are generated by
peripherals external to the CPU.

Interrupts and Exceptions − Operation

Interrupt/Exception Handling
The following sequence of events occurs when an

interrupt or exception event is triggered:
1. Assuming that all the interrupt signals are initially

low (idle or inactive state) and the processor is
executing the main code, a rising edge on any one

of the interrupt lines is registered by the NVIC.
The interrupt line is now in a pending state waiting
to be serviced by the CPU.

2. On detecting the interrupt request signal from the
NVIC, the CPU stores its current context by
pushing the contents of the CPU registers onto the
stack.

3. The CPU also receives the exception number of
the triggered interrupt from the NVIC. All
interrupts and exceptions have a unique exception
number, as given in Table 4. By using this
exception number, the CPU fetches the address of
the specific exception handler from the vector
table.

4. The CPU then branches to this address and
executes the exception handler that follows.

5. Upon completion of the exception handler, the
CPU registers are restored to their original state
using stack pop operations; the CPU resumes the
main code execution.

Rising Edge on Interrupt Line is
registered by the NVIC

CPU detects the request signal
from NVIC and store s its

current context by pushing
contents onto the stack

CP U branches to the received
address and executes

exception handler

CPU registers are restored
using stack up on completion of

exception handler.

Figure 5. Interrupt Handling When Triggered

CPU receives exception
number of triggered interrupt

and fetches the address of the
specific exception handle from

vector table

When the NVIC receives an interrupt request while
another interrupt is being serviced or receives multiple
interrupt requests at the same time, it evaluates the priority
of all these interrupts, sending the exception number of the
highest priority interrupt to the CPU. Thus, a higher priority
interrupt can block the execution of a lower priority ISR at
any time.

http://www.onsemi.com/

AND9836

www.onsemi.com
12

Exceptions are handled in the same way that interrupts are
handled. Each exception event has a unique exception
number, which is used by the CPU to execute the appropriate
exception handler.

Level and Pulse Interrupts
NVIC supports both level and pulse signals on the

interrupt lines (IRQ0 to IRQ19). The classification of an
interrupt as level or pulse is based on the interrupt source.

IRQn

CPU
Execution

State

IRQn is still high

ISR ISR ISR

ISR
main

ISR ISR
mainmain

main mainmain

IRQn

CPU
Execution

State

Figure 6. Level Interrupts

Figure 7. Pulse Interrupts
Figure 6 and Figure 7 show the working of level and pulse

interrupts, respectively. Assuming the interrupt signal is
initially inactive (logic low), the following sequence of
events explains the handling of level and pulse interrupts:

1. On a rising edge event of the interrupt signal, the
NVIC registers the interrupt request. The interrupt
is now in the pending state, which means the
interrupt requests have not yet been serviced by
the CPU.

2. The NVIC then sends the exception number along
with the interrupt request signal to the CPU. When
the CPU starts executing the ISR, the pending state
of the interrupt is cleared.

3. When the ISR is being executed by the CPU, one
or more rising edges of the interrupt signal are
logged as a single pending request. The pending
interrupt is serviced again after the current ISR
execution is complete (see Figure 7 for pulse
interrupts).

4. If the interrupt signal is still high after completing
the ISR, it will be pending and the ISR is executed
again. Figure 6 illustrates this for level triggered
interrupts, where the ISR is executed as long as the
interrupt signal is high.

Exception Vector Table
The exception vector table (Table 7), stores the entry point

addresses for all exception handlers. The CPU fetches the
appropriate address based on the exception number.

Table 7. EXCEPTION VECTOR TABLE

Exception Number Exception Exception Priority Vector Address

– Initial Stack Pointer Value Not applicable (NA) Base_Address − 0x00000000 (start of flash
memory) or 0x20000000 (start of SRAM)

1 Reset –3, the highest priority Base_Address + 0x04

2 Non Maskable Interrupt (NMI) –2 Base_Address + 0x08

3 HardFault –1 Base_Address + 0x0C

4 − 10 Reserved NA Base_Address + 0x10 to Base_Address + 0x28

11 Supervisory Call (SVCall) Configurable (0 − 3) Base_Address + 0x2C

12 − 13 Reserved NA Base_Address + 0x30 to Base_Address + 0x34

14 PendSupervisory (PendSV) Configurable (0 − 3) Base_Address + 0x38

15 System Timer (SysTick) Configurable (0 − 3) Base_Address + 0x3C

16 External Interrupt (IRQ0) Configurable (0 − 3) Base_Address + 0x40

… … Configurable (0 − 3) …

35 External Interrupt (IRQ19) Configurable (0 − 3) Base_Address + 0xAC

In Table 7, the first word (4 bytes) is not marked as
exception number zero. This is because the first word in the
exception table is used to initialize the main stack pointer
(MSP) value on device reset; it is not considered as an
exception. The vector table can be located anywhere in the
memory map (flash or SRAM) by modifying the Vector
Table Offset Register (VTOR). This register is part of the
System Control Space of CM0+ located at 0xE000ED08.
This register takes bits 31:8 of the vector table address; bits

7:0 are reserved. Therefore, the vector table address should
be 256 bytes aligned. The advantage of moving the vector
table to SRAM is that the exception handler addresses can
be dynamically changed by modifying the SRAM vector
table contents. However, the nonvolatile flash memory
vector table must be modified by a flash memory write.

Reads of flash addresses 0x00000000 and 0x00000004
are redirected to the first eight bytes of SROM to fetch the
stack pointer and reset vectors, unless the

http://www.onsemi.com/

AND9836

www.onsemi.com
13

DIS_RESET_VECT_REL bit of the CPUSS_SYSREQ
register is set. The default value of this bit at reset is 0
ensuring that reset vector is always fetched from SROM. To
allow flash read from addresses 0x00000000 and
0x00000004, the DIS_RESET_VECT_REL bit should be
set to ‘1’. The stack pointer vector holds the address that the
stack pointer is loaded with on reset. The reset vector holds
the address of the boot sequence. This mapping is done to
use the default addresses for the stack pointer and reset
vector from SROM when the device reset is released. For
reset, boot code in SROM is executed first and then the CPU
jumps to address 0x00000004 in flash to execute the handler
in flash. The reset exception address in the SRAM vector
table is never used.

Also, when the SYSCALL_REQ bit of the
CPUSS_SYSREQ

register is set, reads of flash address 0x00000008 are
redirected to SROM to fetch the NMI vector address instead
of from flash. Reset CPUSS_SYSREQ to read the flash at
address 0x00000008.

The exception sources (exception numbers 1 to 15) are
explained in Exception Sources. The exceptions marked as
Reserved in Table 7 are not used, although they have
addresses reserved for them in the vector table. The interrupt
sources (exception numbers 16 to 35) are explained in
Interrupt Sources.

Exception Sources
This section explains the different exception sources

listed in Table 7 (exception numbers 1 to 15).

Reset Exception
Device reset is treated as an exception in AXM0F243

MCU. It is always enabled with a fixed priority of –3, the
highest priority exception. A device reset can occur due to
multiple reasons, such as power−on−reset (POR), external
reset signal on XRES pin, or watchdog reset. When the
device is reset, the initial boot code for configuring the
device is executed out of supervisory read−only memory
(SROM). The boot code and other data in SROM memory
are programmed, and are not read/write accessible to
external users. After completing the SROM boot sequence,
the CPU code execution jumps to flash memory. Flash
memory address 0x00000004 (Exception #1 in Table 7)
stores the location of the startup code in flash memory. The
CPU starts executing code out of this address. Note that the
reset exception address in the SRAM vector table will never
be used because the device comes out of reset with the flash
vector table selected. The register configuration to select the
SRAM vector table can be done only as part of the startup
code in flash after the reset is de−asserted.

Non−Maskable Interrupt (NMI) Exception
Non−maskable interrupt (NMI) is the highest priority

exception other than reset. It is always enabled with a fixed
priority of –2. There are two ways to trigger an NMI
exception in the device:

• NMI exception by setting NMIPENDSET bit (user NMI
exception): An NMI exception can be triggered in
software by setting the NMIPENDSET bit in the interrupt
control state register (CM0P_ICSR register). Setting this
bit will execute the NMI handler pointed to by the active
vector table (flash or SRAM vector table).

• System Call NMI exception: This exception is used for
nonvolatile programming operations such as flash write
operation and flash checksum operation. It is triggered by
setting the SYSCALL_REQ bit in the CPUSS_SYSREQ
register. An NMI exception triggered by
SYSCALL_REQ bit always executes the NMI exception
handler code that resides in SROM. Flash or SRAM
exception vector table is not used for system call NMI
exception. The NMI handler code in SROM is not read/
write accessible because it contains nonvolatile
programming routines that should not be modified by the
user.

HardFault Exception
HardFault is an always−enabled exception that occurs

because of an error during normal or exception processing.
HardFault has a fixed priority of –1, meaning it has higher
priority than any exception with configurable priority.
Hard−Fault exception is a catch−all exception for different
types of fault conditions, which include executing an
undefined instruction and accessing an invalid memory
addresses. The CM0+ CPU does not provide fault status
information to the HardFault exception handler, but it does
permit the handler to perform an exception return and
continue execution in cases where software has the ability to
recover from the fault situation.

Supervisor Call (SVCall) Exception
Supervisor Call (SVCall) is an always−enabled exception

caused when the CPU executes the SVC instruction as part
of the application code. Application software uses the SVC
instruction to make a call to an underlying operating system
and provide a service. This is known as a supervisor call. The
SVC instruction enables the application to issue a supervisor
call that requires privileged access to the system. Note that
the CM0+ uses a privileged mode for the system call NMI
exception, which is not related to the SVCall exception. (See
the Chip Operational Modes chapter on page 45 for details
on privileged mode.) There is no other privileged mode
support for SVCall at the architecture level in the device.
The application developer must define the SVCall exception
handler according to the end application requirements.

The priority of a SVCall exception can be configured to
a value between 0 and 3 by writing to the two bit fields
PRI_11[31:30] of the System Handler Priority Register 2
(SHPR2). When the SVC instruction is executed, the
SVCall exception enters the pending state and waits to be
serviced by the CPU. The SVCALLPENDED bit in the
System Handler Control and State Register (SHCSR) can be
used to check or modify the pending status of the SVCall
exception.

http://www.onsemi.com/

AND9836

www.onsemi.com
14

PendSV Exception
PendSV is another supervisor call related exception

similar to SVCall, normally being software−generated.
PendSV is always enabled and its priority is configurable.
The PendSV exception is triggered by setting the
PENDSVSET bit in the Interrupt Control State Register,
CM0P_ICSR. On setting this bit, the PendSV exception
enters the pending state, and waits to be serviced by the CPU.
The pending state of a PendSV exception can be cleared by
setting the PENDSVCLR bit in the Interrupt Control State
Register, CM0P_ICSR. The priority of a PendSV exception
can be configured to a value between 0 and 3 by writing to
the two bit fields PRI_14[23:22] of the System Handler
Priority Register 3 (CM0P_SHPR3). See the ARMv6−M
Architecture Reference Manual for more details.

SysTick Exception
CM0+ CPU in AXM0F243 MCU supports a system timer,

referred to as SysTick, as part of its internal architecture.
SysTick provides a simple, 24−bit decrementing counter for
various timekeeping purposes such as an RTOS tick timer,
high−speed alarm timer, or simple counter. The SysTick
timer can be configured to generate an interrupt when its
count value reaches zero, which is referred to as SysTick
exception. The exception is enabled by setting the TICKINT
bit in the SysTick Control and Status Register
(CM0P_SYST_CSR). The priority of a SysTick exception

can be configured to a value between 0 and 3 by writing to
the two bit fields PRI_15[31:30] of the System Handler
Priority Register 3 (SHPR3). The SysTick exception can
always be generated in software at any instant by writing a
one to the PENDSTSETb bit in the Interrupt Control State
Register, CM0P_ICSR. Similarly, the pending state of the
SysTick exception can be cleared by writing a one to the
PENDSTCLR bit in the Interrupt Control State Register,
CM0P_ICSR.

Interrupt Sources
AXM0F243 MCU supports up to 20 interrupts (IRQ0 to

IRQ19 or exception numbers 16 – 43) from peripherals. The
source of each interrupt is listed in Table 8. AXM0F243
MCU provides flexible sourcing options for each interrupt
line. The interrupts include standard interrupts from the
on−chip peripherals such as TCPWM and serial
communication block. The interrupt generated is usually the
logical OR of the different peripheral states. The peripheral
status register should be read in the ISR to detect which
condition generated the interrupt. interrupts are usually level
interrupts, which require that the peripheral status register
be read in the ISR to clear the interrupt. If the status register
is not read in the ISR, the interrupt will remain asserted and
the ISR will be executed continuously.

See the I/O System chapter on page 19 for details on GPIO
interrupts.

Table 8. LIST OF AXM0F243 MCU INTERRUPT SOURCES

Interrupt Cortex−M0+ Exception No. Interrupt Source

NMI 2 SYSCALL_REQ

IRQ0 16 GPIO Interrupt − Port 0

IRQ1 17 GPIO Interrupt − Port 1

IRQ2 18 GPIO Interrupt − Port 2

IRQ3 19 GPIO Interrupt − Port 3

IRQ4 20 GPIO Interrupt − All Port

IRQ5 21 LPCOMP (low−power comparator)

IRQ6 22 WDT (Watchdog timer)

IRQ7 23 SCB0 (Serial Communication Block 0)

IRQ8 24 SCB1 (Serial Communication Block 1)

IRQ9 25 SCB2 (Serial Communication Block 2)

IRQ10 26 CTBm (Continuous Time Block mini) − all CTBms

IRQ11 27 WCO WDT Interrupt

IRQ12 28 SPCIF Interrupt

IRQ13 29 Reserved

IRQ14 30 TCPWM0 (Timer/Counter/PWM 0)

IRQ15 31 TCPWM1 (Timer/Counter/PWM 1)

IRQ16 32 TCPWM2 (Timer/Counter/PWM 2)

IRQ17 33 TCPWM3 (Timer/Counter/PWM 3)

IRQ18 34 TCPWM4 (Timer/Counter/PWM 4)

IRQ19 35 SAR ADC

http://www.onsemi.com/
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html

AND9836

www.onsemi.com
15

Exception Priority
Exception priority is useful for exception arbitration when

there are multiple exceptions that need to be serviced by the
CPU. AXM0F243 MCU provides flexibility in choosing
priority values for different exceptions. All exceptions other
than Reset, NMI, and HardFault can be assigned a
configurable priority level. The Reset, NMI, and HardFault
exceptions have a fixed priority of –3, –2, and –1
respectively. In AXM0F243 MCU, lower priority numbers
represent higher priorities. This means that the Reset, NMI,
and HardFault exceptions have the highest priorities. The
other exceptions can be assigned a configurable priority
level between 0 and 3.

AXM0F243 MCU supports nested exceptions in which a
higher priority exception can obstruct (interrupt) the
currently active exception handler. This preemption does
not happen if the incoming exception priority is the same as
active exception. The CPU resumes execution of the lower
priority exception handler after servicing the higher priority
exception. The CM0+ CPU in AXM0F243 MCU allows
nesting of up to four exceptions. When the CPU receives two
or more exceptions requests of the same priority, the lowest
exception number is serviced first.

The registers to configure the priority of exception
numbers 1 to 15 are explained in “Exception Sources” on
page 13.

The priority of the 20 interrupts (IRQ0 to IRQ19) can be
configured by writing to the Interrupt Priority registers
(CM0P_IPR). This is a group of 32−bit registers with each
register storing the priority values of four interrupts, as given
in Table 9. The other bit fields in the register are not used.

Table 9. INTERRUPT PRIORITY REGISTER BIT
DEFINITIONS

Bits Name Description

7:6 PRI_N0 Priority of interrupt number N.

15:14 PRI_N1 Priority of interrupt number N+1.

23:22 PRI_N2 Priority of interrupt number N+2.

31:30 PRI_N3 Priority of interrupt number N+3.

Enabling and Disabling Interrupts
The NVIC provides registers to individually enable and

disable the 20 interrupts in software. If an interrupt is not
enabled, the NVIC will not process the interrupt requests on
that interrupt line. The Interrupt Set−Enable Register
(CM0P_ISER) and the Interrupt Clear−Enable Register
(CM0P_ICER) are used to enable and disable the interrupts
respectively. These are 32−bit wide registers and each bit
corresponds to the same numbered interrupt. These registers
can also be read in software to get the enable status of the
interrupts. Table 10 shows the register access properties for
these two registers. Note that writing zero to these registers
has no effect.

Table 10. INTERRUPT ENABLE/DISABLE REGISTERS

Registers Operation Bit Value Comment

Interrupt Set
Enable

Register
(CM0P_ISER)

Write 1 To enable the interrupt

0 No effect

Read 1 Interrupt is enabled

0 Interrupt is disabled

Interrupt Clear
Enable

Register
(CM0P_ICER)

Write 1 To disable the interrupt

0 No effect

Read 1 Interrupt is enabled

0 Interrupt is disabled

The CM0P_ISER and CM0P_ICER registers are
applicable only for interrupts IRQ0 to IRQ19. These
registers cannot be used to enable or disable the exception
numbers 1 to 15. The 15 exceptions have their own support
for enabling and disabling, as explained in “Exception
Sources” on page 13.

The PRIMASK register in Cortex−M0+ (CM0+) CPU can
be used as a global exception enable register to mask all the
configurable priority exceptions irrespective of whether
they are enabled. Configurable priority exceptions include
all the exceptions except Reset, NMI, and HardFault listed
in Table 7. They can be configured to a priority level
between 0 and 3, 0 being the highest priority and 3 being the
lowest priority. When the PM bit (bit 0) in the PRIMASK
register is set, none of the configurable priority exceptions
can be serviced by the CPU, though they can be in the
pending state waiting to be serviced by the CPU after the PM
bit is cleared.

Exception States
Each exception can be in one of the following states.

Table 11. Exception States

Table 11. EXCEPTION STATES

Exception States Meaning

Inactive The exception is not active or pending.
Either the exception is disabled or the
enabled exception has not been triggered.

Pending The exception request is received by the
CPU/NVIC and the exception is waiting to
be serviced by the CPU.

Active An exception that is being serviced by the
CPU but whose exception handler
execution is not yet complete.
A high−priority exception can interrupt the
execution of lower priority exception. In this
case, both the exceptions are in the active
state..

Active and
Pending

The exception is serviced by the processor
and there is a pending request from the
same source during its exception handler
execution.

http://www.onsemi.com/

AND9836

www.onsemi.com
16

The Interrupt Control State Register (CM0P_ICSR)
contains status bits describing the various exceptions states.
• The VECTACTIVE bits ([8:0]) in the CM0P_ICSR store

the exception number for the current executing exception.
This value is zero if the CPU does not execute any
exception handler (CPU is in thread mode). Note that the
value in VECTACTIVE bit fields is the same as the value
in bits [8:0] of the Interrupt Program Status Register
(IPSR), which is also used to store the active exception
number.

• The VECTPENDING bits ([20:12]) in the CM0P_ICSR
store the exception number of the highest priority pending
exception. This value is zero if there are no pending
exceptions.

• The ISRPENDING bit (bit 22) in the CM0P_ICSR
indicates if a NVIC generated interrupt (IRQ0 to IRQ19)
is in a pending state.

Pending Exceptions
When a peripheral generates an interrupt request signal to

the NVIC or an exception event occurs, the corresponding
exception enters the pending state. When the CPU starts
executing the corresponding exception handler routine, the
exception is changed from the pending state to the active
state.

The NVIC allows software pending of the 20 interrupt
lines by providing separate register bits for setting and
clearing the pending states of the interrupts. The Interrupt
Set−Pending register (CM0P_ISPR) and the Interrupt
Clear−Pending register (CM0P_ICPR) are used to set and
clear the pending status of the interrupt lines. These are
32−bit wide registers and each bit corresponds to the same
numbered interrupt.

Table 12 shows the register access properties for these two
registers. Note that writing zero to these registers has no
effect.

Table 12. INTERRUPT SET PENDING/
CLEAR PENDING REGISTERS

Registers Operation Bit Value Comment

Interrupt
Set−Pending

Register
(CM0P_ISPR)

Write 1 To put an interrupt to
 pending state

0 No effect

Read 1 Interrupt is pending

0 Interrupt is not pending

Interrupt
Clear−Pending

Register
(CM0P_ICPR)

Write 1 To clear pending
 interrupt

0 No effect

Read 1 Interrupt is pending

0 Interrupt is not pending

Setting the pending bit when the same bit is already set
results in only one execution of the ISR. The pending bit can
be updated regardless of whether the corresponding
interrupt is enabled. If the interrupt is not enabled, the
interrupt line will not move to the pending state until it is
enabled by writing to the CM0P_ISER register.

Note that the CM0P_ISPR and CM0P_ICPR registers are
used only for the 20 peripheral interrupts (exception
numbers 16 – 43). These registers cannot be used for
pending the exception numbers 1 to 15. These 15 exceptions
have their own support for pending, as explained in
“Exception Sources” on page 13.

Stack Usage for Exceptions
When the CPU executes the main code (in thread mode)

and an exception request occurs, the CPU stores the state of
its general−purpose registers in the stack. It then starts
executing the corresponding exception handler (in handler
mode). The CPU pushes the contents of the eight 32−bit
internal registers into the stack. These registers are the
Program and Status Register (PSR), ReturnAddress, Link
Register (LR or R14), R12, R3, R2, R1, and R0.
Cortex−M0+ has two stack pointers − MSP and PSP. Only
one of the stack pointers can be active at a time. When in
thread mode, the Active Stack Pointer bit in the Control
register is used to define the current active stack pointer.
When in handler mode, the MSP is always used as the stack
pointer. The stack pointer in Cortex−M0+ always grows
downwards and points to the address that has the last pushed
data.

When the CPU is in thread mode and an exception request
comes, the CPU uses the stack pointer defined in the control
register to store the general−purpose register contents. After
the stack push operations, the CPU enters handler mode to
execute the exception handler. When another higher priority
exception occurs while executing the current exception, the
MSP is used for stack push/pop operations, because the CPU
is already in handler mode. See the Cortex−M0+ CPU
chapter on page 7 for details.

The Cortex−M0+ uses two techniques, tail chaining and
late arrival, to reduce latency in servicing exceptions. These
techniques are not visible to the external user and are part of
the internal processor architecture. For information on tail
chaining and late arrival mechanism, visit the ARM
Infocenter.

http://www.onsemi.com/
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0662b/Babefdjc.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0662b/Babefdjc.html

AND9836

www.onsemi.com
17

Interrupts and Low−Power Modes
AXM0F243 MCU allows device wakeup from

low−power modes when certain peripheral interrupt
requests are generated. The Wakeup Interrupt Controller
(WIC) block generates a wakeup signal that causes the
device to enter Active mode when one or more wakeup
sources generate an interrupt signal. After entering Active
mode, the ISR of the peripheral interrupt is executed.

The Wait For Interrupt (WFI) instruction, executed by the
CM0+ CPU, triggers the transition into Sleep and
Deep−Sleep modes. The sequence of entering the different
low−power modes is detailed in the Power Modes chapter on
page 46. Chip low−power modes have two categories of
fixed−function interrupt sources:
• Fixed−function interrupt sources that are available only in

the Active and Deep−Sleep modes (watchdog timer
interrupt,)

• Fixed−function interrupt sources that are available only in
the Active mode (all other fixed−function interrupts)

Exceptions – Initialization and Configuration
This section covers the different steps involved in

initializing and configuring exceptions.
1. Configuring the Exception Vector Table Location:

The first step in using exceptions is to configure
the vector table location as required – either in
flash memory or SRAM. This configuration is
done by writing bits 31:28 of the VTOR register

with the value of the flash or SRAM address at
which the vector table will reside. This register
write is done as part of device initialization code.
It is recommended that the vector table be
available in SRAM if the application needs to
change the vector addresses dynamically. If the
table is located in flash, then a flash write
operation is required to modify the vector table
contents.

2. Configuring Individual Exceptions: The next step
is to configure individual exceptions required in an
application.
a. Configure the exception or interrupt source; this
includes setting up the interrupt generation
conditions. The register configuration depends on
the specific exception required.
b. Define the exception handler function and write
the address of the function to the exception vector
table. Table 7 gives the exception vector table
format; the exception handler address should be
written to the appropriate exception number entry
in the table.
c. Set up the exception priority, as explained in
“Exception Priority” on page 15.
d. Enable the exception, as explained in “Enabling
and Disabling Interrupts” on page 15.

Registers

Table 13. LIST OF REGISTERS

Register Name Description

CM0P_ISER Interrupt Set−Enable Register

CM0P_ICER Interrupt Clear Enable Register

CM0P_ISPR Interrupt Set−Pending Register

CM0P_ICPR Interrupt Clear−Pending Register

CM0P_IPR Interrupt Priority Registers

CM0P_ICSR Interrupt Control State Register

CM0P_AIRCR Application Interrupt and Reset Control Register

CM0P_SCR System Control Register

CM0P_CCR Configuration and Control Register

CM0P_SHPR2 System Handler Priority Register 2

CM0P_SHPR3 System Handler Priority Register 3

CM0P_SHCSR System Handler Control and State Register

CM0P_SYST_CSR Systick Control and Status Register

CPUSS_CONFIG CPU Subsystem Configuration Register

CPUSS_SYSREQ System Request Register

Associated Documents
• ARMv6−M Architecture Reference Manual – This

document explains the ARM Cortex−M0+ architecture,

including the instruction set, NVIC architecture, and CPU
register descriptions.

http://www.onsemi.com/
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html

AND9836

www.onsemi.com
18

SYSTEM RESOURCES SUBSYSTEM (SRSS)

This section encompasses the following chapters:
• I/O System chapter on page 19

• Clocking System chapter on page 36

• Power Supply and Monitoring chapter on page 42

• Chip Operational Modes chapter on page 45

• Power Modes chapter on page 46

• Watchdog Timer chapter on page 50

• Reset System chapter on page 54

• Device Security chapter on page 56

Top Level Architecture

Lite

Power
Sleep Control

WIC
POR REF

PWRS

Clock

Reset
Reset Control

Peripherals

PCLK Peripheral Interconnect (MMIO)

High Speed I/O Matrix and Smart I/O
Power Modes
Active / Sleep

DeepSleep

I/O Subsystem

36x GPIOs

XRES

System Resources

W
C

O

Figure 8. System−Wide Resources Block Diagram

WDT
ILO IMO

Clock Control

Test
TestMode Entry

IO
S

S
 G

P
IO

 (
5x

 p
or

ts
)

http://www.onsemi.com/

AND9836

www.onsemi.com
19

I/O SYSTEM
This chapter explains the AXM0F243 MCU I/O system,

its features, architecture, operating modes, and interrupts.
The GPIO pins in are grouped into ports; a port can have a
maximum of eight GPIOs. The AXM0F243 MCU device
has a maximum of 36 GPIOs arranged in five ports.

Features
The AXM0F243 MCU GPIOs have these features:

• Analog and digital input and output capabilities

• Eight drive strength modes

• Edge−triggered interrupts on rising edge, falling edge, or
on both the edges, on pin basis

• Slew rate control

• Hold mode for latching previous state (used for retaining
I/O state in Deep−Sleep mode)

• Selectable CMOS and low−voltage LVTTL input buffer
mode

• Smart I/O block provides the ability to perform Boolean
functions in the I/O signal path

• Two analog mux buses (AMUXBUS−A and
AMUXBUS−B) that can be used to multiplex analog
signals

AXM0F243 System−on−Chip pins definition
Table 14 describes the GPIO pins arrangement of the

AXM0F243 System−on−Chip (SoC) equipped with radio
transceiver AX5043 and AXM0F243 MCU.

Table 14. AXM0F243 SoC AND AXM0243 MCU PINS CORRESPONDENCE

AXM0F243 SoC AXM0F243 MCU Description

P0.0 P0.0 General purpose IO

P0.1 P0.1 General purpose IO

P0.2 P0.2 General purpose IO

 P0.3 Disconnected

P0.4 P0.4 General purpose IO

P0.5 P0.5 General purpose IO

P0.6 P0.6 General purpose IO

 P0.7 Disconnected

P1.0 P1.0 General purpose IO

P1.1 P1.1 General purpose IO

P1.2 P1.2 General purpose IO

P1.3 P1.3 General purpose IO

 P1.4 Disconnected

 P1.5 Disconnected

 P1.6 Disconnected

P1.7 P1.7 General purpose IO

 P2.0 Disconnected

 P2.1 Disconnected

 P2.2 Connected to AX5043 ANTSEL

 P2.3 Connected to AX5043 PWRAMP

 P2.4 Connected to AX5043 IRQ

 P2.5 Connected to AX5043 MOSI

 P2.6 Connected to AX5043 MISO

 P2.7 Connected to AX5043 CLK

 P3.0 Connected to AX5043 SEL

SYSCLK P3.1 Connected to AX5043 SYSCLK

P3.2 P3.2 General purpose IO

P3.3 P3.3 General purpose IO

 P3.4 Disconnected

http://www.onsemi.com/

AND9836

www.onsemi.com
20

Table 14. AXM0F243 SoC AND AXM0243 MCU PINS CORRESPONDENCE

AXM0F243 SoC DescriptionAXM0F243 MCU

 P3.5 Disconnected

P3.6 P3.6 General purpose IO

P3.7 P3.7 General purpose IO

P4.0 P4.0 General purpose IO

P4.1 P4.1 General purpose IO

P4.2 P4.2 General purpose IO

P4.3 P4.3 General purpose IO

GPIO Interface Overview
AXM0F243 MCU is equipped with analog and digital

peripherals. Figure 9 shows an overview of the routing
between the peripherals and pins.

SARMUX,
CTBm,

LPCOMP

G
P

IO
 Interrupt

G
P

IO
 P

in
Interface

G
P

IO
C

onfiguration

Fixed
Function
Digital

Peripherals
(TPCPWM,

I2C)

High Speed IO Matrix
(HSIOM)

Pin

IO Cell

Smart I/O

GPIO Port Control

* Not available on all GPIOs

AMUXBUS−A

AMUXBUS−B

Figure 9. GPIO Interface Overview

GPIO pins are connected to I/O cells. These cells are
equipped with an input buffer for the digital input, providing
high input impedance and a driver for the digital output
signals. The digital peripherals connect to the I/O cells via
the high−speed I/O matrix (HSIOM). HSIOM contains
multiplexers to connect between a peripheral selected by the

user and the pin. Some port pins have a Smart I/O block
between the HSIOM and the pins. The Smart I/O block
enables logical operations on the pin signal. The analog
peripheral and analog mux bus connections are done in the
GPIO cell directly.

http://www.onsemi.com/

AND9836

www.onsemi.com
21

I/O Cell Architecture
Figure 10 shows the I/O cell architecture. It comprises of

an input buffer and an output driver. This architecture is

present in every GPIO cell. It connects to the HSIOM
multiplexers/Smart I/O block for the digital input and the
output signal.

GPIO_PRTx_PC[24]

GPIO_PRTx_PC2[y]

GPIO_PRTx_INTR_CFG[2y+1:2y]

GPIO_PRTx_INTR[y]

Pin Interrupt Signal

Interrupt
Logic

HSIOM

GPIO_PRTx_PS[y]

TCPWM Trigger Input

SCB (SPI, I2C, UART)

HSIOM_PORT_SELx[4y+3:4y] 4

GPIO_PRTx_PC[25]

HSIOM_PORT_SELx[4y+3:4y] 4

HSIOM

GPIO_PRTx_DR[y]

ACT_0 (TCPWM)

ACT_1 (SCB−UART)

ACT_2 (SAR)

ACT_3 (SCB_UART)

DPSLP_2 (SCB – I2C, LPCOMP, SWD)

DPSLP_3 (SCB – SPI)

GPIO_PRTx_PC[3y+2:3y] 3

OUTPUT ENABLE

Dedicated Analog Resources (LPCOMP, CTBm, SARMUX)

Digital Input Path
Naming Convention
‘x’ = Port Number
‘y’ = Pin Number

Buffer Mode Select
−−−−−−−−−−−−−−−−−−−−−−−−−−
CMOS
LVTTL

Input Buffer Disable

Digital Output Path

4

Vddd Vddd

In
Digital
Logic

Slew
Cntl

Vddd

PIN

Drive
Mode

OE

Vssd

Vssd Vssd

Analog

Figure 10. GPIO Block Diagram

Digital Input Buffer
The digital input buffer provides a high−impedance buffer

for the external digital input. The buffer is enabled and
disabled by the INP_DIS bit of the Port Configuration
Register 2 (GPIO_PRTx_PC2, where x is the port number).
The buffer is configurable for the following modes:
• CMOS

• LVTTL
These buffer modes are selected by the

PORT_VTRIP_SEL bit (GPIO_PRTx_PC[24])of the Port
Configuration register. Table 15.

Table 15. INPUT BUFFER MODES

PORT_VTRIP_SEL Input Buffer Mode

0b CMOS

1b LVTTL

The threshold values for each mode can be obtained from
the AXM0F243 datasheet. The output of the input buffer is
connected to the HSIOM for routing to the selected
peripherals. Writing to the HSIOM port select register
(HSIOM_PORT_SELx) selects the peripheral. The digital
input peripherals in the HSIOM, shown in Figure 10, are pin
dependent. See the AXM0F243 datasheet to know the
functions available for each pin.

http://www.onsemi.com/
https://www.onsemi.com/pub/Collateral/AXM0F243-D.PDF
https://www.onsemi.com/pub/Collateral/AXM0F243-D.PDF

AND9836

www.onsemi.com
22

Digital Output Driver
Pins are driven by the digital output driver. It consists of

circuitry to implement different drive modes and slew rate
control for the digital output signals. The peripheral
connects to the digital output driver through the HSIOM; a
particular peripheral is selected by writing to the HSIOM
port select register (HSIOM_PORT_SELx).

In AXM0F243 MCU I/Os are driven with VDDD supply.
Each GPIO pin has ESD diodes to clamp the pin voltage to
the VDDD source. Ensure that the voltage at the pin does not
exceed the I/O supply voltage VDDD and drop below VSSD.
For the absolute maximum and minimum GPIO voltage, see

the AXM0F243 datasheet. The digital output driver can be
enabled and disabled using the DSI signal from the
peripheral or data register (GPIO_PRTx_DR) associated
with the output pin. See High−Speed I/O Matrix to know
about the peripheral source selection for the data and to
enable or disable control source selection.

Drive Modes
Each I/O is individually configurable into one of eight

drive modes using the Port Configuration register,
GPIO_PRTx_PC. Table 16 lists the drive modes. Figure 10
is a simplified output driver diagram that shows the pin view
based on each of the eight drive modes.

Table 16. DRIVE MODE SETTINGS

GPIO_PRTx_PC (‘x’ denotes port number and ‘y’ denotes pin number)

Bit Drive Mode Value Data = 1 Data = 0

3y+2: 3y SEL‘y’ Selects Drive Mode for Pin ‘y’ (0 ≤ y ≤ 7)

High−Impedance Analog 0 High Z High Z

High−impedance Digital 1 High Z High Z

Resistive Pull Up 2 Weak 1 Strong 0

Resistive Pull Down 3 Strong 1 Weak 0

Open Drain, Drives Low 4 High Z Strong 0

Open Drain, Drives High 5 Strong 1 High Z

Strong Drive 6 Strong 1 Strong 0

Resistive Pull Up and Down 7 Weak 1 Weak 0

Vdd

DR
PS

Pin DR
PS

Pin DR
PS

Pin DR
PS

Pin

1. High Impedance Digital

Vdd Vdd

DR
PS Pin

DR
PS Pin DR

PS Pin DR
PS

Pin

Vdd

0. High Impedance Analog 2. Resistive Pull Up 3. Resistive Pull Down

5. Open Drain, Drives High4. Open Drain, Drives Low 6. Strong Drive 7. Resistive Pull Up
and Pull Down

Figure 11. I/O Drive Mode Block Diagram

Vdd

http://www.onsemi.com/
https://www.onsemi.com/pub/Collateral/AXM0F243-D.PDF

AND9836

www.onsemi.com
23

• High−Impedance Analog
High−impedance analog mode is the default reset state;
both output driver and digital input buffer are turned off.
This state prevents an external voltage from causing a
current to flow into the digital input buffer. This drive
mode is recommended for pins that are floating or that
support an analog voltage. High−impedance analog pins
cannot be used for digital inputs. Reading the pin state
register returns a 0x00 regardless of the data register
value. To achieve the lowest device current in low−power
modes, unused GPIOs must be configured to the
high−impedance analog mode.

• High−Impedance Digital
High−impedance digital mode is the standard
high−impedance (High Z) state recommended for digital
inputs. In this state, the input buffer is enabled for digital
input signals.

• Resistive Pull−Up or Resistive Pull−Down
Resistive modes provide a series resistance in one of the
data states and strong drive in the other. Pins can be used
for either digital input or digital output in these modes. If
resistive pull−up is required, a ‘1’ must be written to that
pin’s Data Register bit. If resistive pull−down is required,
a ‘0’ must be written to that pin’s Data Register.
Interfacing mechanical switches is a common application
of these drive modes. The resistive modes are also used to
interface AXM0F243 MCU with open drain drive lines.
Resistive pull−up is used when input is open drain low and
resistive pull−down is used when input is open drain high.

• Open Drain Drives High and Open Drain Drives Low
Open drain modes provide high impedance in one of the
data states and strong drive in the other. The pins can be
used as digital input or output in these modes. Therefore,
these modes are widely used in bi−directional digital
communication. Open drain drive high mode is used
when signal is externally pulled down and open drain
drive low is used when signal is externally pulled high. A
common application for open drain drives low mode is
driving I2C bus signal lines.

• Strong Drive
The strong drive mode is the standard digital output mode
for pins; it provides a strong CMOS output drive in both
high and low states. Strong drive mode pins must not be
used as inputs under normal circumstances. This mode is
often used for digital output signals or to drive external
transistors.

• Resistive Pull−Up and Resistive Pull−Down
In the resistive pull−up and resistive pull−down mode, the
GPIO will have a series resistance in both logic 1 and
logic 0 output states. The high data state is pulled up while
the low data state is pulled down. This mode is used when
the bus is driven by other signals that may cause shorts.

Slew Rate Control
GPIO pins have fast and slow output slew rate options in

strong drive mode; this is configured using PORT_SLOW
bit of the Port Configuration register
(GPIO_PRTx_PC[25]). Slew rate is individually
configurable for each port. This bit is cleared by default and
the port works in fast slew mode. This bit can be set if a slow
slew rate is required. Slower slew rate results in reduced
EMI and crosstalk; hence, the slow option is recommended
for low−frequency signals or signals without strict timing
constraints.

High−Speed I/O Matrix
The high−speed I/O matrix (HSIOM) is a group of

high−speed switches that routes GPIOs to the peripherals
inside the device. As the GPIOs are shared for multiple
functions, HSIOM multiplexes the pin and connects to a
particular peripheral selected by the user. In AXM0F243
MCU, the Smart I/O block bridges the Port 2 and Port 3 pins
to the HSIOM. Other ports connect directly to the
HSIOM.The HSIOM_PORT_SELx register is provided to
select the peripheral. It is a 32−bit wide register available for
each port, with each pin occupying four bits. This register
provides up to 16 different options for a pin as listed in
Table 17.

http://www.onsemi.com/

AND9836

www.onsemi.com
24

Table 17. AXM0F243 MCU PORT SETTINGS

HSIOM_PORT_SELx (‘x’ denotes port number and ‘y’ denotes pin number)

Bits Name (SEL‘y’) Value Description (Selects pin ‘y’ source (0 ≤ y ≤ 7))

4y+3: 4y DR 0 Pin is regular firmware−controlled I/O or connected to dedicated hardware block.

4 Reserved

5 Reserved

AMUXA 6 Pin is connected to AMUXBUS−A.

AMUXB 7 Pin is connected to AMUXBUS−B.

ACTIVE_0 8 Pin−specific Active source #0 (TCPWM Output).

ACTIVE_1 9 Pin−specific Active source #1 (SCB−UART).

ACTIVE_2 10 Pin−specific Active source #2 (SAR ADC).

ACTIVE_3 11 Pin−specific Active source #3 (TCPWM Input, SCB−UART).

12 Reserved

13 Reserved

DEEP_SLEEP_2 14 Pin−specific Deep−Sleep source #2 (SCB−I2C, SWD, LPCOMP).

DEEP_SLEEP_3 15 Pin−specific Deep−Sleep source #3 (SCB−SPI).

NOTE: The Active and Deep−Sleep sources are pin dependent. See the “Pinouts” section of the AXM0F243 datasheet for more details on
the features supported by each pin.

Smart I/O
The Smart I/O block adds programmable logic to an I/O

port. This programmable logic integrates board−level
Boolean logic functionality such as AND, OR, and XOR
into the port. The Smart I/O block has these features:
• Integrate board−level Boolean logic functionality into a

port
• Ability to preprocess HSIOM input signals from the

GPIO port pins
• Ability to post−process HSIOM output signals to the

GPIO port pins
• Support in all device power modes

• Integrate closely to the I/O pads, providing shortest signal
paths with programmability

The AXM0F243 MCU device supports Smart I/O on two
ports – Port 2 and Port 3. The register nomenclature
‘PRGIO_PRT0’ denotes Port 2 Smart I/O registers,
‘PRGIO_PRT1’ denotes Port 3 Smart I/O registers. For a
general Smart I/O register description, the ‘PRGIO_PRTx’
nomenclature will be used.

Overview
The Smart I/O block is positioned in the signal path

between the HSIOM and the I/O port. The HSIOM
multiplexes the output signals from fixed−function
peripherals and CPU to a specific port pin and vice−versa.
The Smart I/O block is placed on this signal path, acting as
a bridge that can process signals from port pins and HSIOM,
as shown in Figure 12.

HSIOM I/O PortSmart I/O

GPIO output
Signals

GPIO input
Signals

HSIOM output
Signals

HSIOM input
Signals

12

3

4

Figure 12. Smart I/O Interface

http://www.onsemi.com/
https://www.onsemi.com/pub/Collateral/AXM0F243-D.PDF

AND9836

www.onsemi.com
25

The signal paths supported through the Smart I/O block as
shown in Figure 12 are as follows:

1. Implement self−contained logic functions that
directly operate on port I/O signals

2. Implement self−contained logic functions that
operate on HSIOM signals

3. Operate on and modify HSIOM output signals and
route the modified signals to port I/O signals

4. Operate on and modify port I/O signals and route
the modified signals to HSIOM input signals

The following sections discuss the Smart I/O block
components, routing, and configuration in detail. In these
sections, GPIO signals (io_data) refer to the input/output
signals from the I/O port; device or chip (chip_data) signals
refer to the input/output signals from HSIOM.

Block Components
The internal logic of the Smart I/O includes these

components:
• Clock/reset component

• Synchronizers

• LUT3 components

• Data unit component

Clock and Reset
The clock and reset component selects the Smart I/O

block’s clock (clk_block) and reset signal (rst_block_n). A
single clock and reset signal is used for all components in the
block. The clock and reset sources are determined by the
CLOCK_SRC[4:0] bit field of the PRGIO_PRTx_CTL
register. The selected clock is used for the synchronous logic
in the block components, which includes the I/O input
synchronizers, LUT, and data unit components. The selected
reset is used to asynchronously reset the synchronous logic
in the LUT and data unit components.

Note that the selected clock (clk_block) for the block’s
synchronous logic is not phase−aligned with other

synchronous logic in the device, operating on the same
clock. Therefore, communication between Smart I/O and
other synchronous logic should be treated as asynchronous.

The following clock sources are available for selection:
• GPIO input signals “io_data_in[7:0]”. These clock

sources have no associated reset.
• HSIOM output signals “chip_data[7:0]”. These clock

sources have no associated reset.
• The Smart I/O clock (clk_prgio). This is derived from the

system clock (clk_sys) using a peripheral clock divider.
See the Clocking System chapter on page 36 for details on
peripheral clock dividers. This clock is only available in
Active and Sleep power modes. The clock can have one
out of two associated resets: rst_sys_act_n and
rst_sys_dpslp_n. These resets determine in which system
power modes the block synchronous state is reset; for
example, rst_sys_act_n is intended for Smart I/O
synchronous functionality in the Active power mode and
reset is activated in the Deep−Sleep power mode.

• The low−frequency (40 kHz) system clock (clk_lf). This
clock is available in Deep−Sleep power mode. This clock
has an associated reset, rst_lf_dpslp_n.
When the block is enabled, the selected clock (clk_block)

and associated reset (rst_block_n) are released to the fabric
components. When the fabric is disabled, no clock is
released to the fabric components and the reset is activated
(the LUT and data unit components are set to the reset value
of ‘0’).

The I/O input synchronizers introduce a delay of two
clk_block cycles (when synchronizers are enabled). As a
result, in the first two cycles, the block may be exposed to
stale data from the synchronizer output. Hence, during the
first two clock cycles, the reset is activated and the block is
in bypass mode.

Table 18. AXM0F243 MCU PORT SETTINGS

Register[BIT_POS] Bit Name Description

PRGIO_PRT0_CTL[12:8] CLK_SRC[4:0] Clock (clk_block)/reset (rst_block_n) source selection: “0”: io_data[0]/‘1’
...
“7”: io_data[7]/‘1’ “8”: chip_data[0]/‘1’
...
“15”: chip_data[7]/‘1’
“16”: clk_prgio/rst_sys_act_n; asserts reset in any power mode other than Active; that is,
Smart I/O is active only in Active power mode with clock from the peripheral divider.
“17”: clk_prgio/rst_sys_dpslp_n. Smart I/O is active in all power modes with clock from the
peripheral divider. However, the clock will not be active in Deep−Sleep power mode.
“19”: clk_lf/rst_lf_dpslp_n. Smart I/O is active in all power modes with clock from ILO.
“20” − “30”: Clock source is a constant ‘0’. Any of these clock sources should be selected
when the IP is disabled to ensure low power consumption.
“31”: clk_sys/‘1’. This selection is NOT intended for “clk_sys” operation. However, for
asynchronous operation, three “clk_sys” cycles after enabling the IP, the IP is fully functional
(reset is de−activated). To be used for asynchronous (clockless) block functionality.

http://www.onsemi.com/

AND9836

www.onsemi.com
26

Synchronizer
Each GPIO input signal and device input signal (HSIOM

input) can be used either asynchronously or synchronously.
To use the signals synchronously, a double flip−flop
synchronizer, as shown in Figure 13, is placed on both these
signal paths to synchronize the signal to the Smart I/O clock

(clk_block). The synchronization for each pin/input is
enabled or disabled by setting or clearing the
IO_SYNC_EN[i] bit field for GPIO input signal and
CHIP_SYNC_EN[i] for HSIOM signal in the
PRGIO_PRT0_SYNC_CTL register, where ‘i’ is the pin
number.

Clock Synchronizer

To SMARTIO
block Q D Q D io_data_in[i] Or

chip_data_in[i]

clk clk

clk_block

SYNC_CTL.IO_SYNC_EN[i] Or
SYNC_CTL.CHIP_SYNC_EN[i]

Figure 13. Smart I/O Clock Synchronizer

LUT3
Each Smart I/O block contains eight lookup table (LUT3)

components. The LUT3 component consists of a
three−input LUT and a flip−flop. Each LUT3 block takes
three input signals and generates an output based on the
configuration set in the PRGIO_PRTx_LUT_CTLy register
(y denotes the LUT3 number). For each LUT3, the
configuration is determined by an 8−bit lookup vector
LUT[7:0] and a 2−bit opcode OPC[1:0] in the
PRGIO_PRTx_LUT_CTLy register. The 8−bit vector is
used as a lookup table for the three input signals. The 2−bit
opcode determines the usage of the flip−flop. The LUT3
configuration for different opcode is shown in Figure 14.

PRGIO_PRTx_LUT_SELy registers select the three input
signals (tr0_in, tr1_in and tr2_in) going into each LUT3.
The input can come from the following sources:
• Data unit output

• Other LUT3 output signals (tr_out)

• HSIOM output signals (chip_data[7:0])

• GPIO input signals (io_data[7:0])

LUT_TR0_SEL[3:0] bits of the
PRGIO_PRTx_LUT_SELy register selects the tr0_in signal
for the yth LUT3. Similarly, LUT_TR1_SEL[3:0] bits and
LUT_TR2_SEL[3:0] bits select the tr1_in and tr2_in signals
respectively. See Table 19 for details.

Table 19. LUT3 REGISTER CONTROL

Register[BIT_POS] Bit Name Description

PRGIO_PRTx_LUT_CTLy[7:0] LUT[7:0] LUT configuration. Depending on the LUT opcode (LUT_OPC), the internal
state, and the LUT input signals tr0_in, tr1_in, and tr2_in, the LUT configura-
tion is used to determine the LUT output signal and the next sequential state.

PRGIO_PRTx_LUT_CTLy[9:8] LUT_OPC[1:0] LUT opcode specifies the LUT operation as illustrated in Figure 14.

PRGIO_PRTx_LUT_SELy[3:0] LUT_TR0_SEL[3:0] LUT input signal “tr0_in” source selection:
“0”: Data unit output
“1”: LUT 1 output
“2”: LUT 2 output
“3”: LUT 3 output
“4”: LUT 4 output
“5”: LUT 5 output
“6”: LUT 6 output
“7”: LUT 7 output
“8”: chip_data[0] (for LUTs 0, 1, 2, 3); chip_data[4] (for LUTs 4, 5, 6, 7)
“9”: chip_data[1] (for LUTs 0, 1, 2, 3); chip_data[5] (for LUTs 4, 5, 6, 7)
“10”: chip_data[2] (for LUTs 0, 1, 2, 3); chip_data[6] (for LUTs 4, 5, 6, 7)
“11”: chip_data[3] (for LUTs 0, 1, 2, 3); chip_data[7] (for LUTs 4, 5, 6, 7)
“12”: io_data[0] (for LUTs 0, 1, 2, 3); io_data[4] (for LUTs 4, 5, 6, 7)
“13”: io_data[1] (for LUTs 0, 1, 2, 3); io_data[5] (for LUTs 4, 5, 6, 7)
“14”: io_data[2] (for LUTs 0, 1, 2, 3); io_data[6] (for LUTs 4, 5, 6, 7)
“15”: io_data[3] (for LUTs 0, 1, 2, 3); io_data[7] (for LUTs 4, 5, 6, 7)

http://www.onsemi.com/

AND9836

www.onsemi.com
27

Table 19. LUT3 REGISTER CONTROL

Register[BIT_POS] DescriptionBit Name

PRGIO_PRTx_LUT_SELy[11:8] LUT_TR1_SEL[3:0] LUT input signal “tr1_in” source selection: “0”: LUT 0 output
“1”: LUT 1 output
“2”: LUT 2 output
“3”: LUT 3 output
“4”: LUT 4 output
“5”: LUT 5 output
“6”: LUT 6 output
“7”: LUT 7 output
“8”: chip_data[0] (for LUTs 0, 1, 2, 3); chip_data[4] (for LUTs 4, 5, 6, 7)
“9”: chip_data[1] (for LUTs 0, 1, 2, 3); chip_data[5] (for LUTs 4, 5, 6, 7)
“10”: chip_data[2] (for LUTs 0, 1, 2, 3); chip_data[6] (for LUTs 4, 5, 6, 7)
“11”: chip_data[3] (for LUTs 0, 1, 2, 3); chip_data[7] (for LUTs 4, 5, 6, 7)
“12”: io_data[0] (for LUTs 0, 1, 2, 3); io_data[4] (for LUTs 4, 5, 6, 7)
“13”: io_data[1] (for LUTs 0, 1, 2, 3); io_data[5] (for LUTs 4, 5, 6, 7)
“14”: io_data[2] (for LUTs 0, 1, 2, 3); io_data[6] (for LUTs 4, 5, 6, 7)
“15”: io_data[3] (for LUTs 0, 1, 2, 3); io_data[7] (for LUTs 4, 5, 6, 7)

PRGIO_PRTx_LUT_SELy[19:16] LUT_TR2_SEL[3:0] LUT input signal “tr2_in” source selection. Encoding is the same as for
LUT_TR1_SEL.

Figure 14. Smart I/O LUT3 Configuration

8

8

8

tr0_i-
ntr1_i-
n

tr2_i-
n

LUT tr_out

LUT[7:0]

OPC[1:0] = 1

tr0_in

tr1_i-
ntr2_i-
n

LUT tr_out

clk_block

LUT[7:0]

OPC[1:0] = 1

OPC[1:0] = 2

tr0_i-
ntr1_i-
n

tr2_i-
n

LUT tr_out

LUT[7:0]

clk_block

tr2_in

tr1_i-
n

tr0_i-
n

LUT[5]
LUT[4]

LUT[3]
LUT[2]

LUT[1]
LUT[0]

Enable
OPC[1:0] = 3

clk_block

tr_outSet
Clr
Clk

http://www.onsemi.com/

AND9836

www.onsemi.com
28

Data Unit
Each Smart I/O block includes a data unit (DU)

component. The data unit consists of a simple 8−bit
datapath. It is capable of performing simple increment,
decrement, increment/decrement, shift, and AND/OR
operations. The operation performed by the DU is selected
using a 4−bit opcode DU_OPC[3:0] bit field in the
PRGIO_PRTx_DU_CTL register.

The data unit component supports up to three input trigger
signals (tr0_in, tr1_in, tr2_in) similar to the LUT3
component. These signals are used to initiate an operation
defined by the DU opcode. In addition, the data unit also
includes two 8−bit input data (data0_in[7:0] and
data1_in[7:0]) that are used to initialize the 8−bit internal
state (data[7:0]) or to provide a reference. The input to these
8−bit data can come from these sources:

• Constant ‘0x00’
• io_data_in[7:0]
• chip_data_in[7:0]
• DATA[7:0] bit field of PRGIO_PRTx_DATA register

The trigger signals are selected using the
DU_TRx_SEL[3:0] bit field of the
PRGIO_PRTx_DU_SEL register. The
DUT_DATAx_SEL[1:0] bits of the
PRGIO_PRTx_DU_SEL register selects the 8−bit input
data source. The size of the DU (number of bits used by the
datapath) is defined by the DU_SIZE[2:0] bits of the
PRGIO_PRTx_DU_CTL register. See Table 20 for register
control details.

Table 20. DATA UNIT REGISTER CONTROL

Register[BIT_POS] Bit Name Description

PRGIO_PRTx_DU_CTL[2:0] DU_SIZE[2:0] Size/width of the data unit (in bits) is DU_SIZE+1. For example, if DU_SIZE is7,
the width is 8 bits.

PRGIO_PRTx_DU_CTL[11:8] DU_OPC[3:0] Data unit opcode specifies the data unit operation:
“1”: INCR
“2”: DECR
“3”: INCR_WRAP
“4”: DECR_WRAP
“5”: INCR_DECR
“6”: INCR_DECR_WRAP
“7”: ROR
“8”: SHR
“9”: AND_OR
“10”: SHR_MAJ3
“11”: SHR_EQL
Otherwise: Undefined.

PRGIO_PRTx_DU_SEL[3:0] DU_TR0_SEl[3:0] Data unit input signal “tr0_in” source selection:
“0”: Constant ‘0’.
“1”: Constant ‘1’.
“2”: Data unit output.
“10 − 3”: LUT 7 − 0 outputs.
Otherwise: Undefined.

PRGIO_PRTx_DU_SEL[11:8] DU_TR1_SEl[3:0] Data unit input signal “tr1_in” source selection. Encoding same as
DU_TR0_SEL

PRGIO_PRTx_DU_SEL[19:16] DU_TR2_SEl[3:0] Data unit input signal “tr2_in” source selection. Encoding same as
DU_TR0_SEL

PRGIO_PRTx_DU_SEL[25:24] DU_DATA0_SEL[1:0] Data unit input data “data0_in” source selection:
“0”: 0x00
“1”: chip_data[7:0]. “2”: io_data[7:0].
“3”: PRGIO_PRTx_DATA.DATA[7:0] register field.

PRGIO_PRTx_DU_SEL[29:28] DU_DATA1_SEL[1:0] Data unit input signal “tr1_in” source selection. Encoding same as
DU_TR0_SEL

PRGIO_PRTx_DATA[7:0] DATA[7:0] Data unit input data source.

The data unit generates a single output trigger signal
(“tr_out”). The internal state (du_data[7:0]) is captured in
flip−flops and requires clk_block.

The following pseudo code describes the various datapath
operations supported by the DU opcode. Note that “Comb”

describes the combinatorial functionality – that is,
functionalities that operate independent of previous output
states. “Reg” describes the registered functionality – that is,
functionalities that operate on inputs and previous output
states (registered using flip−flops).

http://www.onsemi.com/

AND9836

www.onsemi.com
29

// The following is shared by all operations.
mask = (2 ^ (DU_SIZE+1) - 1)
data_eql_data1_in= (data & mask) == (data1_in & mask));
data_eql_0 = (data & mask) == 0);
data_incr = (data + 1) & mask;
data_decr = (data - 1) & mask;
data0_masked = data_in0 & mask;
// INCR operation: increments data by 1 from an initial value (data0) until it reaches a
// final value (data1).
Comb:tr_out = data_eql_data1_in;
Reg: data <= data;

if (tr0_in) data <= data0_masked; //tr0_in is reload signal - loads masked
data0

// into data
else if (tr1_in) data <= data_eql_data1_in ? data : data_incr; //increment data�until

//�it�equals�data1

// INCR_WRAP operation: operates similar to INCR but instead of stopping at data1, it wraps
// around to data0.
Comb:tr_out = data_eql_data1_in;
Reg: data <= data;

if (tr0_in) data <= data0_masked;
else if (tr1_in) data <= data_eql_data1_in ? data0_masked : data_incr;

// DECR operation: decrements data from an initial value (data0) until it reaches 0.
Comb:tr_out = data_eql_0;
Reg: data <= data;

if (tr0_in) data <= data0_masked;
else if (tr1_in) data <= data_eql_0 ? data : data_decr;

// DECR_WRAP operation: works similar to DECR. Instead of stopping at 0, it wraps around to
// data0.
Comb:tr_out = data_eql_0;
Reg: data <= data;

if (tr0_in) data <= data0_masked;
else if (tr1_in) data <= data_eql_0 ? data0_masked: data_decr;

// INCR_DECR operation: combination of INCR and DECR. Depending on trigger signals it�either
// starts incrementing or decrementing. Increment stops at data1 and decrement stops at 0.
Comb:tr_out = data_eql_data1_in | data_eql_0;
Reg: data <= data;

if (tr0_in) data <= data0_masked; // Increment operation takes precedence over
// decrement when both signal are available

else if (tr1_in) data <= data_eql_data1_in ? data : data_incr;
else if (tr2_in) data <= data_eql_0 ? data : data_decr;

// INCR_DECR_WRAP operation: same functionality as INCR_DECR with wrap around to data0 on
// touching the limits.
Comb:tr_out = data_eql_data1_in | data_eql_0;
Reg: data <= data;

if (tr0_in) data <= data0_masked;
else if (tr1_in) data <= data_eql_data1_in ? data0_masked : data_incr;
else if (tr2_in) data <= data_eql_0 ? data0_masked : data_decr;

// ROR operation: rotates data right and LSB is sent out. The data for rotation�is�taken�from
// data0.
Comb:tr_out = data[0];
Reg: data <= data;

if (tr0_in) data <= data0_masked;
else if (tr1_in) {

data <= {0, data[7:1]} & mask; //Shift right operation
data[du_size] <= data[0]; //Move the data[0] (LSB) to MSB

}

// SHR operation: performs shift register operation. Initial data (data0) is shifted out�and
// data on tr2_in is shifted in.

http://www.onsemi.com/

AND9836

www.onsemi.com
30

Comb:tr_out = data[0];
Reg: data <= data;

if (tr0_in) data <= data0_masked;
else if (tr1_in) {

data <= {0, data[7:1]} & mask; //Shift right operation
data[du_size] <= tr2_in; //tr2_in Shift in operation

}

// SHR_MAJ3 operation: performs the same functionality as SHR. Instead of sending out the
// shifted out value, it sends out a '1' if in the last three samples/shifted-out values
// (data[0]), the signal high in at least two samples. otherwise, sends a '0'. This�function
// sends out the majority of the last three samples.
Comb:tr_out = (data == 0x03)

| (data == 0x05)
| (data == 0x06)
| (data == 0x07);

Reg: data <= data;
if (tr0_in) data <= data0_masked;
else if (tr1_in) {

data <= {0, data[7:1]} & mask;
data[du_size] <= tr2_in;

}

// SHR_EQL operation: performs the same operation as SHR. Instead of shift-out,�the�output�is
// a comparison result (data0 == data1). Comb:tr_out = data_eql_data1_in;
Reg: data <= data;

if (tr0_in) data <= data0_masked;
else if (tr1_in) {

data <= {0, data[7:1]} & mask;
data[du_size] <= tr2_in;

}

// AND_OR operation: ANDs data1 and data0 along with mask; then, ORs all the bits of the
// ANDed output.
Comb:tr_out = | (data & data1_in & mask);
Reg: data <= data;

if (tr0_in) data <= data0_masked;

http://www.onsemi.com/

AND9836

www.onsemi.com
31

Routing
The Smart I/O block includes many switches that are used

to route the signals in and out of the block and also between
various components present inside the block. The routing
switches are handled through the
PRTGIO_PRTx_LUT_SELy and PRGIO_PRTx_DU_SEL

registers. Refer to the AND9835 AXM0F243 MCU
Registers for details. The Smart I/O internal routing is
shown in Figure 15. In the figure, note that LUT7 to LUT4
operate on io_data/chip_data[7] to io_data/chip_data[4]
whereas LUT3 to LUT0 operate on io_data/chip_data[3] to
io_data/chip_data[0].

tr
_o

ut

tr
0

_i
n

tr
1

_i
n

tr
2

_i
n

da
ta

_i
n0

da
ta

_i
n1

tr
_o

ut
tr

0
_i

n
tr

1_
in

tr
2_

in

tr
_o

ut
tr

0_
in

tr
1_

in
tr

2
_i

n

tr
_o

ut
tr

0
_i

n
tr

1
_i

n
tr

2
_i

n

tr
_o

ut
tr

0
_i

n
tr

1
_i

n
tr

2
_i

n

tr
_o

ut
tr

0_
in

tr
1_

in
tr

2_
in

tr
_o

ut
tr

0
_i

n
tr

1
_i

n
tr

2
_i

n

tr
_o

ut
tr

0
_i

n
tr

1
_i

n
tr

2
_i

n

tr
_o

ut
tr

0
_i

n
tr

1
_i

n
tr

2
_i

n

8

8

8

0x00

SMARTIO_PRTx_DATA.DATA[7:0]

chip_data[7:0]

8

io_data[7:0]

rst_block_n

clk_block

Clock and
Reset

Data Unit

clk_smartio

clk_sys

clk_lf

smartio_data[7]
chip_data[7]

smartio_data[6]
chip_data[6]

smartio_data[5]
chip_data[5]

smartio_data[4]
chip_data[4]

smartio_data[3]
chip_data[3]

smartio_data[2]
chip_data[2]

smartio_data[1]
chip_data[1]

smartio_data[0]
chip_data[0]

Sync

Sync

Sync

Sync

Sync

Sync

Sync

Sync

Sync

Sync

Sync

Sync

Sync

Sync

Sync

Sync

chip_data[7]

chip_data[6]

chip_data[5]

chip_data[4]

chip_data[3]

chip_data[2]

chip_data[1]

chip_data[0]

io_data[7]
smartio_data[7]

io_data[6]
smartio_data[6]

io_data[5]
smartio_data[5]

io_data[4]
smartio_data[4]

io_data[3]
smartio_data[3]

io_data[2]
smartio_data[2]

io_data[1]
smartio_data[1]

io_data[0]
smartio_data[0]

1’b0
1’b1

LUT0 LUT1 LUT2 LUT3 LUT4 LUT5 LUT6 LUT7
clk_block
Various signals
8-bit wide data bus
Programmable Switch (ONLY ONE of the switches
along a vertical line can be closed at a time)
Closed switch connecting a bit of the 8-bit data bus

Figure 15. Smart I/O Routing

−

Operation
The Smart I/O block should be configured and operated

as follows:
1. Before enabling the block, all the components

should be configured and the routing should be
selected, as explained in“Block Components” on
page 25.

2. In addition to configuring the components and
routing, some block level settings need to be
configured correctly for desired operation.
a. Bypass control: The Smart I/O path can be
bypassed for a particular GPIO signal by setting
the BYPASS[i] bit field in the PRGIO_PRTx_CTL
register. When bit ‘i’ is set in the BYPASS[7:0] bit
field, the ith GPIO signal is bypassed to the
HSIOM signal path directly – Smart I/O logic will

not be present in that signal path. This is useful
when the Smart I/O functionality is required only
on select I/Os.
b. Pipelined trigger mode: The LUT3 input
multiplexers and the LUT3 component itself do
not include any combinatorial loops. Similarly, the
data unit also does not include any combinatorial
loops. However, when one LUT3 interacts with the
other or to the data unit, inadvertent combinatorial
loops are possible. To overcome this limitation, the
PIPELINE_EN bit field of the
PRGIO_PRTx_CTL register is used. When set, all
the outputs (LUT3 and data unit) are registered
(flopped) before branching out to other
components. The output will be unflopped when
the PIPELINE_EN

bit is cleared.

http://www.onsemi.com/
https://www.onsemi.com/pub/Collateral/AND9835-D.PDF
https://www.onsemi.com/pub/Collateral/AND9835-D.PDF

AND9836

www.onsemi.com
32

3. After the Smart I/O block is configured for the
desired functionality, the block can be enabled by
setting the ENABLED bit field of the
PRGIO_PRTx_CTL register. If disabled, the Smart
I/O block is put in bypass mode, where the GPIO

signals are directly controlled by the HSIOM
signals and vice−versa. The Smart I/O block must
be configured; that is, all register settings must be
updated before enabling the block to prevent
glitches during register updates.

Table 21. SMART I/O BLOCK CONTROLS

Register[BIT_POS] Bit Name Description

PRGIO_PRTx_CTL[25] PIPELINE_EN Enable for pipeline register:
‘0’: Disabled (register is bypassed).
‘1’: Enabled

PRGIO_PRTx_CTL[31] ENABLED Enable Smart I/O. Should only be set to ‘1’ when the Smart I/O is completely
configured:
‘0’: Disabled (signals are bypassed; behavior as if BYPASS[7:0] is 0xFF). When
disabled, the block (data unit and LUTs) reset is activated.
If the block is disabled:
− The PIPELINE_EN register field should be set to ‘1’, to ensure low power
consumption.
− The CLOCK_SRC register field should be set to 20 to 30 (clock is constant
‘0’), to ensure low power consumption.
‘1’: Enabled. When enabled, it takes three “clk_block” clock cycles until the
block reset is deactivated and the block becomes fully functional. This action
ensures that the I/O pins‘ input synchronizer states are flushed when the block
is fully functional.

PRGIO_PRTx_CTL[7:0] BYPASS[7:0] Bypass of the Smart I/O, one bit for each I/O pin: BYPASS[i] is for I/O pin i.
When ENABLED is ‘1’, this field is used. When ENABLED is ‘0’, this field is not
used and Smart I/O is always bypassed.
‘0’: No bypass (Smart I/O is present in the signal path)
‘1’: Bypass (Smart I/O is absent in the signal path)

I/O State on Power Up
During power up all the GPIOs are in high−impedance

analog state and the input buffers are disabled. During run
time, GPIOs can be configured by writing to the associated
registers. Note that the pins supporting debug access port
(DAP) connections (SWD lines) are always enabled as
SWD lines during power up. However, the DAP connection

can be disabled or reconfigured for general−purpose use
through HSIOM. However, this reconfiguration takes place
only after the device boots and start executing code.

Behavior in Low−Power Modes
Table 22 shows the status of GPIOs in low−power modes.

Table 22. GPIO IN LOW−POWER MODES

Low−Power Mode Status

Sleep • GPIOs are active and can be driven by peripherals such as CTBm, SAR ADC, TCPWM, SCBs, and low−power
comparators, which can work in sleep mode.
• Input buffers are active; thus an interrupt on any I/O can be used to wake up the CPU.
• AMUXBUS connections are available.

Deep−Sleeep • GPIO output pin states are latched and remain in the frozen state, except the I2C and SPI pins. SCB (I2C and
 SPI) block can work in the deep−sleep mode and can wake up the CPU on address match or SPI slave select
..event. The low−power comparator can receive signals from its dedicated pins and can wake up the CPU. CTBm
is also functional in this mode with dedicated pins.
• Input buffers are also active in this mode; pin interrupts are functional.
• AMUXBUS connections are not available.

http://www.onsemi.com/

AND9836

www.onsemi.com
33

Interrupt
In the AXM0F243 MCU device, all the port pins have the

capability to generate interrupts. As shown in Figure 16, the
pin signal is routed to the interrupt controller through the
GPIO Edge Detect block.

Figure 16 shows the GPIO Edge Detect block
architecture.

50 ns Glitch Filter

Edge Detector

Edge Detector

Edge Detector

Edge Detector

Edge Detector

Edge Detector

Edge Detector

Edge Detector

Interrupt
Signal

Edge Detector

Pin 5

Pin 4

Pin 3

Pin 2

Pin 1

Pin 7

Pin 6

Pin 0

Figure 16. GPIO Edge Detect Block Architecture

An edge detector is present at each pin. It is capable of
detecting rising edge, falling edge, and both edges without
reconfiguration. The edge detector is configured by writing
into the EDGE_SEL bits of the Port Interrupt Configuration
register, GPIO_PRTx_INTR_CFG, as shown in Table 23.

Table 23. EDGE DETECTOR CONFIGURATION

EDGE_SEL Configuration

00 Interrupt is disabled

01 Interrupt on Rising Edge

10 Interrupt on Falling Edge

11 Interrupt on Both Edges

Besides the pins, edge detector is also present at the glitch
filter output. This filter can be used on one of the pins of a
port. The pin is selected by writing to the FLT_SEL field of
the GPIO_PRTx_INTR_CFG register as shown in Table 24.

Table 24. GLITCH FILTER INPUT SELECTION

FLT_SEL Selected Pin

000 Pin 0 is selected

001 Pin 1 is selected

010 Pin 2 is selected

011 Pin 3 is selected

100 Pin 4 is selected

101 Pin 5 is selected

110 Pin 6 is selected

111 Pin 7 is selected

The edge detector outputs of a port are ORed together and
then routed to the interrupt controller (NVIC in the CPU
subsystem). Thus, there is only one interrupt vector per port.
On a pin interrupt, it is required to know which pin caused
an interrupt. This is done by reading the Port Interrupt Status
register, GPIO_PRTx_INTR. This register not only includes
the information on which pin triggered the interrupt, it also
includes the pin status; it allows the CPU to read both
information in a single read operation. This register has one
more important use – to clear the interrupt. Writing ‘1’ to the
corresponding status bit clears the pin interrupt. It is
important to clear the interrupt status bit; otherwise, the
interrupt will occur repeatedly for a single trigger or respond
only once for multiple triggers, which is explained later in
this section. Also, note that when the Port Interrupt Control
Status register is read when an interrupt is occurring on the
corresponding port, it can result in the interrupt not being
properly detected. Therefore, when using GPIO interrupts,
it is recommended to read the status register only inside the
corresponding interrupt service routine and not in any other
part of the code. Table 25 shows the Port Interrupt Status
register bit fields.

Table 25. PORT INTERRUPT STATUS REGISTER

GPIO_PRTx_INTR Description

0000b to 0111b Interrupt status on pin 0 to pin 7. Writing ‘1’
to the corresponding bit clears the interrupt

1000b Interrupt status from the glitch filter

10000b to 10111 Pin 0 to Pin 7 status

11000b Glitch filter output status

The edge detector block output is routed to the Interrupt
Source Multiplexer shown in Figure 6 on page 12, which
gives an option of Level and Rising Edge detect. If the Level
option is selected, an interrupt is triggered repeatedly as long
as the Port Interrupt Status register bit is set. If the Rising
Edge detect option is selected, an interrupt is triggered only
once if the Port Interrupt Status register is not cleared. Thus,
it is important to clear the interrupt status bit if the Edge
Detect block is used.

http://www.onsemi.com/

AND9836

www.onsemi.com
34

Peripheral Connections

Firmware Controlled GPIO
See Table 17 to know the HSIOM settings for a firmware

controlled GPIO. GPIO_PRTx_DR is the data register used
to read and write the output data for the GPIOs. A write
operation to this register changes the GPIO output to the
written value. Note that a read operation reflects the output
data written to this register and not the current state of the
GPIOs. Using this register, read−modify−write sequences
can be safely performed on a port that has both input and
output GPIOs.

In addition to the data register, three other registers –
GPIO_PRTx_DR_SET, GPIO_PRTx_DR_CLR, and
GPIO_PRTx_INV – are provided to set, clear, and invert the
output data respectively of a specific pin in a port without
affecting other pins. Writing ‘1’ into these registers will set,
clear, or invert; writing ‘0’ will have no affect on the pin
status.

GPIO_PRTx_PS is the I/O pad register that provides the
state of the GPIOs when read. Writes to this register have no
effect.

Analog I/O
Analog resources, such as LPCOMP, SARMUX, and

CTBm, which require low−impedance routing paths have
dedicated pins. Dedicated analog pins provide direct
connections to specific analog blocks. They help improve
performance and should be given priority over other pins
when using these analog resources. See the AXM0F243
datasheet for details on these dedicated pins.

To configure a GPIO as a dedicated analog I/O, it should
be configured in high−impedance analog mode (see Table
16) and the respective connection should be enabled in the
specific analog resource. This can be done via registers
associated with the respective analog resources.

To configure a GPIO as an analog pin connecting to
AMUXBUS, it should be configured in high−impedance
analog mode and then routed to AMUXBUS using the
HSIOM_PORT_SELx register.

Serial Communication Block (SCB)
SCB, which can be configured as UART, I2C, and SPI, has

dedicated connections to the pin. See the AXM0F243
datasheet for details on these dedicated pins. When the
UART and SPI mode is used, the SCB controls the digital
output buffer drive mode for the input pin to keep the pin in
the high−impedance state. That is, the SCB block disables
the output buffer at the UART Rx pin and MISO pin when
configured as SPI master, and MOSI and select line when
configured as SPI slave. This functionality overrides the
drive mode settings, which is done using the
GPIO_PRTx_PC register.

Timer, Counter, and Pulse Width Modulator (TCPWM)
Block

TCPWM has dedicated connections to the pin. See the
AXM0F243 datasheet for details on these dedicated pins.
Note that when the TCPWM block inputs such as start and
stop are taken from the pins, the drive mode can be only
high−z digital because the TCPWM block disables the
output buffer at the input pins.

http://www.onsemi.com/
https://www.onsemi.com/pub/Collateral/AXM0F243-D.PDF
https://www.onsemi.com/pub/Collateral/AXM0F243-D.PDF
https://www.onsemi.com/pub/Collateral/AXM0F243-D.PDF
https://www.onsemi.com/pub/Collateral/AXM0F243-D.PDF
https://www.onsemi.com/pub/Collateral/AXM0F243-D.PDF

AND9836

www.onsemi.com
35

Registers

Table 26. GPIO IN LOW−POWER MODES

Name Description

GPIO_PRTx_DR Port Output Data Register

GPIO_PRTx_DR_SET Port Output Data Set Register

GPIO_PRTx_DR_CLR Port Output Data Clear Register

GPIO_PRTx_DR_INV Port Output Data Inverting Register

GPIO_PRTx_PS Port Pin State Register − Reads the logical pin state of I/O

GPIO_PRTx_PC Port Configuration Register − Configures the output drive mode, input threshold, and slew rate

GPIO_PRTx_PC2 Port Secondary Configuration Register − Configures the input buffer of I/O pin

GPIO_PRTx_INTR_CFG Port Interrupt Configuration Register

GPIO_PRTx_INTR Port Interrupt Status Register

HSIOM_PORT_SELx HSIOM Port Selection Register

PRGIO_PRTx_CTL Smart I/O port control register

PRGIO_PRTx_SYNC_CTL Smart I/O Synchronization control register

PRGIO_PRTx_LUT_SELy Smart I/O yth LUT component input selection register

PRGIO_PRTx_LUT_CTLy Smart I/O yth LUT component control register

PRGIO_PRTx_DU_SEL Smart I/O data unit input selection register

PRGIO_PRTx_DU_CTL Smart I/O data unit control register

PRGIO_PRTx_DATA Smart I/O data unit input data source register

NOTE: The ‘x’ in the GPIO register name denotes the port number. For example, GPIO_PTR1_DR is the Port 1 output data register. The
‘x’ in the Smart I/O register name denotes the Smart I/O port number. The Smart I/O port number and the actual port number may
vary. See Smart I/O on page 24 for details.

http://www.onsemi.com/

AND9836

www.onsemi.com
36

Clocking System
The AXM0F243 MCU clock system includes these clock

resources:
• Two internal clock sources:

♦ 24 – 48 MHz internal main oscillator (IMO) with ±2
percent accuracy across all frequencies with trim

♦ 40−kHz internal low−speed oscillator (ILO) with
±60 percent accuracy with trim (can be calibrated
using the IMO)

• Three external clock sources:
♦ External clock (EXTCLK) generated using a signal

from an I/O pin
♦ External 32−kHz watch crystal oscillator (WCO)

• High−frequency clock (HFCLK) of up to 48 MHz,
selected from IMO, external clock

• Low−frequency clock (LFCLK) sourced by ILO or WCO

• Dedicated prescaler for system clock (SYSCLK) of up to
48 MHz sourced by HFCLK

• Six 16−bit peripheral clock dividers

• Three 16.5 fractional dividers for accurate clock
generation

• Thirteen digital and analog peripheral clocks

Block Diagram
Figure 17 gives a generic view of the clocking system in

AXM0F243 MCU devices.

ILO

WCO

IMO

EXTCL

WDT
counters

HFCLK
select MUX

H
F
C
L
K

Pre−divider
(2, 4, 8)

S YSCL K
Prescaler

Peripheral Dividers

Divider 0 (/1 6)

Divider 5 (/1 6)

Fractional
Divider 0 (/1 6.5)

Fractional
Divider 2 (/1 6.5)

PER12_CLK

PER0_CLK

SYSCLK

HFCCLK

LFSCLK

Figure 17. Clocking System Block Diagram

The clock sources in the device are IMO, EXTCLK,
WCO, and ILO, as shown in Figure 17. The HFCLK mux
selects the HFCLK source from the EXTCLK or the IMO.
The HFCLK frequency can be a maximum of 48 MHz.

Clock Sources

Internal Main Oscillator
The internal main oscillator (IMO) is an accurate,

high−speed internal (crystal−less) oscillator that is available
as the main clock source during Active and Sleep modes. It
is the default clock source for the device. Its frequency can
be changed in 4−MHz steps between 24 MHz and 48 MHz,
with an accuracy of ±2 percent.

The IMO frequency is changed using the
CLK_IMO_SELECT register. The default frequency is
24 MHz.

Table 27. IMO FREQUENCY

CLK_IMO_SELECT[2:0] Nominal IMO Frequency

0 24 MHz

1 28 MHz

2 32 MHz

3 36 MHz

4 40 MHz

5 44 MHz

6 48 MHz

http://www.onsemi.com/

AND9836

www.onsemi.com
37

To get the accurate IMO frequency, trim registers are
provided – CLK_IMO_TRIM1 provides coarse trimming
with a step size of 120 kHz, CLK_IMO_TRIM2 is for fine
trimming with a step size of 15 kHz, and the TCTRIM field
in CLK_IMO_TRIM3 is for temperature compensation.
Trim settings are generated during manufacturing for every
frequency that can be selected by CLK_IMO_SELECT.
These trim settings are stored in SFLASH.

The trim settings are loaded during device startup;
however, firmware can load new trim values and change the
frequency in run time. Follow the algorithm in Figure 18 to
change the IMO frequency.

Start

Change the IMO frequency to
24 MHz by writing to the

CLK_IMO_SELECT register

Read the course trim from
SFLASH and load into the
CLK_IMO_TRIM1 register

Clear fine trim –
CLK_IMO_TRIM2 register

Read the temperature
compensation settings from
SFLASH and load into the

TCTRIM field of the
CLK_IMO_TRIM3 register

Wait 50 IMO cycles

Requested frequency >
24 MHz?

No

Yes

Select nearby intermediate
frequency by writing one count

less than desired value in
CLK_IMO_SELECT

Wait 50 IMO cycles

Write in CLK_IMO_SELECT for
desired frequency

End

Figure 18. Change IMO Frequency

Startup Behavior
After reset, the IMO is configured for 24−MHz operation.

During the “boot” portion of startup, trim values are read
from flash and the IMO is configured to achieve datasheet
specified accuracy.

Programming Clock (36−MHz)
IMO must be set to 48 MHz to program the flash. It is used

to drive the charge pumps of flash and for program/erase
timing purposes.

Internal Low−speed Oscillator
The internal low−speed oscillator operates with no

external components and outputs a stable clock at 40−kHz
nominal. The ILO is relatively low power and low accuracy.
It can be calibrated periodically using a higher accuracy,
high−frequency clock to improve accuracy. The ILO is
available in all power modes. The ILO is used as the system
low−frequency clock LFCLK in the device. The ILO is a
relatively inaccurate (±60 percent overvoltage and
temperature) oscillator, which is used to generate
low−frequency clocks. If calibrated against the IMO when
in operation, the ILO is accurate to ±10 percent for stable
temperature and voltage. The ILO is enabled and disabled
with register CLK_ILO_CONFIG bit ENABLE.

External Clock (EXTCLK)
The external clock (EXTCLK) is a MHz range clock that

can be generated from a signal on a designated AXM0F243
MCU pin. This clock may be used instead of the IMO as the
source of the system high−frequency clock, HFCLK. The
allowable range of external clock frequencies is
1 – 48 MHz. The device always starts up using the IMO and
the external clock must be enabled in user mode; so the
device cannot be started from a reset, which is clocked by the
external clock.

When manually configuring a pin as the input to the
EXTCLK, the drive mode of the pin must be set to
high−impedance digital to enable the digital input buffer.
See the I/O System chapter on page 19 for more details.

http://www.onsemi.com/

AND9836

www.onsemi.com
38

Watch Crystal Oscillator (WCO)
The AXM0F243 MCU device contains an oscillator to

drive a 32.768−kHz watch crystal. Similar to ILO, WCO is
also available in all modes. This clock has low power
consumption, which makes it ideal for operation in
low−power modes such as the Deep−Sleep mode. The WCO
is enabled and disabled with the WCO_CONFIG register’s
ENABLE bit.

WCO can be forced into low−power mode by setting the
WCO_CONFIG[0] bit. Alternatively, the block can be put
in the Auto mode where low−power mode transition
happens only when the device goes into Deep−Sleep mode.
This mode is enabled by setting WCO_CONFIG[1]. Note
that the Auto mode will be overridden if the block is forced
to low−power mode by setting WCO_CONFIG[0]. During
the switching, the WCO output can experience some
frequency disturbances. Hence, Auto mode is not suggested
for high−accuracy applications such as RTC.

The difference in operation between the normal and
low−power mode is the amplifier gain. The low−power
mode is expected to have a lower amplifier gain to
effectively reduce power. The amplifier gain for the two
modes can be set in the WCO_TRIM register.

The IMO supports locking to the WCO. The WCO
contains the logic to measure and compare the IMO clock
and trim the IMO. The WCO implements a digital phased
lock loop scheme to support a clock accuracy of ±1 percent.
The IMO trimming logic of the WCO can be enabled by the
use of the DPLL_ENABLE bit of the WCO_CONFIG. The
user firmware, when using this feature, must make sure that
there is a minimum time of 500 ms between the WCO enable
and the DPLL_ENABLE events.

Clock Distribution
AXM0F243 MCU clocks are developed and distributed

throughout the device, as shown in Figure 17. The
distribution configuration options are as follows:
• HFCLK input selection

• LFCLK input selection

• SYSCLK prescaler configuration

• Peripheral divider configuration

HFCLK Input Selection
HFCLK has two input options: IMO, and EXTCLK. The

HFCLK input is selected using the CLK_SELECT
register’s HFCLK_SEL bits, as described in Table 28.

Table 28. HFCLK INPUT SELECTION BITS HFCLK_SEL

Name Description

HFCLK_SEL[2:0] HFCLK input clock selection
0: IMO. Uses the IMO as the source of the HFCLK
1: EXTCLK. Uses the EXTCLK as the source of the HFCLK
2 – 7: Reserved. Do not use

Pre−divider is provided for HFCLK to limit the peak
current of the device. The divider options are 2, 4, and 8
configured using HFCLK_DIV bits of the CLK_SELECT
register. Default divider is 4.

LFCLK Input Selection
Only the ILO can be the source for LFCLK in the

AXM0F243 MCU device.

SYSCLK Prescaler Configuration
The SYSCLK Prescaler allows the device to divide the

HFCLK before use as SYSCLK, which allows for
non−integer relationships between peripheral clocks and the
system clock. SYSCLK must be equal to or faster than all
other clocks in the device that are derived from HFCLK. The
SYSCLK prescaler is capable of dividing the HFCLK by
powers of 2 between 2 ^ 0 = 1 and 2 ^ 7 = 128. The prescaler
divide value is set using register CLK_SELECT bits
SYSCLK_DIV, as described in Table 29. The prescaler is
initially configured to divide by 1.

Table 29. SYSCLK PRESCALER DIVIDE VALUE BITS SYSCLK_DIV

Name Description

SYSCLK_DIV[3:0] SYSCLK prescaler divide value
0: SYSCLK = HFCLK
1: SYSCLK = HFCLK/2
2: SYSCLK = HFCLK/4
3: SYSCLK = HFCLK/8
4: SYSCLK = HFCLK/16
5: SYSCLK = HFCLK/32
6: SYSCLK = HFCLK/64
7: SYSCLK = HFCLK/128

http://www.onsemi.com/

AND9836

www.onsemi.com
39

Peripheral Clock Divider Configuration
AXM0F243 MCU has nine clock dividers, which include

six 16−bit clock dividers, three 16.5−bit fractional clock
dividers. Fractional clock dividers allow the clock divisor to
include a fraction of 0..31/32. The formula for the output
frequency of a fractional divider is Fout = Fin / (INT16_DIV
+ (FRAC5_DIV/32)). For example, a 16.5−divider with an
integer divide value of 2 (INT16_DIV = 3,
FRAC5_DIV = 0), produces signals to generate a 16−MHz
clock from a 48−MHz HFCLK. A 16.5−divider with an
integer divide value of 3 (INT16_DIV = 3,
FRAC5_DIV = 0), produces signals to generate a 12−MHz
clock from a 48−MHz HFCLK. A 16.5−divider with an
integer divide value of 2 (INT16_DIV = 3) and a fractional
divider of 16 (FRAC5_DIV = 16) produces signals to

generate a 13.7−MHz clock from a 48−MHz HFCLK. Not
all 13.7−MHz clock periods are equal in size; half of them
will be 3 HFCLK cycles and half of them will be 2 HFCLK
cycles.

Fractional dividers are useful when a high−precision
clock is required (for example, for a UART/SPI serial
interface). Fractional dividers are not used when a low jitter
clock is required, because the clock periods have a jitter of
1 HFCLK cycle.

The divide value for each of the six integer clock dividers
are configured with the PERI_DIV_16_CTLx registers and
the three 16.5−bit fractional clock dividers are configured
with the PERI_DIV_16_5_CTLx registers. Table 30 and
Table 31 describe the configurations for these registers.

Table 30. NON−FRACTIONAL PERIPHERAL CLOCK DIVIDER CONFIGURATION REGISTER PERI_DIV_16_CTLX

Bits Name Description

0 ENABLE_x Divider enabled. HW sets this field to ‘1’ as a result of an ENABLE command. HW sets this field to
‘0’ as a result on a DISABLE command.

23:8 INT16_DIV_x Integer division by (1+INT16_DIV). Allows for integer divisions in the range [1, 65536].

Table 31. FRACTIONAL PERIPHERAL CLOCK DIVIDER CONFIGURATION REGISTER PERI_DIV_16_5_CTLX

Bits Name Description

0 ENABLE_x Divider enabled. HW sets this field to ‘1’ as a result of an ENABLE command. HW sets this field to
‘0’ as a result on a DISABLE command.

7:3 FRAC5_DIV_x Fractional division by (FRAC5_DIV/32). Allows for fractional divisions in the range [0, 31/32].
Note that fractional division results in clock jitter as some clock periods may be 1 “clk_hf” cycle
longer than other clock periods.

23:8 INT16_DIV_x Integer division by (1+INT16_DIV). Allows for integer divisions in the range [1, 65,536].

Each divider can be enabled using the PERI_DIV_CMD
register. This register acts as the command register for all six

integer dividers and three fractional dividers. The
PERI_DIV_CMD register format is as follows.

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Description Enable Disable PA_SEL_TYPE PA_SEL_DIV SEL_TYPE SEL_DIV

The SEL_TYPE field specifies the type of divider being
configured. This field is ‘1’ for the 16−bit integer divider, ‘2’
for the 16.5−bit fractional divider.

The SEL_DIV field specifies the number of the specific
divider being configured. For the integer dividers, this
number ranges from 0 to 15. For fractional dividers, this
field is any value in the range 0 to 3. When SEL_TYPE = 63
and SEL_TYPE = 3, no divider is specified.

The (PA_SEL_TYPE, PA_SEL_DIV) field pair allows a
divider to be phase−aligned with another divider. The
PA_SEL_DIV specifies the divider which is phase aligned.
Any enabled divider can be used as a reference. The
PA_SEL_TYPE specifies the type of the divider being phase
aligned. When PA_SEL_DIV = 63 and PA_SEL_TYPE = 3,
HFCLK is used as a reference.

Consider a 48−MHz HFCLK and a need for a 12−MHz
divided clock A and a 8−MHz divided clock B. Clock A uses
a 16−bit integer divider 0 and is created by aligning it to
HF_CLK ((PA_SEL_TYPE, PA_SEL_DIV) is (3, 63)) and
DIV_16_CTL0.INT16_DIV is 3. Clock B uses the integer
divider 1 and is created by aligning it to clock A
((PA_SEL_TYPE, PA_SEL_DIV) is (1, 0)) and
DIV_16_CTL1.INT16_DIV is 5. This guarantees that clock
B is phase−aligned with clock A as the smallest common
multiple of the two clock periods is 12 HFCLK cycles, the
clocks A and B will be aligned every 12 HFCLK cycles.
Note that clock B is phase−aligned to clock A, but still uses
HFCLK as a reference clock for its divider value.

Each peripheral block in AXM0F243 MCU has a unique
peripheral clock (PERI#_CLK) associated with it. Each of
the peripheral clocks have a multiplexed input, which can
take the input clock from any of the existing clock dividers.

http://www.onsemi.com/

AND9836

www.onsemi.com
40

Table 32 shows the mapping of the mux output to the
corresponding peripheral blocks (shown in Figure 17). Any
of the peripheral clock dividers can be mapped to a specific

peripheral by using their respective PERI_PCLK_CTLx
register.

Table 32. PERIPHERAL CLOCK MULTIPLEXER OUTPUT MAPPING

PERI#_CLK Peripheral

0 SCB0

1 SCB1

2 SCB2

3 Reserved

4 TCPWM0

5 TCPWM1

6 TCPWM2

7 TCPWM3

8 TCPWM4

9 SmartIO

10 SmartIO

11 LCD

12 SAR ADC

Table 33. PROGRAMMABLE CLOCK CONTROL REGISTER − PERI_PCLK_CTLx

Bits Name Description

5:0 SEL_DIV Specifies one of the dividers of the divider type specified by SEL_TYPE. If SEL_DIV is “4” and
SEL_TYPE is “1”, then the fifth (zero being first) 16−bit clock divider will be routed to the mux
output for peripheral clock_x. Similarly, if SEL_DIV is “0” and SEL_TYPE is “2”, then the first 16.5
clock divider will be routed to the mux output.

7:6 SEL_TYPE 0: Do not use
1: 16.0 (integer) clock dividers
2: 16.5 (fractional) clock dividers
3: Do not use

Low−Power Mode Operation
The high−frequency clocks including the IMO,

EXTCLK, HFCLK, SYSCLK and peripheral clocks operate
only in Active and Sleep modes. The ILO, WCO, and
LFCLK operate in all power modes.

http://www.onsemi.com/

AND9836

www.onsemi.com
41

Register List

Table 34. CLOCKING SYSTEM REGISTER LIST

Name Description

CLK_IMO_TRIM1 IMO Trim Register − This register contains IMO trim for course correction.

CLK_IMO_TRIM2 IMO Trim Register − This register contains IMO trim for fine correction.

CLK_IMO_TRIM3 IMO Trim Register − This register contains the temperature compensation trim settings for IMO and trim
 settings to adjust the step size of the course and fine correction of IMO frequency.

PWR_BG_TRIM1 Bandgap Trim Registers − These registers control the trim of the bandgap reference, allowing manipulation of
 the voltage references in the device.

PWR_BG_TRIM2

CLK_ILO_CONFIG ILO Configuration Register − This register controls the ILO configuration.

CLK_IMO_CONFIG IMO Configuration Register − This register controls the IMO configuration.

CLK_SELECT Clock Select − This register controls clock tree configuration, selecting different sources for the system clocks.

WCO_CONFIG WCO Enable. This register enables or disables the external watch crystal oscillator.

PERI_DIV_16_CTLx Peripheral Clock Divider Control Registers − These registers configure the peripheral clock dividers, setting
 integer divide value, and enabling or disabling the divider.

PERI_DIV_16_5_CTLx Peripheral Clock Fractional Divider Control Registers − These registers configure the peripheral clock
 dividers, setting fractional divide value, and enabling or disabling the divider.

PERI_PCLK_CTLx Programmable Clock Control Registers − These registers are used to select the input clocks to peripherals.

http://www.onsemi.com/

AND9836

www.onsemi.com
42

POWER SUPPLY AND MONITORING
AXM0F243 MCU is capable of operating from 1.8 V to

3.6 V externally supplied voltage.
There are two internal regulators to support the internal

power supply − Active digital regulator and Deep−Slepp
regulator.

Block Diagram

0.1 �F

Digital
Regulator

1 �F 0.1 �F 1 �F0.1 �F

Deep−Sleep
Regulator

Deep−Sleep
Domain

Examples:
ILO, I2C

Active Domain
Examples: CPU,

IMO, Flash

Analog
Domain

Examples:
CTBm, SAR

Note: Do not connect
external load to VCCD

VDDAVDDD

V
S

S
A

V
S

S
D

V
D

D
A

V
D

D
D

V
C

C
D

Figure 19. Power System Block Diagram

Figure 19 shows the power system diagram and all the
power supply pins. The system has one regulator in Active
mode for the digital circuitry. There is no analog regulator;
the analog circuits run directly from the VDDA input. There
is a separate regulator for Deep−Sleep mode.

The supply voltage range is 1.8 V to 3.6 V with all
functions and circuits operating in that range.

http://www.onsemi.com/

AND9836

www.onsemi.com
43

Power Supply Connections

0.1 �F 1 �F VDDA

VDDD

VSSA

VSSD

VCCD

AXM0F243 MCU

Figure 20. Power Supply Connections

1.8 V − 3.6 V

0.1 �F

The device is powered by an external power supply that
can be anywhere in the range of 1.8 V to 3.6 V. This range
is also designed for battery−powered operation; for instance,
the chip can be powered from a battery system that starts at
3.5 V and works down to 1.8 V. In this mode, the internal
regulator supplies the internal logic. The VCCD output must
be bypassed to ground via a 0.1 �F external ceramic
capacitor.

Bypass capacitors are also required from VDDD to ground;
typical practice for systems in this frequency range is to use
a bulk capacitor in the 1 �F to 10 �F range in parallel with
a smaller ceramic capacitor (0.1 �F, for example). Note that
these are simply rules of thumb and that, for critical
applications, the PCB layout, lead inductance, and the
bypass capacitor parasitic should be simulated to design and
obtain optimal bypassing.

How It Works
The regulators in Figure 19 power the various domains of

the device. All the core regulators draw their input power
from the VDDD pin supply. The analog circuits run directly
from the VDDA input.

Regulator Summary

Active Digital Regulator

Table 35. REGULATOR STATUS IN DIFFERENT
POWER MODES

Mode
Active Digital

Regulator
Deep−Sleep
Regulator

Deep−Sleep Off On

Sleep On On

Active On On

For external supplies from 1.8 V and 3.6 V, the Active
digital regulator provides the main digital logic in Active
and Sleep modes. This regulator has its output connected to
a pin (VCCD) and requires an external decoupling capacitor
(1 �F X5R).

The Active digital regulator can be disabled by setting the
EXT_VCCD bit in the PWR_CONTROL register. This
action reduces the power consumption in direct supply
mode. The Active digital regulator is available only in
Active and Sleep power modes.

Deep−Sleep Regulator
This regulator supplies the circuits that remain powered in

Deep−Sleep mode, such as the ILO, WCO, and SCB (I2C/
SPI), and low−power comparator. The Deep−Sleep
regulator is available in all power modes. In Active and
Sleep power modes, the main output of this regulator is
connected to the output of the Active digital regulator
(VCCD).

Voltage Monitoring
The voltage monitoring system includes power−on−reset

(POR) brownout detection (BOD).

Power−On−Reset (POR)
POR circuits provide a reset pulse during the initial power

ramp. POR circuits monitor VCCD voltage. Typically, the
POR circuits are not very accurate with respect to trip−point.
POR circuits are used during initial chip power−up and then
disabled.

http://www.onsemi.com/

AND9836

www.onsemi.com
44

Brownout−Detect (BOD)
The BOD circuit protects the operating or retaining logic

from possibly unsafe supply conditions by applying reset to
the device. BOD circuit monitors the VCCD voltage. The
BOD circuit generates a reset if a voltage excursion dips
below the minimum VCCD voltage required for safe
operation (see the AXM0F243 datasheet for details). The

system will not come out of RESET until the supply is
detected to be valid again.

To ensure reliable operation of the device, the watchdog
timer should be used in all designs. Watchdog timer provides
protection against abnormal brownout conditions that may
compromise the CPU functionality. See Watchdog Timer
chapter on page 50 for more details.

Table 36. REGISTER LIST

Register Name Description

PWR_CONTROL Power Mode Control Register – This register allows configuration of device power modes and regulator activity.

http://www.onsemi.com/
https://www.onsemi.com/pub/Collateral/AXM0F243-D.PDF

AND9836

www.onsemi.com
45

CHIP OPERATIONAL MODES
AXM0F243 MCU is capable of executing firmware in

four different modes. These modes dictate execution from
different locations in flash and ROM, with different levels
of hardware privileges. Only three of these modes are used
in end−applications; debug mode is used exclusively to
debug designs during firmware development.

AXM0F243 MCU’s operational modes are:
• Boot

• User

• Privileged

• Debug

Boot
Boot mode is an operational mode where the device is

configured by instructions hard−coded in the device SROM.
This mode is entered after the end of a reset, provided no
debug−acquire sequence is received by the device. Boot
mode is a privileged mode; interrupts are disabled in this
mode so that the boot firmware can set up the device for
operation without being interrupted. During boot mode,
hardware trim settings are loaded from flash to guarantee
proper operation during power−up. When boot concludes,
the device enters user mode and code execution from flash
begins.

User
User mode is an operational mode where normal user

firmware from flash is executed. User mode cannot execute
code from SROM. Firmware execution in this mode
includes the firmware written by the user. The automatically

generated firmware can govern both the firmware startup
and portions of normal operation. The boot process transfers
control to this mode after it has completed its tasks.

Privileged
Privileged mode is an operational mode, which allows

execution of special subroutines that are stored in the device
ROM. These subroutines cannot be modified by the user and
are used to execute proprietary code that is not meant to be
interrupted or observed. Debugging is not allowed in
privileged mode.

The CPU can transition to privileged mode through the
execution of a system call. For more information on how to
perform a system call, see “Performing a System Call” on
page 163. Exit from this mode returns the device to user
mode.

Debug
Debug mode is an operational mode that allows

observation of the AXM0F243 MCU4 operational
parameters. This mode is used to debug the firmware during
development. The debug mode is entered when an SWD
debugger connects to the device during the acquire time
window, which occurs during the device reset. Debug mode
allows IDEs such as ARM MDK to debug the firmware.
Debug mode is only available on devices in open mode (one
of the four protection modes). For more details on the debug
interface, see the Program and Debug Interface chapter on
page 156.

For more details on protection modes, see the Device
Security chapter on page 56.

http://www.onsemi.com/

AND9836

www.onsemi.com
46

POWER MODES
The AXM0F243 MCU provides three power modes,

intended to minimize the average power consumption for a
given application. The power modes, in the order of
decreasing power consumption, are:
• Active

• Sleep

• Deep−Sleep
Active, Sleep, and Deep−Sleep are standard

ARM−defined power modes, supported by the ARM CPUs.

The power consumption in different power modes is
controlled by using the following methods:
• Enabling/disabling peripherals

• Powering on/off internal regulators

• Powering on/off clock sources

• Powering on/off other portions of the AXM0F243 MCU
Figure 21 illustrates the various power modes and the

possible transitions between them.

XRES / Brownout /
Power On Reset

Figure 21. Power Mode Transitions State Diagram

RESET

ACTIVE

DEEP−SLEEP

SLEEP

Power Mode

Internal
Resets

Action

Internal Reset Event

Wakeup
Interrupt

Firmware
Action

External Reset Event

Firmware Action

Other External Event

NOTE: ARM nomenclature for Deep−Sleep power mode is ‘SLEEPDEEP’.

KEY:

Table 37 illustrates the power modes offered by
AXM0F243 MCU.

http://www.onsemi.com/

AND9836

www.onsemi.com
47

Table 37. AXM0F243 MCU4 POWER MODES
Power
Mode Description Entry Condition

Wakeup
Sources Active Clocks

Wakeup
Action Available Regulators

Active Primary mode of operation;
all peripherals are available
(programmable).

Wakeup from other
power modes,
internal and external
resets, brownout,
power on reset

Not applicable All
(programmable)

N/A All regulators are
available. The Active
digital regulator can be
disabled if external
regulation is used.

Sleep CPU enters Sleep mode
and SRAM is in retention;
all peripherals are avail-
able (programmable).

Manual register write Any enabled
interrupt

All
(programmable)

except CPU
clock

Interrupt All regulators are
available. The Active dig-
ital regulator can be dis-
abled if external
regulation is used.

Deep−
Sleep

All internal supplies are
driven from the
Deep−Sleep regulator. IMO
and high−speed
peripherals are off. Only
the low−frequency clock is
available.
Interrupts from low−speed,
asynchronous, or
low−power analog
 peripherals can cause a
wakeup.

Manual register write GPIO interrupt,
low−power
comparator,

SCB, watchdog
timer

ILO (40 kHz),
WCO (32 kHz)

Interrupt Deep−Sleep regulator

In addition to the wakeup sources mentioned in Table 37,
external reset (XRES) and brownout reset bring the device
to Active mode from any power mode.

Active Mode
Active mode is the primary power mode of the

AXM0F243 MCU device. This mode provides the option to
use every possible subsystem/ peripheral in the device. In
this mode, the CPU is running and all the peripherals are
powered. The firmware may be configured to disable
specific peripherals that are not in use, to reduce power
consumption.

Sleep Mode
This is a CPU−centric power mode. In this mode, the

Cortex−M0+ CPU enters Sleep mode and its clock is
disabled. It is a mode that the device should come to very
often or as soon as the CPU is idle, to accomplish low power
consumption. It is identical to Active mode from a

peripheral point of view. Any enabled interrupt can cause
wakeup from Sleep mode.

Deep−Sleep Mode
In Deep−Sleep mode, the CPU, SRAM, and high−speed

logic are in retention. The high−frequency clocks, including
HFCLK and SYSCLK, are disabled. Optionally, the internal
low−frequency (40 kHz) oscillator and watch crystal
oscillator (WCO) remain on and low−frequency peripherals
continue to operate. Digital peripherals that do not need a
clock or receive a clock from their external interface (for
example, I2C slave) continue to operate. Interrupts from
low−speed, asynchronous or low−power analog peripherals
can cause a wakeup from Deep−Sleep mode. CTBm can also
operate in this mode with reduced power and bandwidth. For
details on power consumption and CTBm bandwidth, refer
to the AXM0F243 datasheet.

The available wakeup sources are listed in Table 39.

http://www.onsemi.com/
https://www.onsemi.com/pub/Collateral/AXM0F243-D.PDF

AND9836

www.onsemi.com
48

Power Mode Summary
Table 38 illustrates the peripherals available in each

low−power mode; Table 39 illustrates the wakeup sources
available in each power mode.

Table 38. AVAILABLE PERIPHERALS

Peripheral Active Sleep Deep−Sleep

 CPU Available Retention (Note 3) Retention

 SRAM Available Retention Retention

 High−speed peripherals Available Available Retention

 Low−speed peripherals Available Available Available (optional)

 Internal main oscillator (IMO) Available Available Not Available

 Internal low−speed oscillator (ILO, 40 kHz) Available Available Available (optional)

 Asynchronous peripherals (peripherals that do not run on internal clock) Available Available Available

 Power−on−reset, Brownout detection Available Available Available

 Analog mux bus connection Available Available Available

 GPIO output state Available Available Available

3. The configuration and state of the peripheral is retained. Peripheral continues its operation when the device enters Active mode.

Table 39. WAKEUP SOURCES

Power Mode Wakeup Source Wakeup Action

Sleep Any enabled interrupt source Interrupt

Any reset source Reset

Deep−Sleep GPIO interrupt Interrupt

I2C address match Interrupt

Watchdog timer Interrupt/Reset

Low−power comparator Interrupt

CTBm Interrupt

NOTE: In addition to the wakeup sources mentioned in Table 39, external reset (XRES) and brownout reset bring the device to Active
mode from any power mode. XRES and brownout trigger a full system restart. All the states including frozen GPIOs are lost. In
this case, the cause of wakeup is not readable after the device restarts.

http://www.onsemi.com/

AND9836

www.onsemi.com
49

Low−Power Mode Entry and Exit
A Wait For Interrupt (WFI) instruction from the

Cortex−M0+ (CM0+) triggers the transitions into Sleep and
Deep−Sleep mode. The Cortex−M0+ can delay the
transition into a low−power mode until the lowest priority
ISR is exited (if the SLEEPONEXIT bit in the CM0 System
Control Register is set).

The transition to Sleep and Deep−Sleep modes are
controlled by the flags SLEEPDEEP in the CM0P System
Control Register (CM0P_SCR).
• Sleep is entered when the WFI instruction is executed,

SLEEPDEEP = 0.
• Deep−Sleep is entered when the WFI instruction is

executed, SLEEPDEEP = 1.

The LPM READY bit in the PWR_CONTROL register
shows the status of Deep−Sleep regulator. If the firmware
tries to enter Deep−Sleep mode before the regulators are
ready, then AXM0F243 MCU goes to Sleep mode first, and
when the regulators are ready, the device enters Deep−Sleep
mode. This operation is automatically done in hardware.

In Sleep and Deep−Sleep modes, a selection of
peripherals are available (see Table 39), and firmware can
either enable or disable their associated interrupts. Enabled
interrupts can cause wakeup from low−power mode to
Active mode. Additionally, any RESET returns the system
to Active mode. See the Interrupts chapter on page 11 and
the Reset System chapter on page 54 for details.

Register List

Table 40. POWER MODE REGISTER LIST

Register Name Description

CM0P_SCR System Control − Sets or returns system control data.

PWR_CONTROL Power Mode Control − Controls the device power mode options and allows observation of current state.

http://www.onsemi.com/

AND9836

www.onsemi.com
50

WATCHDOG TIMER
The watchdog timer (WDT) is used to automatically reset

the device in the event of an unexpected firmware execution
path or a brownout that compromises the CPU functionality.
The WDT runs from the LFCLK, generated by the ILO. The
timer must be serviced periodically in firmware to avoid a
reset. Otherwise, the timer will elapse and generate a device
reset. The WDT can be used as an interrupt source or a
wakeup source in low−power modes.

Features
The WDT has these features:

• System reset generation after a configurable interval

• Periodic interrupt/wake up generation in Active, Sleep,
and Deep−Sleep power modes

• Features a 16−bit free−running counter

Block Diagram

Low−Frequency
Clock

(LFCLK)

AHB
Interface
Register

CPU
Subsystem or

WIC

Reset Block

INTERRUPT

RESET

CFG/
STATUS

CLK

Watchdog Timer

Figure 22. Watchdog Timer Block Diagram

How It Works
The WDT asserts a hardware reset to the device on the

third WDT match event, unless it is periodically serviced in
firmware. The WDT interrupt has a programmable period of
up to 2048 ms. The WDT is a free−running wraparound
up−counter with a maximum of 16−bit resolution. The
resolution is configurable as explained later in this section.

The WDT_COUNTER register provides the count value
of the WDT. The WDT generates an interrupt when the
count value in WDT_COUNTER equals the match value
stored in the WDT_MATCH register, but it does not reset the
count to ‘0’. Instead, the WDT keeps counting until it
overflows (after 0xFFFF when the resolution is set to 16
bits) and rolls back to 0. When the count value again reaches
the match value, another interrupt is generated. Note that the
match count can be changed when the counter is running.

A bit named WDT_MATCH in the SRSS_INTR register
is set whenever the WDT interrupt occurs. This interrupt
must be cleared by writing a ‘1’ to the WDT_MATCH bit in
SRSS_INTR to reset the watchdog. If the firmware does not
reset the WDT for two consecutive interrupts, the third
match event will generate a hardware reset.

The IGNORE_BITS in the WDT_MATCH register can be
used to reduce the entire WDT counter period. The ignore
bits can specify the number of MSBs that need to be
discarded. For example, if the IGNORE_BITS value is 3,
then the WDT counter becomes a 13−bit counter. For details,
see the WDT_COUNTER, WDT_MATCH, and
SRSS_INTR registers in the AND9835 AXM0F243 MCU
Registers.

When the WDT is used to protect against system crashes,
clearing the WDT interrupt bit to reset the watchdog must be
done from a portion of the code that is not directly associated
with the WDT interrupt. Otherwise, even if the main
function of the firmware crashes or is in an endless loop, the
WDT interrupt vector can still be intact and feed the WDT
periodically.

The safest way to use the WDT against system crashes is
to:
• Configure the watchdog reset period such that firmware

is able to reset the watchdog at least once during the
period, even along the longest firmware delay path.

• Reset the watchdog by clearing the interrupt bit regularly
in the main body of the firmware code by writing a ‘1’ to
the WDT_MATCH bit in SRSS_INTR register.

• It is not recommended to reset watchdog in the WDT
interrupt service routine (ISR), if WDT is being used as
a reset source to protect the system against crashes.
Hence, it is not recommended to use WDT reset feature
and ISR together.
Follow these steps to use WDT as a periodic interrupt

generator:
1. Write the desired IGNORE_BITS in the

WDT_MATCH register to set the counter
resolution.

2. Write the desired match value to the
WDT_MATCH register.

3. Clear the WDT_MATCH bit in SRSS_INTR to
clear any pending WDT interrupt.

http://www.onsemi.com/
https://www.onsemi.com/pub/Collateral/AND9835-D.PDF
https://www.onsemi.com/pub/Collateral/AND9835-D.PDF

AND9836

www.onsemi.com
51

4. Enable the WDT interrupt by setting the
WDT_MATCH bit in SRSS_INTR_MASK

5. Enable global WDT interrupt in the CM0_ISER
register (See the Interrupts chapter on page 11 for
details).

6. In the ISR, clear the WDT interrupt and add the
desired match value to the existing match value.
By doing so, another periodic interrupt will be
generated when the counter reaches the new match
value.

For more details on interrupts, see the Interrupts chapter
on page 11.

Enabling and Disabling WDT
The watchdog counter is a free−running counter that

cannot be disabled. However, it is possible to disable the
watchdog reset by writing a key ‘0xACED8865’ to the
WDT_DISABLE_KEY register. Writing any other value to
this register will enable the watchdog reset. If the watchdog
system reset is disabled, the firmware does not have to
periodically reset the watchdog to avoid a system reset. The
watchdog counter can still be used as an interrupt source or
wakeup source. The only way to stop the counter is to disable
the ILO by clearing the ENABLE bit in the
CLK_ILO_CONFIG register. The watchdog reset must be
disabled before disabling the ILO. Otherwise, any register
write to disable the ILO will be ignored. Enabling the
watchdog reset will automatically enable the ILO.

NOTE: Disabling the WDT reset is not recommended if:
• Protection is required against firmware crashes

• The power supply can produce sudden brownout events
that may compromise the CPU functionality

WDT Interrupts and Low−Power Modes
The watchdog counter can send interrupt requests to the

CPU in Active power mode and to the WakeUp Interrupt
Controller (WIC) in Sleep and Deep−Sleep power modes. It
works as follows:
• Active Mode: In Active power mode, the WDT can send

the interrupt to the CPU. The CPU acknowledges the
interrupt request and executes the ISR. The interrupt must
be cleared after entering the ISR in firmware.

• Sleep or Deep−Sleep Mode: In this mode, the CPU
subsystem is powered down. Therefore, the interrupt
request from the WDT is directly sent to the WIC, which
will then wake up the CPU. The CPU acknowledges the
interrupt request and executes the ISR. The interrupt must
be cleared after entering the ISR in firmware.
For more details on device power modes, see the Power

Modes chapter on page 46.

WDT Reset Mode
The RESET_WDT bit in the RES_CAUSE register

indicates the reset generated by the WDT. This bit remains
set until cleared or until a power−on reset (POR), brownout
reset (BOD), or external reset (XRES) occurs. All other
resets leave this bit untouched. For more details, see the
Reset System chapter on page 54.

Additional Timers
Besides WDT, there are three additional up−counting

timers for general−purpose use – WDT0, WDT1, and
WDT2. These three timers are clocked either from ILO or
WCO, selected by writing into the WCO_WDT_CLKEN
register. These timers can run in Active, Sleep, and
Deep−Sleep modes and are capable of generating interrupts.

ILO or
WCO WDT_CASCADE0_1 WDT_CASCADE1_2

WDT0 (16−bit Counter)

WDT_CTRLOW[15:0]

16

WDT1 (16−bit Counter)

WDT_CTRLOW[31:16]

16

WDT2 (32−bit Counter)

WDT_CTRHIGH

32

WDT_CTRLOW[15:0] ==
WDT_MATCH0

WDT_CTRLOW==
WDT_MATCH1

WDT_BITS2

5

WDT_MODE0
2

WDT Mode
Configuration WDT_MODE1

2

WDT Mode
Configuration WDT_MODE2

1

WDT_INT0 WDT_INT1 WDT_INT2

INTERRUPT

WDT Mode
Configuration

Figure 23. WDT Additional Timers Block Diagram

http://www.onsemi.com/

AND9836

www.onsemi.com
52

WDT0 and WDT1
These are 16−bit timers, which can be operated in two

configurations:
• Free running

• Clear on match (configurable period)
In the free−running mode, the timer counts throughout the

16−bit range. On reaching 65535 (216 – 1), the timer resets
to 0 and starts counting again. In the Clear−on−match mode,
the match count written in WDT_MATCH0 and
WDT_MATCH1 of the WCO_WDT_MATCH register
decides the period of WDT0 and WDT1, respectively. When
the timer count reaches the match value, the timer resets to
0 and starts counting again. One of these two configurations
is selected using WDT_CLEAR0 and WDT_CLEAR1 bits
of the WCO_WDT_CONFIG register. The Clear−on−match
mode is selected by writing ‘1’ to WDT_CLEARx. Writing
‘0’ to this bit disables the clearing of timer on match count
and the free−running mode is configured. Note that
changing the match count requires three input clock cycles
to come into effect. Before putting the device to deep sleep,
ensure delay of at least one input clock cycle after the match
count update.

An interrupt can be generated on match or timer overflow
by writing into WDT_MODE bits of the
WCO_WDT_CONFIG register. On interrupt, the
WDT_INTx bit of the WCO_WDT_CONTROL register is
set. This bit must be cleared by firmware to allow the next
interrupt trigger. Note that the interrupts from all the three
timers are ORed to generate a single trigger to the CPU. To
identify which timer caused an interrupt, read the
WDT_INTx bit.

The timers are enabled by writing ‘1’ to the
WDT_ENABLEx bit of the WCO_WDT_CONTROL
register. Note that it takes three clock cycles to take effect.
It is not recommended to toggle this bit more than once

during this time. After enabling the timer, it is not
recommended to write to the configuration register
(WCO_WDT_CONFIG). The present value of the timers
can be read from the WDT_CTRLOW register; it can be
reset by writing ‘1’ to the WDT_RESETx bit of the
WCO_WDT_CONTROL register.

WDT2
It is similar to WDT0 and WDT1 with following

differences:
• WDT2 is a 32−bit up−counting timer

• Supports only free−running configuration with counting
range of 0 to (232 – 1)

• The interrupt is triggered when one out of 32 bits toggles
during counting. The bit position is configured using the
5−bit WDT_BITS2 field of the WCO_WDT_CONFIG
register. Setting it to ‘0’ results in an interrupt on every
input clock; setting it to ‘1’ results in an interrupt on
alternate clocks; setting it to ‘31’ results in an interrupt
every 231 clocks.

Cascading
The cascading options are as follows:

• WDT0 and WDT1 timers can be cascaded by writing into
WDT_CASCADE0_1 bit of the WCO_WDT_CONFIG
register. When cascaded, WDT1 increments after WDT0
reaches its match count.

• WDT1 and WDT2 timers can also be cascaded by writing
into WDT_CASCADE1_2 bit of the
WCO_WDT_CONFIG register. When cascaded, WDT2
increments after WDT1 reaches its match count.

• All the three timers are cascaded when
WDT_CASCADE0_1 and WDT_CASCADE1_2 bits
are set.

http://www.onsemi.com/

AND9836

www.onsemi.com
53

Register List

Table 41. WDT Registers

Register Name Description

WDT_DISABLE_KEY Disables the WDT when 0XACED8865 is written, for any other value WDT works normally

WDT_COUNTER Provides the count value of the WDT

WDT_MATCH Stores the match value of the WDT

SRSS_INTR Services the WDT to avoid reset

Table 42. WDT Registers

Register Name Description

WDT_DISABLE_KEY Disables the WDT when 0XACED8865 is written; for any other value WDT works normally.

WDT_COUNTER Provides the count value of the WDT.

WDT_MATCH Holds the match value of the WDT.

SRSS_INTR Services the WDT to avoid reset.

WCO_WDT_CTRLOW Stores the current WDT0 and WDT1 timer value.

WCO_WDT_CTRHIGH Stores the current WDT2 timer value.

WCO_WDT_MATCH Holds the match count for WDT0 and WDT1.

WCO_WDT_CONFIG Configures WDT0, WDT1, and WDT2 – selection of clock source, selection of free running or clear on
 match, interrupt generation, and cascading.

WCO_WDT_CONTROL Used for enabling and resetting the timer.

WCO_WDT_CLKEN Enables the clock (ILO/WCO) to be used with the timer.

http://www.onsemi.com/

AND9836

www.onsemi.com
54

RESET SYSTEM
AXM0F243 MCU supports several types of resets that

guarantee error−free operation during power up and allow
the device to reset based on user−supplied external hardware
or internal software reset signals. AXM0F243 MCU also
contains hardware to enable the detection of certain resets.

The reset system has these sources:
• Power−on reset (POR) to hold the device in reset while the

power supply ramps up
• Brownout reset (BOD) to reset the device if the power

supply falls below specifications during operation
• Watchdog reset (WRES) to reset the device if firmware

execution fails to service the watchdog timer
• Software initiated reset (SRES) to reset the device on

demand using firmware
• External reset (XRES) to reset the device using an

external electrical signal
• Protection fault reset (PROT_FAULT) to reset the device

if unauthorized operating conditions occur

Reset Sources
The following sections provide a description of the reset

sources available in AXM0F243 MCU.

Power−on Reset
Power−on reset is provided for system reset at power−up.

POR holds the device in reset until the supply voltage,
VDDD, is according to the datasheet specification. The POR
activates automatically at power−up.

POR events do not set a reset cause status bit, but can be
partially inferred by the absence of any other reset source. If
no other reset event is detected, then the reset is caused by
POR, BOD, or XRES.

Brownout Reset
Brownout reset monitors the chip digital voltage supply

VCCD and generates a reset if VCCD is below the minimum
logic operating voltage specified in the AXM0F243 MCU
datasheet. BOD is available in all power modes.

Watchdog Reset
Watchdog reset (WRES) detects errant code by causing a

reset if the watchdog timer is not cleared within the
user−specified time limit. This feature is enabled by default.
It can be disabled by writing ‘0xACED8865’ to the
WDT_DISABLE_KEY register.

The RESET_WDT status bit of the RES_CAUSE register
is set when a watchdog reset occurs. This bit remains set
until cleared or until a POR, XRES, or BOD reset; for
example, in the case of a device power cycle. All other resets
leave this bit untouched.

For more details, see the Watchdog Timer chapter on
page 50.

Software Initiated Reset
Software initiated reset (SRES) is a mechanism that

allows a software−driven reset. The Cortex−M0+

application interrupt and reset control register
(CM0P_AIRCR) forces a device reset when a ‘1’ is written
into the SYSRESETREQ bit. CM0P_AIRCR requires a
value of A05F written to the top two bytes for writes.
Therefore, write A05F0004 for the reset.

The RESET_SOFT status bit of the RES_CAUSE register
is set when a software reset occurs. This bit remains set until
cleared or until a POR, XRES, or BOD reset; for example,
in the case of a device power cycle. All other resets leave this
bit untouched.

External Reset
External reset (XRES) is a user−supplied reset that causes

immediate system reset when asserted. The XRES pin is
active low – a high voltage on the pin has no effect and a low
voltage causes a reset. The pin is pulled high inside the
device. XRES is available as a dedicated pin in most of the
devices. For detailed pinout, refer to the pinout section of the
AXM0F243 MCU datasheet.

The XRES pin holds the device in reset while held active.
When the pin is released, the device goes through a normal
boot sequence. The logical thresholds for XRES and other
electrical characteristics, are listed in the Electrical
Specifications section of the AXM0F243 MCU datasheet.

XRES events do not set a reset cause status bit, but can be
partially inferred by the absence of any other reset source. If
no other reset event is detected, then the reset is caused by
POR, BOD, or XRES.

Protection Fault Reset
Protection fault reset (PROT_FAULT) detects

unauthorized protection violations and causes a device reset
if they occur. One example of a protection fault is if a debug
breakpoint is reached while executing privileged code. For
details about privilege code, see “Privileged” on page 45.

The RESET_PROT_FAULT bit of the RES_CAUSE
register is set when a protection fault occurs. This bit
remains set until cleared or until a POR, XRES, or BOD
reset; for example, in the case of a device power cycle. All
other resets leave this bit untouched.

Identifying Reset Sources
When the device comes out of reset, it is often useful to

know the cause of the most recent or even older resets. This
is achieved in the device primarily through the
RES_CAUSE register. This register has specific status bits
allocated for some of the reset sources. The RES_CAUSE
register supports detection of watchdog reset, software reset,
and protection fault reset. It does not record the occurrences
of POR, BOD, or XRES. The bits are set on the occurrence
of the corresponding reset and remain set after the reset, until
cleared or a loss of retention, such as a POR reset, external
reset, or brownout detect.

If the RES_CAUSE register cannot detect the cause of the
reset, then it can be one of the non−recorded and
non−retention resets: BOD, POR, XRES. These resets
cannot be distinguished using on−chip resources.

http://www.onsemi.com/
https://www.onsemi.com/pub/Collateral/AXM0F243-D.PDF
https://www.onsemi.com/pub/Collateral/AXM0F243-D.PDF
https://www.onsemi.com/pub/Collateral/AXM0F243-D.PDF
https://www.onsemi.com/pub/Collateral/AXM0F243-D.PDF

AND9836

www.onsemi.com
55

Register List

Table 43. RESET SYSTEM REGISTER LIST

Register Name Description

WDT_DISABLE_KEY Disables the WDT when 0XACED8865 is written, for any other value WDT works normally

CM0P_AIRCR Cortex−M0+ Application Interrupt and Reset Control Register − This register allows initiation of software
resets, among other Cortex−M0+ functions.

RES_CAUSE Reset Cause Register − This register captures the cause of recent resets.

http://www.onsemi.com/

AND9836

www.onsemi.com
56

DEVICE SECURITY
AXM0F243 MCU offers a number of options for

protecting user designs from unauthorized access or
copying. Disabling debug features and enabling flash
protection provide a high level of security.

The debug circuits are enabled by default and can only be
disabled in firmware. If disabled, the only way to re−enable
them is to erase the entire device, clear flash protection, and
reprogram the device with new firmware that enables
debugging. Additionally, all device interfaces can be
permanently disabled for applications concerned about
phishing attacks due to a maliciously reprogrammed device
or attempts to defeat security by starting and interrupting
flash programming sequences. Permanently disabling
interfaces is not recommended for most applications
because the designer cannot access the device.

NOTE: Because all programming, debug, and test
interfaces are disabled when maximum device
security is enabled, AXM0F243 MCU devices
with full device security enabled may not be
returned for failure analysis.

Features
The AXM0F243 MCU device security system has the

following features:
• User−selectable levels of protection.

• In the most secure case provided, the chip can be “locked”
such that it cannot be acquired for test/debug and it cannot
enter erase cycles. Interrupting erase cycles is a known
way for hackers to leave chips in an undefined state and
open to observation.

• CPU execution in a privileged mode by use of the
non−maskable interrupt (NMI). When in privileged
mode, NMI remains asserted to prevent any inadvertent
return from interrupt instructions causing a security leak.
In addition to these, the device offers protection for

individual flash row data.

How It Works

Device Security
The CPU operates in normal user mode or in privileged

mode, and the device operates in one of four protection
modes: BOOT, OPEN, PROTECTED, and KILL. Each

mode provides specific capabilities for the CPU software
and debug. You can change the mode by writing to the
CPUSS_PROTECTION register.
• BOOT mode: The device comes out of reset in BOOT

mode. It stays there until its protection state is copied from
supervisor flash to the protection control register
(CPUSS_PROTECTION). The debug−access port is
stalled until this has happened. BOOT is a transitory mode
required to set the part to its configured protection state.
During BOOT mode, the CPU always operates in
privileged mode.

• OPEN mode: This is the factory default. The CPU can
operate in user mode or privileged mode. In user mode,
flash can be programmed and debugger features are
supported. In privileged mode, access restrictions are
enforced.

• PROTECTED mode: The user may change the mode from
OPEN to PROTECTED. This mode disables all debug
access to user code or memory. In protected mode, only
few registers are accessible; debug access to registers to
reprogram flash is not available. The mode can be set back
to OPEN but only after completely erasing the flash.

• KILL mode: The user may change the mode from OPEN
to KILL. This mode removes all debug access to user code
or memory, and the flash cannot be erased. Access to most
registers is still available; debug access to registers to
reprogram flash is not available. The part cannot be taken
out of KILL mode; devices in KILL mode may not be
returned for failure analysis.

Flash Security
The AXM0F243 MCU devices include a flexible

flash−protection system that controls access to flash
memory. This feature is designed to secure proprietary code,
but it can also be used to protect against inadvertent writes
to the bootloader portion of flash.

Flash memory is organized in rows. You can assign one of
two protection levels to each row; see Table 44. Flash
protection levels can only be changed by performing a
complete flash erase.

For more details, see the Nonvolatile Memory
Programming chapter on page 162.

Table 44. FLASH PROTECTION LEVELS

Protection Settings Allowed Not Allowed

Unprotected External read and write,
Internal read and write

−

Full Protection External read (Note 4)
Internal read

External write,
Internal write

4. To protect the device from external read operations, you should change the device protection settings to PROTECTED.

http://www.onsemi.com/

AND9836

www.onsemi.com
57

DIGITAL SYSTEM

This section encompasses the following chapters:
• Serial Communications Block (SCB) chapter on page 58 • Timer, Counter, and PWM chapter on page 97

Top Level Architecture

Figure 24. Digital Block Diagram

PCLK Peripheral Interconnect (MMIO)

High Speed I/O Matrix and Smart I/O
Power Modes
Active / Sleep

DeepSleep

I/O Subsystem

36x GPIOs (fine pitch)

3x
 S

C
B
−

I2
C

/S
P

I/U
A

R
T

5x
 T

C
P

W
M

http://www.onsemi.com/

AND9836

www.onsemi.com
58

SERIAL COMMUNICATIONS BLOCK (SCB)
The Serial Communications Block (SCB) of AXM0F243

MCU supports three serial interface protocols: SPI, UART,
and I2C. Only one of the protocols is supported by an SCB
at any given time.

Features
This block supports the following features:

• Standard SPI master and slave functionality with
Motorola, Texas Instruments, and National
Semiconductor protocols

• Standard UART functionality with SmartCard reader,
Local Interconnect Network (LIN), and IrDA protocols

• Standard I2C master and slave functionality

• Standard LIN slave functionality with LIN v1.3 and LIN
v2.1/2.2 specification compliance

• EZ mode for SPI and I2C, which allows for operation
without CPU intervention

• Low−power (Deep−Sleep) mode of operation for SPI and
I2C protocols (using external clocking) Each of the three
protocols is explained in the following sections.

Serial Peripheral Interface (SPI)
The SPI protocol is a synchronous serial interface

protocol. Devices operate in either master or slave mode.
The master initiates the data transfer. The SCB supports
single−master−multiple−slaves topology for SPI. Multiple
slaves are supported with individual slave select lines.

You can use the SPI master mode when the AXM0F243
MCU has to communicate with one or more SPI slave
devices. The SPI slave mode can be used when the
AXM0F243 MCU has to communicate with an SPI master
device.

Features
• Supports master and slave functionality

• Supports three types of SPI protocols:
♦ Motorola SPI – modes 0, 1, 2, and 3
♦ Texas Instruments SPI, with coinciding and

preceding data frame indicator for mode 1
♦ National Semiconductor (MicroWire) SPI for

mode 0
• Supports up to four slave select lines

• Data frame size programmable from 4 bits to 16 bits

• Interrupts or polling CPU interface

• Programmable oversampling

• Supports EZ mode of operation (Easy SPI Protocol)
♦ EZSPI mode allows for operation without CPU

intervention
• Supports externally clocked slave operation:

♦ In this mode, the slave operates in Active, Sleep,
and Deep−Sleep system power modes

http://www.onsemi.com/

AND9836

www.onsemi.com
59

General Description
Figure 25 illustrates an example of SPI master with four

slaves.

SPI
Master

MOSI

MISO
SPI

Slave 1

Slave Select (SS) 2

SPI
Slave 2

SPI
Slave 3

SPI
Slave 4

Slave Select (SS) 1

Slave Select (SS) 4

Slave Select (SS) 3

SCLK

Figure 25. SPI Example

A standard SPI interface consists of four signals as
follows.
• SCLK: Serial clock (clock output from the master, input

to the slave).
• MOSI: Master−out−slave−in (data output from the

master, input to the slave).
• MISO: Master−in−slave−out (data input to the master,

output from the slave).
• Slave Select (SS): Typically an active low signal (output

from the master, input to the slave).
A simple SPI data transfer involves the following: the

master selects a slave by driving its SS line, then it drives
data on the MOSI line and a clock on the SCLK line. The
slave uses either of the edges of SCLK depending on the
configuration to capture the data on the MOSI line; it also

drives data on the MISO line, which is captured by the
master.

By default, the SPI interface supports a data frame size of
eight bits (1 byte). The data frame size can be configured to
any value in the range 4 to 16 bits. The serial data can be
transmitted either most significant bit (MSb) first or least
significant bit (LSB) first.

Three different variants of the SPI protocol are supported
by the SCB:
• Motorola SPI: This is the original SPI protocol.

• Texas Instruments SPI: A variation of the original SPI
protocol, in which data frames are identified by a pulse on
the SS line.

• National Semiconductors SPI: A half duplex variation of
the original SPI protocol.

http://www.onsemi.com/

AND9836

www.onsemi.com
60

SPI Modes of Operation

Motorola SPI
The original SPI protocol was defined by Motorola. It is

a full duplex protocol. Multiple data transfers may happen
with the SS line held at ‘0’. As a result, slave devices must
keep track of the progress of data transfers to separate
individual data frames. When not transmitting data, the SS
line is held at ‘1’ and SCLK is typically pulled low.

Modes of Motorola SPI
The Motorola SPI protocol has four different modes based

on how data is driven and captured on the MOSI and MISO
lines. These modes are determined by clock polarity
(CPOL) and clock phase (CPHA).

Clock polarity determines the value of the SCLK line
when not transmitting data. CPOL = ‘0’ indicates that SCLK
is ‘0’ when not transmitting data. CPOL = ‘1’ indicates that
SCLK is ‘1’ when not transmitting data.

Clock phase determines when data is driven and captured.
CPHA = 0 means sample (capture data) on the leading (first)

clock edge, while CPHA = 1 means sample on the trailing
(second) clock edge, regardless of whether that clock edge
is rising or falling. With CPHA = 0, the data must be stable
for setup time before the first clock cycle.
• Mode 0: CPOL is ‘0’, CPHA is ‘0’: Data is driven on a

falling edge of SCLK. Data is captured on a rising edge
of SCLK.

• Mode 1; CPOL is ‘0’, CPHA is ‘1’: Data is driven on a
rising edge of SCLK. Data is captured on a falling edge
of SCLK.

• Mode 2: CPOL is ‘1’, CPHA is ‘0’: Data is driven on a
rising edge of SCLK. Data is captured on a falling edge
of SCLK.

• Mode 3: CPOL is ‘1’, CPHA is ‘1’: Data is driven on a
falling edge of SCLK. Data is captured on a rising edge
of SCLK.
Figure 26 illustrates driving and capturing of

MOSI/MISO data as a function of CPOL and CPHA.

CPOL = 0 CPHA = 0

SCLK

MISO /
MOSI

SCLK

SCLK

MISO /
MOSI

SCLK

MISO /
MOSI

LEGEND:
CPOL: Clock Polarity
CPHA: Clock Phase
SCLK: SPI interface clock
MOSI: SPI Master−Out−Slave−In
MISO: SPI Master−In−Slave−Out

MSB LSB

MSB LSB

MSB LSB

MSB LSB

CPOL = 0 CPHA = 1

CPOL = 1 CPHA = 0

CPOL = 1 CPHA = 1

MISO /
MOSI

Figure 26. SPI Motorola, 4 Modes

http://www.onsemi.com/

AND9836

www.onsemi.com
61

Figure 27 illustrates a single 8−bit data transfer and two
successive 8−bit data transfers in mode 0 (CPOL is ‘0’,
CPHA is ‘0’).

SCLK

Slave Select

MOSI

MISO

SCLK

Slave Select

MOSI

MISO

CPOL = 0, CPHA = 0 single data transfer

MSB LSB

MSB LSB MSB LSB

LSBMSB

MSB LSB MSB LSB

 CPOL = 0, CPHA = 0 two successive data transfers

LEGEND:
CPOL: Clock Polarity
CPHA: Clock Phase
SCLK: SPI interface clock
MOSI: SPI Master−Out−Slave−In
MISO: SPI Master−In−Slave−Out

Figure 27. SPI Motorola Data Transfer Example

Configuring SCB for SPI Motorola Mode
To configure the SCB for SPI Motorola mode, set various

register bits in the following order:
1. Select SPI by writing ‘01’ to the MODE (bits

[25:24]) of the SCB_CTRL register.
2. Select SPI Motorola mode by writing ‘00’ to the

MODE (bits [25:24]) of the SCB_SPI_CTRL
register.

3. Select the mode of operation in Motorola by
writing to the CPHA and CPOL fields (bits 2 and
3 respectively) of the SCB_SPI_CTRL register.

4. Follow steps 2 to 4 mentioned in “Enabling and
Initializing SPI” on page 67.

For more information on these registers, see the
AND9835 AXM0F243 MCU Registers.

Texas Instruments SPI
The Texas Instruments’ SPI protocol redefines the use of

the SS signal. It uses the signal to indicate the start of a data
transfer, rather than a low active slave select signal, as in the
case of Motorola SPI. As a result, slave devices need not
keep track of the progress of data transfers to separate
individual data frames. The start of a transfer is indicated by
a high active pulse of a single bit transfer period. This pulse
may occur one cycle before the transmission of the first data
bit, or may coincide with the transmission of the first data
bit. The TI SPI protocol supports only mode 1 (CPOL is ‘0’
and CPHA is ‘1’): data is driven on a rising edge of SCLK
and data is captured on a falling edge of SCLK.

Figure 28 illustrates a single 8−bit data transfer and two
successive 8−bit data transfers. The SELECT pulse precedes
the first data bit. Note how the SELECT pulse of the second
data transfer coincides with the last data bit of the first data
transfer.

http://www.onsemi.com/
https://www.onsemi.com/pub/Collateral/AND9835-D.PDF

AND9836

www.onsemi.com
62

SCLK

Slave Select

MOSI

MISO

SCLK

Slave Select

MOSI

MISO

MSB LSB

MSB LSB MSB LSB

MSB LSB

MSB LSB MSB LSB

LEGEND:
CPOL: Clock Polarity
CPHA: Clock Phase
SCLK: SPI interface clock
MOSI: SPI Master−Out−Slave−In
MISO: SPI Master−In−Slave−Out

CPOL = 0, CPHA = 1 two successive data transfers

CPOL = 0, CPHA = 1 single data transfer

Figure 28. SPI TI Data Transfer Example

Figure 29 illustrates a single 8−bit data transfer and two
successive 8−bit data transfers. The SELECT pulse
coincides with the first data bit of a frame.

SCLK

Slave Select

SCLK

Slave Select

MOSI

MISO

MSB LSB

MSB LSB MSB LSB

MSB LSB

MSB LSB MSB LSB

LEGEND:
CPOL: Clock Polarity
CPHA: Clock Phase
SCLK: SPI interface clock
MOSI: SPI Master−Out−Slave−In
MISO: SPI Master−In−Slave−Out

CPOL = 0, CPHA = 1 two successive data transfers

CPOL = 0, CPHA = 1 single data transfer

Figure 29. SPI TI Data Transfer Example

MOSI

MISO

http://www.onsemi.com/

AND9836

www.onsemi.com
63

Configuring SCB for SPI TI Mode
To configure the SCB for SPI TI mode, set various register

bits in the following order:
1. Select SPI by writing ‘01’ to the MODE (bits

[25:24]) of the SCB_CTRL register.
2. Select SPI TI mode by writing ‘01’ to the MODE

(bits [25:24]) of the SCB_SPI_CTRL register.
3. Select the mode of operation in TI by writing to

the SELECT_PRECEDE field (bit 1) of the
SCB_SPI_CTRL register (‘1’ configures the
SELECT pulse to precede the first bit of next
frame and ‘0’ otherwise).

4. Follow steps 2 to 5 mentioned in “Enabling and
Initializing SPI” on page 67.

For more information on these registers, see the
AND9835 AXM0F243 MCU Registers.

National Semiconductors SPI
The National Semiconductors’ SPI protocol is a half

duplex protocol. Rather than transmission and reception
occurring at the same time, they take turns. The transmission
and reception data sizes may differ. A single “idle” bit
transfer period separates transmission from reception.
However, the successive data transfers are NOT separated
by an “idle” bit transfer period.

The National Semiconductors SPI protocol only supports
mode 0: data is driven on a falling edge of SCLK and data
is captured on a rising edge of SCLK.

Figure 30 illustrates a single data transfer and two
successive data transfers. In both cases the transmission data
transfer size is eight bits and the reception data transfer size
is four bits.

Figure 30. SPI NS Data Transfer Example

MSB LSB

MSB LSB

MSB LSB

MSB LSB

MSB

“idle” ‘0’ cycle

“idle” ‘0’ cycle No “idle” cycle

SCLK

Slave Select

SCLK

Slave Select

MOSI

MISO

LEGEND:
CPOL: Clock Polarity
CPHA: Clock Phase
SCLK: SPI interface clock
MOSI: SPI Master−Out−Slave−In
MISO: SPI Master−In−Slave−Out

CPOL = 0, CPHA = 0 Transfer of one MOSI and one MISO data frame

CPOL = 0, CPHA = 0 Successive transfer of two MOSI and one MISO data frame

MOSI

MISO

Configuring SCB for SPI NS Mode
To configure the SCB for SPI NS mode, set various

register bits in the following order:
1. Select SPI by writing ‘01’ to the MODE (bits

[25:24]) of the SCB_CTRL register.
2. Select SPI NS mode by writing ‘10’ to the MODE

(bits [25:24]) of the SCB_SPI_CTRL register.
3. Follow steps 2 to 5 mentioned in “Enabling and

Initializing SPI” on page 67.
For more information on these registers, see the

AND9835 AXM0F243 MCU Registers.

Using SPI Master to Clock Slave
In a normal SPI Master mode transmission, the SCLK is

generated only when the SCB is enabled and data is being
transmitted. This can be changed to always generate a clock
on the SCLK line as long as the SCB is enabled. This is used
when the slave uses the SCLK for functional operations
other than just the SPI functionality. To enable this, write ‘1’
to the SCLK_CONTINUOUS (bit 5) of the
SCB_SPI_CTRL register.

http://www.onsemi.com/
https://www.onsemi.com/pub/Collateral/AND9835-D.PDF
https://www.onsemi.com/pub/Collateral/AND9835-D.PDF

AND9836

www.onsemi.com
64

Easy SPI Protocol
The easy SPI (EZSPI) protocol is based on the Motorola

SPI operating in any mode (0, 1, 2, 3). It allows
communication between master and slave without the need
for CPU intervention at the level of individual frames.

The EZSPI protocol defines an 8−bit EZ address that
indexes a memory array (32−entry array of eight bit per entry
is supported) located on the slave device. To address these
32 locations, the lower five bits of the EZ address are used.
All EZSPI data transfers have 8−bit data frames.

NOTE: The SCB has a FIFO memory, which is a 16
word by 16−bit SRAM, with byte write enable.
The access methods for EZ and non−EZ
functions are different. In non−EZ mode, the
FIFO is split into TXFIFO and RXFIFO. Each
has eight entries of 16 bits per entry. The 16−bit
width per entry is used to accommodate
configurable data width. In EZ mode, it is used
as a single 32x8 bit EZFIFO because only a
fixed 8−bit width data is used in EZ mode.

EZSPI has three types of transfers: a write of the EZ
address from the master to the slave, a write of data from the
master to an addressed slave memory location, and a read by
the master from an addressed slave memory location.

EZ Address Write
A write of the EZ address starts with a command byte

(0x00) on the MOSI line indicating the master’s intent to
write the EZ address. The slave then drives a reply byte on
the MISO line to indicate that the command is observed

(0xFE) or not (0xFF). The second byte on the MOSI line is
the EZ address.

Memory Array Write
A write to a memory array index starts with a command

byte (0x01) on the MOSI line indicating the master’s intent
to write to the memory array. The slave then drives a reply
byte on the MISO line to indicate that the command was
registered (0xFE) or not (0xFF). Any additional write data
bytes on the MOSI line are written to the memory array at
locations indicated by the communicated EZ address. The
EZ address is automatically incremented by the slave as
bytes are written into the memory array. When the EZ
address exceeds the maximum number of memory entries
(32), it remains there and does not wrap around to 0.

Memory Array Read
A read from a memory array index starts with a command

byte (0x02) on the MOSI line indicating the master’s intent
to read from the memory array. The slave then drives a reply
byte on the MISO line to indicate that the command was
registered (0xFE) or not (0xFF). Any additional read data
bytes on the MISO line are read from the memory array at
locations indicated by the communicated EZ address. The
EZ address is automatically incremented by the slave as
bytes are read from the memory array. When the EZ address
exceeds the maximum number of memory entries (32), it
remains there and does not wrap around to 0.

Figure 31 illustrates the write of EZ address, write to a
memory array and read from a memory array operations in
the EZSPI protocol.

http://www.onsemi.com/

AND9836

www.onsemi.com
65

Figure 31. EZSPI Example

Command 0x00 EZ Address

Command 0x01 Write DATA

Command 0x02

Read DATA

SCLK

Slave Select

SCLK

Slave Select

MOSI

MISO

SCLK

Slave Select

EZ address

EZ address (8 bits)

EZ address

LEGEND :
CPOL: Clock Polarity 0x00: Write EZ address
CPHA: Clock Phase 0x01: Write DATA
SCLK: SPI Interface Clock 0x02: Read DATA
MISO: SPI Master−In−Slave−Out 0xFE: “slave ready”
MOSI: SPI Master−Out−Slave−In 0xFF: “slave busy”

Command 0x02: Read DATA

Command 0x01: Write DATA

Command 0x00: Write EZ address

MOSI

MISO

MOSI

MISO

EZ buffer
(32 bytes SRAM)

Read
DATA

Write
DATA

Configuring SCB for EZSPI Mode
By default, the SCB is configured for non−EZ mode of

operation. To configure the SCB for EZSPI mode, set the
register bits in the following order:

1. Select EZ mode by writing ‘1’ to the EZ_MODE
bit (bit 10) of the SCB_CTRL register.

2. Use continuous transmission mode for the
transmitter by writing ‘1’ to the CONTINUOUS
bit of SCB_SPI_CTRL register.

3. Follow steps 2 to 5 mentioned in “Enabling and
Initializing SPI” on page 67.

For more information on these registers, see the
AND9835 AXM0F243 MCU Registers.

http://www.onsemi.com/
https://www.onsemi.com/pub/Collateral/AND9835-D.PDF

AND9836

www.onsemi.com
66

SPI Registers
The SPI interface is controlled using a set of 32−bit control

and status registers listed in Table 45. For more information

on these registers, see the AND9835 AXM0F243 MCU
Registers.

Table 45. SPI REGISTERS

Register Name Description

SCB_CTRL Enables the SCB, selects the type of serial interface (SPI, UART, I2C), and selects internally and
externally clocked operation, EZ and non−EZ modes of operation.

SCB_STATUS In EZ mode, this register indicates whether the externally clocked logic is potentially using the EZ memory.

SCB_SPI_CTRL Configures the SPI as either a master or a slave, selects SPI protocols (Motorola, TI, National) and
clock−based submodes in Motorola SPI (modes 0, 1, 2, 3), selects the type of SELECT signal in TI SPI.

SCB_SPI_STATUS Indicates whether the SPI bus is busy and sets the SPI slave EZ address in the internally clocked mode.

SCB_TX_CTRL Specifies the data frame width and specifies whether MSB or LSB is the first bit in transmission.

SCB_RX_CTRL Performs the same function as that of the SCB_TX_CTRL register, but for the receiver. Also decides
whether a median filter is to be used on the input interface lines.

SCB_TX_FIFO_CTRL Specifies the trigger level, clears the transmitter FIFO and shift registers, and performs the FREEZE
operation of the transmitter FIFO.

SCB_RX_FIFO_CTRL Performs the same function as that of the SCB_TX_FIFO_CTRL register, but for the receiver.

SCB_TX_FIFO_WR Holds the data frame written into the transmitter FIFO. Behavior is similar to that of a PUSH operation.

SCB_RX_FIFO_RD Holds the data frame read from the receiver FIFO. Reading a data frame removes the data frame from
the FIFO − behavior is similar to that of a POP operation. This register has a side effect when read by
software: a data frame is removed from the FIFO.

SCB_RX_FIFO_RD_SILENT Holds the data frame read from the receiver FIFO. Reading a data frame does not remove the data frame
from the FIFO; behavior is similar to that of a PEEK operation.

SCB_RX_MATCH Holds the slave device address and mask values.

SCB_TX_FIFO_STATUS Indicates the number of bytes stored in the transmitter FIFO, the location from which a data frame is read
by the hardware (read pointer), the location from which a new data frame is written (write pointer), and
decides if the transmitter FIFO holds the valid data.

SCB_RX_FIFO_STATUS Performs the same function as that of the SCB_TX_FIFO_STATUS register, but for the receiver.

SCB_EZ_DATA Holds the data in EZ memory location

SPI Interrupts
The SPI supports both internal and external interrupt

requests. The internal interrupt events are listed here.
Custom ISRs can also be used by connecting external
interrupt component to the interrupt output of the SPI
component (with external interrupts enabled).

The SPI predefined interrupts can be classified as TX
interrupts and RX interrupts. The TX interrupt output is the
logical OR of the group of all possible TX interrupt sources.
This signal goes high when any of the enabled TX interrupt
sources are true. The RX interrupt output is the logical OR
of the group of all possible RX interrupt sources. This signal
goes high when any of the enabled Rx interrupt sources are
true. Various interrupt registers are used to determine the
actual source of the interrupt.

The SPI supports interrupts on the following events:
• SPI master transfer done

• SPI Bus Error − Slave deselected at an unexpected time
in the SPI transfer

• SPI slave deselected after any EZSPI transfer occurred

• SPI slave deselected after a write EZSPI transfer occurred

• TX
♦ TX FIFO has less entries than the value specified by

TRIGGER_LEVEL in SCB_TX_FIFO_CTRL
♦ TX FIFO is not full
♦ TX FIFO is empty
♦ TX FIFO overflow
♦ TX FIFO underflow

• RX
♦ RX FIFO is full
♦ RX FIFO is not empty
♦ RX FIFO overflow
♦ RX FIFO underflow

• SPI Externally clocked
♦ Wake up request on slave select
♦ SPI STOP detection at the end of each transfer
♦ SPI STOP detection at the end of a write transfer
♦ SPI STOP detection at the end of a read transfer

NOTE: The SPI interrupt signal is hard−wired to the
Cortex−M0 NVIC and cannot be routed to
external pins.

http://www.onsemi.com/
https://www.onsemi.com/pub/Collateral/AND9835-D.PDF
https://www.onsemi.com/pub/Collateral/AND9835-D.PDF

AND9836

www.onsemi.com
67

Enabling and Initializing SPI
The SPI must be programmed in the following order:

1. Program protocol specific information using the
SCB_SPI_CTRL register, according to Table 47.
This includes selecting the submodes of the
protocol and selecting master−slave functionality.
EZSPI can be used with slave mode only.

2. Program the generic transmitter and receiver
information using the SCB_TX_CTRL and
SCB_RX_CTRL registers, as shown in Table 48:
a. Specify the data frame width. This should
always be 8 for EZSPI.
b. Specify whether MSB or LSB is the first bit to
be transmitted/received. This should always be
MSB first for EZSPI.

3. Program the transmitter and receiver FIFOs using
the SCB_TX_FIFO_CTRL and
SCB_RX_FIFO_CTRL registers respectively, as
shown in Table 49:

a. Set the trigger level.
b. Clear the transmitter and receiver FIFO and
Shift registers.
c. Freeze the TX and RX FIFO.

4. Program SCB_CTRL register to enable the SCB
block. Also select the mode of operation. These
register bits are shown in Table 46.

5. Enable the block (write a ‘1’ to the ENABLED bit
of the SCB_CTRL register). After the block is
enabled, control bits should not be changed.
Changes should be made after disabling the block;
for example, to modify the operation mode (from
Motorola mode to TI mode) or to go from
externally clocked to internally clocked operation.
The change takes effect only after the block is
re−enabled. Note that re−enabling the block causes
re−initialization and the associated state is lost (for
example, FIFO content).

Table 46. SCB_CTRL REGISTER

Bits Name Value Description

[25:24] MODE 00 I2C mode

01 SPI mode

10 UART mode

11 Reserved

31 ENABLED 0 SCB block disabled

1 SCB block enabled

Table 47. SCB_SPI_CTRL REGISTER

Bits Name Value Description

[25:24] MODE 00 SPI Motorola submode. (This is the only mode supported for EZSPI.)

01 SPI Texas Instruments submode.

10 SPI National Semiconductors submode.

11 Reserved

31 MASTER_MODE 0 Slave mode. (This is the only mode supported for EZSPI.)

1 Master mode.

Table 48. SCB_TX_CTRL/SCB_RX_CTRL REGISTERS

Bits Name Description

[3:0] DATA_ WIDTH ‘DATA_WIDTH + 1’ is the number of bits in the transmitted or received data frame. The valid
 range is [3, 15]. This does not include start, stop, and parity bits. For EZSPI, this value should be
 ‘0b0111’

8 MSB_FIRST 1 = MSB first
 0 = LSB firstFor EZSPI, this value should be 1.

9 MEDIAN This is for SCB_RX_CTRL only.
 Decides whether a digital three−tap median filter is applied on the input interface lines. This filter
 should reduce susceptibility to errors, but it requires higher oversampling values.
 1 = Enabled
 0 = Disabled

http://www.onsemi.com/

AND9836

www.onsemi.com
68

Table 49. SCB_TX_FIFO_CTRL/SCB_RX_CTRL REGISTERS

Bits Name Description

[7:0] TRIGGER_LEVEL Trigger level. When the transmitter FIFO has less entries or receiver FIFO has more entries than
 the value of this field, a transmitter or receiver trigger event is generated in the respective case.

16 CLEAR When ‘1’, the transmitter or receiver FIFO and the shift registers are cleared.

17 FREEZE When ‘1’, hardware reads/writes to the transmitter or receiver FIFO have no effect. Freeze does
 not advance the TX or RX FIFO read/write pointer.

Internally and Externally Clocked SPI Operations
The SCB supports both internally and externally clocked

operations for SPI and I2C functions. An internally clocked
operation uses a clock provided by the chip. An externally
clocked operation uses a clock provided by the serial
interface. Externally clocked operation enables operation in
the Deep−Sleep system power mode.

Internally clocked operation uses the high−frequency
clock (HFCLK) of the system. For more information on
system clocking, see the Clocking System chapter on
page 36. It also supports oversampling. Oversampling is
implemented with respect to the high−frequency clock. The
OVS (bits [3:0]) of the SCB_CTRL register specify the
oversampling.

In SPI master mode, the valid range for oversampling is
4 to 16. Hence, with a clock speed of 48 MHz, the maximum
bit rate is 12 Mbps. However, if you consider the I/O cell and
routing delays, the oversampling must be set between 6 and
16 for proper operation. So, the maximum bit rate is 8 Mbps.

NOTE: To achieve maximum possible bit rate,
LATE_MISO_SAMPLE must be set to ‘1’ in
SPI master mode. This has a default value of
‘0’.

In SPI slave mode, the OVS field (bits [3:0]) of
SCB_CTRL register is not used. However, there is a
frequency requirement for the SCB clock with respect to the
interface clock (SCLK). This requirement is expressed in
terms of the ratio (SCB clock/ SCLK). This ratio is
dependent on two fields: MEDIAN of SCB_RX_CTRL
register and LATE_MISO_SAMPLE of SCB_CTRL
register. If the external SPI master supports Late MISO
sampling and if the median bit is set to ‘0’, the maximum
data rate that can be achieved is 16 Mbps. If the external SPI
master does not support late MISO sampling, the maximum
data rate is limited to 8 Mbps (with the median bit set to ‘0’).
Based on these bits, the maximum bit rates are given in
Table 50.

Table 50. SPI SLAVE MAXIMUM DATA RATES

Maximum Bit Rate at
Peripheral Clock of 48 MHz Ratio Requirement

Median of
SCB_RX_CTRL

LATE_MISO_SAMPLE of
SCB_CTRL

8 Mbps ≥6 0 1

6 Mbps ≥8 1 1

4 Mbps ≥12 0 0

3 Mbps ≥16 1 0

Externally clocked operation is limited to:
• Slave functionality.

• EZ functionality. EZ functionality uses the block’s
SRAM as a memory structure. Non−EZ functionality uses
the block’s SRAM as TX and RX FIFOs; FIFO support is
not available in externally clocked operation.

• Motorola mode 0, 1, 2, 3.
Externally clocked EZ mode of operation can support a

data rate of 48 Mbps (at the interface clock of 48 MHz).
Internally and externally clocked operation is determined

by two register fields of the SCB_CTRL register:
• EC_AM_MODE: Indicates whether SPI slave selection is

internally (‘0’) or externally (‘1’) clocked. SPI slave
selection comprises the first part of the protocol.

• EC_OP_MODE: Indicates whether the rest of the
protocol operation (besides SPI slave selection) is
internally (‘0’) or externally (‘1’) clocked. As mentioned
earlier, externally clocked operation does NOT support
non−EZ functionality.
These two register fields determine the functional

behavior of SPI. The register fields should be set based on
the required behavior in Active, Sleep, and Deep−Sleep
system power mode. Improper setting may result in faulty
behavior in certain system power modes. Table 51 and
Table 52 describe the settings for SPI (in non−EZ and EZ
modes).

http://www.onsemi.com/

AND9836

www.onsemi.com
69

Non−EZ Mode of Operation
In non−EZ mode there are two possible settings. As

externally clocked operation is not supported for non−EZ

functionality (no FIFO support), EC_OP_MODE should
always be set to ‘0’. However, EC_AM_MODE can be set
to ‘0’ or ‘1’. Table 51 gives an overview of the possibilities.

Table 51. SPI OPERATION IN NON−EZ MODE

SPI (non−EZ) Mode

System Power Mode

EC_OP_MODE = 0 EC_OP_MODE = 1

EC_AM_MODE = 0 EC_AM_MODE = 1 EC_AM_MODE = 0 EC_AM_MODE = 1

Active and Sleep Selection using internal clock.
Operation using internal clock.

Selection using external clock:
Operation using internal clock.
In Active mode, the Wakeup
interrupt cause is disabled

(MASK = 0).
In Sleep mode, the MASK bit
can be configured by the user.

Not supported Not supported

Deep−Sleep Not supported Selection using external clock:
Wakeup interrupt cause is

enabled (MASK = 1).
Send 0xFF.

EC_OP_MODE is ‘0’ and EC_AM_MODE is ‘0’: This
setting only works in Active and Sleep system power modes.
The entire block’s functionality is provided in the internally
clocked domain.

EC_OP_MODE is ‘0’ and EC_AM_MODE is ‘1’: This
setting works in Active and Sleep system power mode and
provides limited (wake up) functionality in Deep−Sleep
system power mode. SPI slave selection is performed by the
externally clocked logic: in Active system power mode, both
internally and externally clocked logic are active, and in
Deep−Sleep system power mode, only the externally
clocked logic is active. When the externally clocked logic
detects slave selection, it sets a wakeup interrupt cause bit,
which can be used to generate an interrupt to wake up the
CPU.
• In Active system power mode, the CPU and the block’s

internally clocked operation are active and the wakeup
interrupt cause is disabled (associated MASK bit is ‘0’).
But in the Sleep mode, wakeup interrupt cause can be
either enabled or disabled (MASK bit can be either ‘1’ or
‘0’) based on the application. The remaining operations

in the Sleep mode are same as that of the Active mode.
The internally clocked operation takes care of the ongoing
SPI transfer.

• In Deep−Sleep system power mode, the CPU needs to be
woken up and the wakeup interrupt cause is enabled
(MASK bit is ‘1’). Waking up takes time, so the ongoing
SPI transfer is negatively acknowledged (‘1’ bit or
“0xFF” byte is sent out on the MISO line) and the
internally clocked operation takes care of the next SPI
transfer when it is woken up.

EZ Mode of Operation
EZ mode has three possible settings. EC_AM_MODE can

be set to ‘0’ or ‘1’ when EC_OP_MODE is ‘0’ and
EC_AM_MODE must be set to ‘1’ when EC_OP_MODE is
‘1’. Table 52 gives an overview of the possibilities. The grey
cells indicate a possible, yet not recommended, setting
because it involves a switch from the externally clocked
logic (slave selection) to the internally clocked logic (rest of
the operation). The combination EC_AM_MODE = 0 and
EC_OP_MODE = 1 is invalid and the block will not
respond.

Table 52. SPI OPERATION IN EZ MODE

SPI, EZ Mode

System Power Mode

EC_OP_MODE = 0 EC_OP_MODE = 1

EC_AM_MODE = 0 EC_AM_MODE = 1 EC_AM_MODE = 0 EC_AM_MODE = 1

Active and Sleep Selection using internal clock.
Operation using internal clock.

Selection using external clock.
Operation using internal clock.
In Active mode, the Wakeup
interrupt cause is disabled

(MASK = 0).
In Sleep mode, the MASK bit
can be configured by the user.

Invalid Selection using
external clock.

Operation using
external clock.

Deep−Sleep Not supported Selection using external clock:
Wakeup interrupt cause is

enabled (MASK = 1).
Send 0xFF.

Selection using
external clock.

Operation using
external clock.

http://www.onsemi.com/

AND9836

www.onsemi.com
70

EC_OP_MODE is ‘0’ and EC_AM_MODE is ‘0’: This
setting only works in Active and Sleep system power modes.
The entire block’s functionality is provided in the internally
clocked domain.

EC_OP_MODE is ‘0’ and EC_AM_MODE is ‘1’: This
setting works in Active and Sleep system power modes and
provides limited (wake up) functionality in Deep−Sleep
system power mode. SPI slave selection is performed by the
externally clocked logic: in Active system power mode, both
internally and externally clocked logic are active, and in
Deep−Sleep system power mode, only the externally
clocked logic is active. When the externally clocked logic
detects slave selection, it sets a wakeup interrupt cause bit,
which can be used to generate an interrupt to wake up the
CPU.
• In Active system power mode, the CPU and the block’s

internally clocked operation are active and the wakeup
interrupt cause is disabled (associated MASK bit is ‘0’).
But in Sleep mode, wakeup interrupt cause can be either
enabled or disabled (MASK bit can be either ‘1’ or ‘0’)

based on the application. The remaining operations in the
Sleep mode are same as that of the Active mode. The
internally clocked operation takes care of the ongoing SPI
transfer.

• In Deep−Sleep system power mode, the CPU needs to be
woken up and the wakeup interrupt cause is enabled
(MASK bit is ‘1’). Waking up takes time, so the ongoing
SPI transfer is negatively acknowledged (‘1’ bit or
“0xFF” byte is sent out on the MISO line) and the
internally clocked operation takes care of the next SPI
transfer when it is woken up.
EC_OP_MODE is ‘1’ and EC_AM_MODE is ‘1’: This

setting works in Active, Sleep, and Deep−Sleep system
power modes. The SCB functionality is provided in the
externally clocked domain. Note that this setting results in
externally clocked accesses to the block’s SRAM. These
accesses may conflict with internally clocked accesses from
the device. This may cause wait states or bus errors. The
field FIFO_BLOCK of the SCB_CTRL register determines
whether wait states (‘1’) or bus errors (‘0’) are generated.

http://www.onsemi.com/

AND9836

www.onsemi.com
71

UART
The Universal Asynchronous Receiver/Transmitter

(UART) protocol is an asynchronous serial interface
protocol. UART communication is typically point−to−point.
The UART interface consists of two signals:
• TX: Transmitter output

• RX: Receiver input

Features
• Asynchronous transmitter and receiver functionality

• Supports a maximum data rate of 3 Mbps

• Supports UART protocol
♦ Standard UART
♦ SmartCard (ISO7816) reader.
♦ IrDA

• Supports Local Interconnect Network (LIN)
♦ Break detection
♦ Baud rate detection
♦ Collision detection (ability to detect that a driven bit

value is not reflected on the bus, indicating that
another component is driving the same bus)

• Multi−processor mode

• Data frame size programmable from 4 to 9 bits

• Programmable number of STOP bits, which can be set in
terms of half bit periods between 1 and 4

• Parity support (odd and even parity)

• Interrupt or polling CPU interface

• Programmable oversampling

General Description
Figure 32 illustrates a standard UART TX and RX.

UART UART

RX

TX

TX

RX

Figure 32. UART Example

A typical UART transfer consists of a “Start Bit” followed
by multiple “Data Bits”, optionally followed by a “Parity
Bit” and finally completed by one or more “Stop Bits”. The
Start and Stop bits indicate the start and end of data
transmission. The Parity bit is sent by the transmitter and is
used by the receiver to detect single bit errors. As the
interface does not have a clock (asynchronous), the
transmitter and receiver use their own clocks; also, they need
to agree upon the period of a bit transfer.

Three different serial interface protocols are supported:
• Standard UART protocol

♦ Multi−Processor Mode
♦ Local Interconnect Network (LIN)

• SmartCard, similar to UART, but with a possibility to
send a negative acknowledgement

• IrDA, modification to the UART with a modulation
scheme
By default, UART supports a data frame width of eight

bits. However, this can be configured to any value in the
range of 4 to 9. This does not include start, stop, and parity
bits. The number of stop bits can be in the range of 1 to 4. The
parity bit can be either enabled or disabled. If enabled, the
type of parity can be set to either even parity or odd parity.
The option of using the parity bit is available only in the
Standard UART and SmartCard UART modes. For IrDA
UART mode, the parity bit is automatically disabled. Figure
33 depicts the default configuration of the UART interface
of the SCB.

NOTE: UART interface does not support external
clocking operation. Hence, UART operates only
in the Active and Sleep system power modes.

http://www.onsemi.com/

AND9836

www.onsemi.com
72

UART Modes of Operation

Standard Protocol
A typical UART transfer consists of a start bit followed by

multiple data bits, optionally followed by a parity bit and
finally completed by one or more stop bits. The start bit
value is always ‘0’, the data bits values are dependent on the
data transferred, the parity bit value is set to a value
guaranteeing an even or odd parity over the data bits, and the
stop bit value is ‘1’. The parity bit is generated by the
transmitter and can be used by the receiver to detect single
bit transmission errors. When not transmitting data, the TX
line is ‘1’ – the same value as the stop bits.

Because the interface does not have a clock, the
transmitter and receiver need to agree upon the period of a
bit transfer. The transmitter and receiver have their own
internal clocks. The receiver clock runs at a higher

frequency than the bit transfer frequency, such that the
receiver may oversample the incoming signal.

The transition of a stop bit to a start bit is represented by
a change from ‘1’ to ‘0’ on the TX line. This transition can
be used by the receiver to synchronize with the transmitter
clock. Synchronization at the start of each data transfer
allows error−free transmission even in the presence of
frequency drift between transmitter and receiver clocks. The
required clock accuracy is dependent on the data transfer
size.

The stop period or the amount of stop bits between
successive data transfers is typically agreed upon between
transmitter and receiver, and is typically in the range of 1 to
3−bit transfer periods.

Figure 33 illustrates the UART protocol.

Figure 33. UART, Standard Protocol Example

DATA DATA DATA DATA DATA DATA DATA PAR DATA DATA DATAIDLE START STOP START

Two successive data transfers (7data bits, 1 parity bit, 2 stop bits)
TX / RX

LEGEND:
TX / RX: Transmit or Receive line

The receiver oversamples the incoming signal; the value
of the sample point in the middle of the bit transfer period (on
the receiver’s clock) is used. Figure 34 illustrates this.

Figure 34. UART, Standard Protocol Example (Single Sample)

DATA DATA DATA DATA DATA DATA DATA PAR DATA DATA DATAIDLE START STOP START

Synchronisation

Sample points

Synchronisation

Sample points

TX clock

RX clock

TX / RX

LEGEND:
TX / RX: Transmit or Receive line

Alternatively, three samples around the middle of the bit
transfer period (on the receiver’s clock) are used for a
majority vote to increase accuracy. Figure 35 illustrates this.

http://www.onsemi.com/

AND9836

www.onsemi.com
73

Figure 35. UART, Standard Protocol (Multiple Samples)

DATA DATA DATA DATA DATA DATA DATA PAR DATA DATA DATAIDLE START STOP START

Synchronisation

Sample points

Synchronisation

Sample points

TX clock

RX clock

TX / RX

LEGEND:
TX / RX: Transmit or Receive line

UART Multi−Processor Mode
The UART_MP (multi−processor) mode is defined with

single−master−multi−slave topology, as Figure 36 shows.

This mode is also known as UART 9−bit protocol because
the data field is nine bits wide. UART_MP is part of
Standard UART mode.

Figure 36. UART MP Mode Bus Connections

TX

UART MP
Master

UART MP
Slave 1

UART MP
Slave 3

UART MP
Slave 2

RX

TX RX TX RX TX RX

Master TX

Master RX

The main properties of UART_MP mode are:
• Single master with multiple slave concept (multi−drop

network).
• Each slave is identified by a unique address.

• Using 9 data field, with the ninth bit as address/data flag
(MP bit). When set high, it indicates an address byte;
when set low it indicates a data byte. A data frame is
illustrated in Figure 37.

• Parity bit is disabled.

Figure 37. UART MP Data Frame

DATA DATA DATA DATA DATA DATA DATA DATAIDLE START STOPMP

DATA Field

The SCB can be used as either master or slave device in
UART_MP mode. Both SCB_TX_CTRL and
SCB_RX_CTRL registers should be set to 9−bit data frame
size. When the SCB works as UART_MP master device, the
firmware changes the MP flag for every address or data
frame. When it works as UART_MP slave device, the
MP_MODE field of the SCB_UART_RX_CTRL register

should be set to ‘1’. The SCB_RX_MATCH register should
be set for the slave address and address mask. The matched
address is written in the RX_FIFO when ADDR_ACCEPT
field of the SCB_CTRL register is set to ‘1’. If received
address does not match its own address, then the interface
ignores the following data, until next address is received for
compare.

http://www.onsemi.com/

AND9836

www.onsemi.com
74

UART Local Interconnect Network (LIN) Mode
The LIN protocol is supported by the SCB as part of the

standard UART. LIN is designed with
single−master−multi−slave topology. There is one master
node and multiple slave nodes on the LIN bus. The SCB

UART supports both LIN master and slave functionality.
The LIN specification defines both physical layer (layer 1)
and data link layer (layer 2). Figure 38 illustrates the
UART_LIN and LIN Transceiver.

Figure 38. UART_LIN and LIN Transceiver

UART LIN

LIN Transceiver

UART LIN

LIN Transceiver

LIN Master 1

TX

LIN BUS

UART LIN

LIN Transceiver

RX TX RX TX RX

LIN Slave 1 LIN Slave 2

LIN protocol defines two tasks:
• Master task: This task involves sending a header packet

to initiate a LIN transfer.
• Slave task: This task involves transmitting or receiving a

response.
The master node supports master task and slave task; the

slave node supports only slave task, as shown in Figure 39.

Master Node

Master Task

Slave Task

Slave Node Slave Node

LIN bus

Slave Task Slave Task

Figure 39. LIN Bus Nodes and Tasks

LIN Frame Structure
LIN is based on the transmission of frames at

pre−determined moments of time. A frame is divided into
header and response fields, as shown in Figure 40.
• The header field consists of:

♦ Break field (at least 13 bit periods with the value
‘0’).

♦ Sync field (a 0x55 byte frame). A sync field can be
used to synchronize the clock of the slave task with
that of the master task.

♦ Identifier field (a frame specifying a specific slave).
• The response field consists of data and checksum.

Figure 40. LIN Frame Structure

In LIN protocol communication, the least significant bit
(LSB) of the data is sent first and the most significant bit
(MSB) last. The start bit is encoded as zero and the stop bit

is encoded as one. The following sections describe all the
byte fields in the LIN frame.

http://www.onsemi.com/

AND9836

www.onsemi.com
75

Break Field
Every new frame starts with a break field, which is always

generated by the master. The break filed has logical zero
with a minimum of 13 bit times and followed by a break
delimiter. The break field structure is as shown in Figure 41.

Figure 41. LIN Break Field

Start
Bit

Break
delimeter

Sync Field
This is the second field transmitted by the master in the

header field; its value is 0x55. A sync field can be used to
synchronize the clock of the slave task with that of the
master task for automatic baud rate detection. Figure 42
shows the LIN sync field structure.

Figure 42. LIN Sync Field

Start
Bit

Stop
Bit

Protected identifier (PID) Field
A protected identifier field consists of two sub−fields: the

frame identifier (bits 0−5) and the parity (bit 6 and bit 7). The
PID field structure is shown in Figure 43.
• Frame identifier: The frame identifiers are split into three

categories
♦ Values 0 to 59 (0x3B) are used for signal carrying

frames
♦ 60 (0x3C) and 61 (0x3D) are used to carry

diagnostic and configuration data
♦ 62 (0x3E) and 63 (0x3F) are reserved for future

protocol enhancements
• Parity: Frame identifier bits are used to calculate the

parity
Figure 43 shows the PID field structure.

Figure 43. PID Field

Data. In LIN, every frame can carry a minimum of one
byte and maximum of 8 bytes of data. Here, the LSB of the
data byte is sent first and the MSB of the data byte is sent last.

Checksum
The checksum is the last byte field in the LIN frame. It is

calculated by inverting the 8−bit sum along with carryover
of all data bytes only or the 8−bit sum with the carryover of
all data bytes and the PID field. There are two types of
checksums in LIN frames. They are:
• Classic checksum: the checksum calculated over all the

data bytes only (used in LIN 1.x slaves).
• Enhanced checksum: the checksum calculated over all the

data bytes along with the protected identifier (used in LIN
2.x slaves).

LIN Frame Types
The type of frame refers to the conditions that need to be

valid to transmit the frame. According to the LIN
specification, there are five different types of LIN frames. A
node or cluster does not have to support all frame types.

Unconditional Frame
These frames carry the signals and their frame identifiers

(of 0x00 to 0x3B range). The subscriber will receive the
frames and make it available to the application; the publisher
of the frame will provide the response to the header.

Event−Triggered Frame
The purpose of an event−triggered frame is to increase the

responsiveness of the LIN cluster without assigning too
much of the bus bandwidth to polling of multiple slave nodes
with seldom occurring events. Event−triggered frames carry
the response of one or more unconditional frames. The
unconditional frames associated with an event triggered
frame should:
• Have equal length

• Use the same checksum model (either classic or
enhanced)

• Reserve the first data field to its protected identifier

• Be published by different slave nodes

• Not be included directly in the same schedule table as the
event−triggered frame

Sporadic Frame
The purpose of the sporadic frames is to merge some

dynamic behavior into the schedule table without affecting
the rest of the schedule table. These frames have a group of
unconditional frames that share the frame slot. When the
sporadic frame is due for transmission, the unconditional
frames are checked if they have any updated signals. If no
signals are updated, no frame will be transmitted and the
frame slot will be empty.

Diagnostic Frames
Diagnostic frames always carry transport layer, and

contains eight data bytes.
The frame identifier for diagnostic frame is:

• Master request frame (0x3C), or

• Slave response frame (0x3D)
Before transmitting a master request frame, the master

task queries its diagnostic module to see if it will be
transmitted or if the bus will be silent. A slave response
frame header will be sent unconditionally. The slave tasks
publish and subscribe to the response according to their
diagnostic modules.

Reserved Frames
These frames are reserved for future use; their frame

identifiers are 0x3E and 0x3F.

http://www.onsemi.com/

AND9836

www.onsemi.com
76

LIN Go−To−Sleep and Wake−Up
The LIN protocol has the feature of keeping the LIN bus

in Sleep mode, if the master sends the go−to−sleep
command. The go−to−sleep command is a master request
frame (ID = 0x3C) with the first byte field is equal to 0x00
and rest set to 0xFF. The slave node application may still be
active after the go−to−sleep command is received. This
behavior is application specific. The LIN slave nodes
automatically enter Sleep mode if the LIN bus inactivity is
more than four seconds.

Wake−up can be initiated by any node connected to the
LIN bus – either LIN master or any of the LIN slaves by
forcing the bus to be dominant for 250 �s to 5 ms. Each slave
should detect the wakeup request and be ready to process
headers within 100 ms. The master should also detect the
wakeup request and start sending headers when the slave
nodes are active.

To support LIN, a dedicated (off−chip) line
driver/receiver is required. Supply voltage range on the LIN
bus is 7 V to 18 V. Typically, LIN line drivers will drive the
LIN line with the value provided on the SCB TX line and
present the value on the LIN line to the SCB RX line. By
comparing TX and RX lines in the SCB, bus collisions can
be detected (indicated by the SCB_UART_ARB_LOST
field of the SCB_INTR_TX register).

Configuring the SCB as Standard UART Interface
To configure the SCB as a standard UART interface, set

various register bits in the following order:
1. Configure the SCB as UART interface by writing

‘10’ to the MODE field (bits [25:24]) of the
SCB_CTRL register.

2. Configure the UART interface to operate as a
Standard protocol by writing ‘00’ to the MODE
field (bits [25:24]) of the SCB_UART_CTRL
register.

3. To enable the UART MP Mode or UART LIN
Mode, write ‘1’ to the MP_MODE (bit 10) or

LIN_MODE (bit 12) respectively of the
SCB_UART_RX_CTRL register.

4. Follow steps 2 to 5 described in “Enabling and
Initializing UART” on page 78.

For more information on these registers, see the
AND9835 AXM0F243 MCU Registers.

SmartCard (ISO7816)
ISO7816 is asynchronous serial interface, defined with

single−master−single slave topology. ISO7816 defines both
Reader (master) and Card (slave) functionality. For more
information, refer to the ISO7816 Specification. Only
master (reader) function is supported by the SCB. This block
provides the basic physical layer support with asynchronous
character transmission. UART_TX line is connected to
SmartCard I/O line, by internally multiplexing between
UART_TX and UART_RX control modules.

The SmartCard transfer is similar to a UART transfer,
with the addition of a negative acknowledgement (NACK)
that may be sent from the receiver to the transmitter. A
NACK is always ‘0’. Both master and slave may drive the
same line, although never at the same time.

A SmartCard transfer has the transmitter drive the start bit
and data bits (and optionally a parity bit). After these bits, it
enters its stop period by releasing the bus. Releasing results
in the line being ‘1’ (the value of a stop bit). After one bit
transfer period into the stop period, the receiver may drive
a NACK on the line (a value of ‘0’) for one bit transfer
period. This NACK is observed by the transmitter, which
reacts by extending its stop period by one bit transfer period.
For this protocol to work, the stop period should be longer
than one bit transfer period. Note that a data transfer with a
NACK takes one bit transfer period longer, than a data
transfer without a NACK. Typically, implementations use a
tristate driver with a pull−up resistor, such that when the line
is not transmitting data or transmitting the Stop bit, its value
is ‘1’.

Figure 44 illustrates the SmartCard protocol.

Figure 44. SmartCard Example

DATA DATA DATA DATA DATA DATA DATA PAR DATA DATA DATAIDLE START STOP START

Two successive data transfers (7data bits, 1 parity bit, 2 stop bits) without NACK
TX / RX

DATA DATA DATA DATA DATA DATA DATA PAR DATA DATAIDLE START STOP START

Two successive data transfers (7data bits, 1 parity bit, 2 stop bits) with NACK
TX / RX

STOPNACK

LEGEND:
TX / RX: Transmit or Receive line

http://www.onsemi.com/
https://www.onsemi.com/pub/Collateral/AND9835-D.PDF
https://www.iso.org/standard/38770.html

AND9836

www.onsemi.com
77

The communication Baud rate for ISO7816 is given as:

BaudRate � f7816 � (D�F)
(eq. 1)

Where f7816 is the clock frequency, F is the clock rate
conversion integer, and D is the baud rate adjustment
integer.

By default, F = 372, D = f1, and the maximum clock
frequency is 5 MHz. Thus, maximum baud rate is 13.4 Kbps.
Typically, a 3.57−MHz clock is selected. The typical value
of the baud rate is 9.6 Kbps.

Configuring SCB as UART SmartCard Interface
To configure the SCB as a UART SmartCard interface, set

various register bits in the following order. For more
information on these registers, see the AND9835
AXM0F243 MCU Registers.

1. Configure the SCB as UART interface by writing
‘10’ to the MODE (bits [25:24]) of the
SCB_CTRL register.

2. Configure the UART interface to operate as a
SmartCard protocol by writing ‘01’ to the MODE
(bits [25:24]) of the SCB_UART_CTRL register.

3. Follow steps 2 to 5 described in “Enabling and
Initializing UART” on page 78.

IrDA

The SCB supports the Infrared Data Association (IrDA)
protocol for data rates of up to 115.2 Kbps using the UART
interface. It supports only the basic physical layer of IrDA
protocol with rates less than 115.2 Kbps. Hence, the system
instantiating this block must consider how to implement a
complete IrDA communication system with other available
system resources.

The IrDA protocol adds a modulation scheme to the
UART signaling. At the transmitter, bits are modulated. At
the receiver, bits are demodulated. The modulation scheme
uses a Return−to−Zero−Inverted (RZI) format. A bit value
of ‘0’ is signaled by a short ‘1’ pulse on the line and a bit
value of ‘1’ is signaled by holding the line to ‘0’. For these
data rates (≤115.2 Kbps), the RZI modulation scheme is used
and the pulse duration is 3/16 of the bit period. The sampling
clock frequency should be set 16 times the selected baud
rate, by configuring the SCB_OVS field of the SCB_CTRL
register.

Different communication speeds under 115.2 Kbps can be
achieved by configuring corresponding block clock
frequency. Additional allowable rates are 2.4 Kbps,
9.6 Kbps, 19.2 Kbps, 38.4 Kbps, and 57.6 Kbps. An IrDA
serial infrared interface operates at 9.6 Kbps. Figure 45
shows how a UART transfer is IrDA modulated.

Figure 45. IrDA Example

‘1’ ‘0’ PARIDLE START STOP START

Two successive data transfers (7data bits, 1 parity bit, 2 stop bits)
TX / RX

‘1’‘1’ ‘1’ ‘1’ ‘1’ ‘1’‘0’ ‘0’ ‘0’

LEGEND:
TX / RX: Transmit or Receive line

Configuring the SCB as UART IrDA Interface
To configure the SCB as a UART IrDA interface, set

various register bits in the following order. For more
information on these registers, see the AND9835
AXM0F243 MCU Registers.

1. Configure the SCB as UART interface by writing
‘10’ to the MODE (bits [25:24]) of the
SCB_CTRL register.

2. Configure the UART interface to operate as IrDA
protocol by writing ‘10’ to the MODE (bits
[25:24]) of the SCB_UART_CTRL register.

3. Enable the Median filter on the input interface line
by writing ‘1’ to MEDIAN (bit 9) of the
SCB_RX_CTRL register.

4. Configure the SCB as described in “Enabling and
Initializing UART” on page 78.

http://www.onsemi.com/
https://www.onsemi.com/pub/Collateral/AND9835-D.PDF
https://www.onsemi.com/pub/Collateral/AND9835-D.PDF
https://www.onsemi.com/pub/Collateral/AND9835-D.PDF
https://www.onsemi.com/pub/Collateral/AND9835-D.PDF

AND9836

www.onsemi.com
78

UART Registers
The UART interface is controlled using a set of 32−bit

registers listed in Table 30. For more information on these
registers, see the AND9835 AXM0F243 MCU Registers.

Table 53. UART REGISTERS

Register Name Operation

SCB_CTRL Enables the SCB; selects the type of serial interface (SPI, UART, I2C)

SCB_UART_CTRL Used to select the sub−modes of UART (standard UART, SmartCard, IrDA), also used for local loop
back control.

SCB_UART_RX_STATUS Used to specify the BR_COUNTER value that determines the bit period. This is used to set the accura-
cy of the SCB clock. This value provides more granularity than the OVS bit in SCB_CTRL register.

SCB_UART_TX_CTRL Used to specify the number of stop bits, enable parity, select the type of parity, and enable
retransmission on NACK.

SCB_UART_RX_CTRL Performs same function as SCB_UART_TX_CTRL but is also used for enabling multi processor mode,
LIN mode drop on parity error, and drop on frame error.

SCB_TX_CTRL Used to specify the data frame width and to specify whether MSB or LSB is the first bit in transmission.

SCB_RX_CTRL Performs the same function as that of the SCB_TX_CTRL register, but for the receiver. Also decides
whether a median filter is to be used on the input interface lines.

SCB_UART_FLOW_CONTROL Configures flow control for UART transmitter.

UART Interrupts
The UART supports both internal and external interrupt

requests. The internal interrupt events are listed in this
section. Custom ISRs can also be used by connecting the
external interrupt component to the interrupt output of the
UART component (with external interrupts enabled).

The UART predefined interrupts can be classified as TX
interrupts and RX interrupts. The TX interrupt output is the
logical OR of the group of all possible TX interrupt sources.
This signal goes high when any of the enabled TX interrupt
sources is true. The RX interrupt output is the logical OR of
the group of all possible RX interrupt sources. This signal
goes high when any of the enabled Rx interrupt sources is
true. The UART provides interrupts on the following events:
• TX

♦ TX FIFO has less entries than the value specified by
TRIGGER_LEVEL in SCB_TX_FIFO_CTRL

♦ TX FIFO is not full
♦ TX FIFO is empty
♦ TX FIFO overflow
♦ TX FIFO underflow
♦ TX received a NACK in SmartCard mode
♦ TX done
♦ Arbitration lost (in LIN or SmartCard modes)

• RX
♦ RX FIFO has less entries than the value specified by

TRIGGER_LEVEL in SCB_RX_FIFO_CTRL
♦ RX FIFO is full
♦ RX FIFO is not empty
♦ RX FIFO overflow
♦ RX FIFO underflow
♦ Frame error in received data frame
♦ Parity error in received data frame
♦ LIN baud rate detection is completed
♦ LIN break detection is successful

Enabling and Initializing UART
The UART must be programmed in the following order:

1. Program protocol specific information using the
SCB_UART_CTRL register, according to
Table 46. This includes selecting the submodes of
the protocol, transmitter−receiver functionality,
and so on.

2. Program the generic transmitter and receiver
information using the SCB_TX_CTRL and
SCB_RX_CTRL registers, as shown in Table 48.
a. Specify the data frame width.
b. Specify whether MSB or LSB is the first bit to
be transmitted or received.

3. Program the transmitter and receiver FIFOs using
the SCB_TX_FIFO_CTRL and
SCB_RX_FIFO_CTRL registers respectively, as
shown in Table 56.
a. Set the trigger level.
b. Clear the transmitter and receiver FIFO and
Shift registers.
c. Freeze the TX and RX FIFOs.

4. Program the SCB_CTRL register to enable the
SCB block. Also select the mode of operation
(Table 57).

5. Enable the block (write a ‘1’ to the ENABLED bit
of the SCB_CTRL register). After the block is
enabled, control bits should not be changed.
Changes should be made after disabling the block;
for example, to modify the operation mode (from
SmartCard to IrDA). The change takes effect only
after the block is re−enabled. Note that
re−enabling the block causes reinitialization and
the associated state is lost (for example FIFO
content).

http://www.onsemi.com/
https://www.onsemi.com/pub/Collateral/AND9835-D.PDF

AND9836

www.onsemi.com
79

Table 54. SCB_UART_CTRL REGISTER

Bits Name Value Description

[25:24] MODE 00 Standard UART

01 SmartCard

10 IrDA

11 Reserved

16 LOOP_BACK Loop back control. This allows a SCB UART transmitter to communicate with its receiver counterpart.

Table 55. SCB_TX_CTRL/SCB_RX_CTRL REGISTERS

Bits Name Description

[3:0] DATA_WIDTH ‘DATA_WIDTH + 1’ is the no. of bits in the transmitted or received data frame. The valid range is
[3, 15]. This does not include start, stop, and parity bits.

8 MSB_FIRST 1 = MSB first
0 = LSB first

9 MEDIAN This is for SCB_RX_CTRL only.
Decides whether a digital three−tap median filter is applied on the input interface lines. This filter
should reduce susceptibility to errors, but it requires higher oversampling values. For the UART IrDA
mode, this should always be ‘1’.
1 = Enabled
0 = Disabled

Table 56. SCB_TX_FIFO_CTRL/SCB_RX_FIFO_CTRL REGISTERS

Bits Name Description

[7:0] TRIGGER_LEVEL Trigger level. When the transmitter FIFO has less entries or receiver FIFO has more entries
than the value of this field, a transmitter or receiver trigger event is generated in the respective
case.

16 CLEAR When ‘1’, the transmitter or receiver FIFO and the shift registers are cleared/invalidated.

17 FREEZE When ‘1’, hardware reads/writes to the transmitter or receiver FIFO have no effect. Freeze will
not advance the TX or RX FIFO read/write pointer.

Table 57. SCB_CTRL REGISTER

Bits Name Value Description

[25:24] MODE 00 I2C mode

01 SPI mode

10 UART mode

11 Reserved

31 ENABLED 0 SCB block disabled

1 SCB block enabled

Inter Integrated Circuit (I2C)
This section explains the I2C implementation in

AXM0F243 MCU.

Features
This block supports the following features:

• Master, slave, and master/slave mode

• Slow−mode (50 kbps), standard−mode (100 kbps),
fast−mode (400 kbps), and fast−mode plus (1000 kbps)
data−rates

• 7− or 10−bit slave addressing (10−bit addressing requires
firmware support)

• Clock stretching and collision detection

• Programmable oversampling of I2C clock signal (SCL)

• Error reduction using an digital median filter on the input
path of the I2C data signal (SDA)

• Glitch−free signal transmission with an analog glitch
filter

• Interrupt or polling CPU interface

http://www.onsemi.com/

AND9836

www.onsemi.com
80

General Description
Figure 46 illustrates an example of an I2C communication

network.

Figure 46. I2C Interface Block Diagram

VDD

RpRp

SCL

SDA

I2C
Master I2C Slave I2C Slave I2C Slave

The standard I2C bus is a two wire interface with the
following lines:
• Serial Data (SDA)

• Serial Clock (SCL)
I2C devices are connected to these lines using open

collector or open−drain output stages, with pull−up resistors
(Rp). A simple master/slave relationship exists between
devices. Masters and slaves can operate as either transmitter
or receiver. Each slave device connected to the bus is
software addressable by a unique 7−bit address. AXM0F243
MCU also supports 10−bit address matching for I2C with
firmware support.

Terms and Definitions
Table 58 explains the commonly used terms in an I2C

communication network.

Table 58. DEFINITION OF I2C BUS TERMINOLOGY

Term Description

Transmitter The device that sends data to the bus

Receiver The device that receives data from the bus

Master The device that initiates a transfer, gener-
ates clock signals, and terminates a transfer

Slave The device addressed by a master

Multi−master More than one master can attempt to control
the bus at the same time without corrupting
the message

Arbitration Procedure to ensure that, if more than one
master simultaneously tries to control the
bus, only one is allowed to do so and the
winning message is not corrupted

Synchronization Procedure to synchronize the clock signals
of two or more devices

Clock Stretching
When a slave device is not yet ready to process data, it may

drive a ‘0’ on the SCL line to hold it down. Due to the
implementation of the I/O signal interface, the SCL line
value will be ‘0’, independent of the values that any other

master or slave may be driving on the SCL line. This is
known as clock stretching and is the only situation in which
a slave drives the SCL line. The master device monitors the
SCL line and detects it when it cannot generate a positive
clock pulse (‘1’) on the SCL line. It then reacts by delaying
the generation of a positive edge on the SCL line, effectively
synchronizing with the slave device that is stretching the
clock.

Bus Arbitration
The I2C protocol is a multi−master, multi−slave interface.

Bus arbitration is implemented on master devices by
monitoring the SDA line. Bus collisions are detected when
the master observes an SDA line value that is not the same
as the value it is driving on the SDA line. For example, when
master 1 is driving the value ‘1’ on the SDA line and master
2 is driving the value ‘0’ on the SDA line, the actual line
value will be ‘0’ due to the implementation of the I/O signal
interface. Master 1 detects the inconsistency and loses
control of the bus. Master 2 does not detect any
inconsistency and keeps control of the bus.

I2C Modes of Operation
I2C is a synchronous single master, multi−master,

multi−slave serial interface. Devices operate in either master
mode, slave mode, or master/slave mode. In master/slave
mode, the device switches from master to slave mode when
it is addressed. Only a single master may be active during a
data transfer. The active master is responsible for driving the
clock on the SCL line. Table 59 illustrates the I2C modes of
operation.

Table 59. I2C MODES

Mode Description

Slave Slave only operation (default)

Master Master only operation

Multi−master Supports more than one master on the bus

Multi−master−slave Simultaneous slave and multi−master
operation

http://www.onsemi.com/

AND9836

www.onsemi.com
81

Data transfer through the I2C bus follows a specific
format. Table 60 lists some common bus events that are part
of an I2C data transfer. The Write Transfer and Read Transfer
sections explain the I2C bus bit format during data transfer.

Table 60. I2C BUS EVEN TERMINOLOGY

Bus Event Description

START A HIGH to LOW transition on the SDA line while
SCL is HIGH

STOP A LOW to HIGH transition on the SDA line while
SCL is HIGH

ACK The receiver pulls the SDA line LOW and it
remains LOW during the HIGH period of the clock
pulse, after the transmitter transmits each byte.
This indicates to the transmitter that the receiver
received the byte properly.

NACK The receiver does not pull the SDA line LOW and
it remains HIGH during the HIGH period of clock
pulse after the transmitter transmits each byte.
This indicates to the transmitter that the receiver
received the byte properly.

Repeated
START

START condition generated by master at the end
of a transfer instead of a STOP condition

DATA SDA status change while SCL is low (data
changing), and no change while SCL is high (data
valid)

When operating in multi−master mode, the bus should
always be checked to see if it is busy; another master may
already be communicating with a slave. In this case, the
master must wait until the current operation is complete
before issuing a START signal (see Table 60, Figure 47, and
Figure 48). The master looks for a STOP signal as an
indicator that it can start its data transmission.

When operating in multi−master−slave mode, if the
master loses arbitration during data transmission, the
hardware reverts to slave mode and the received byte
generates a slave address interrupt, so that the device is ready
to respond to any other master on the bus. With all of these
modes, there are two types of transfer − read and write. In
write transfer, the master sends data to slave; in read transfer,
the master receives data from slave. Write and read transfer
examples are available in “Master Mode Transfer
Examples” on page 89, “Slave Mode Transfer Examples” on
page 91, and “Multi−Master Mode Transfer Example” on
page 95.

Write Transfer

Figure 47. Master Write Data Transfer

MSB LSBSDA

SCL

Write ACK ACK STOP

Write data transfer (Master writes the data)

LEGEND :
SDA: Serial Data Line
SCL: Serial Clock Line (always driven by the master)

Slave Transmit / Master Receive

START

• A typical write transfer begins with the master generating
a START condition on the I2C bus. The master then writes
a 7− bit I2C slave address and a write indicator (‘0’) after
the START condition. The addressed slave transmits an
acknowledgement byte by pulling the data line low during
the ninth bit time.

• If the slave address does not match any of the slave
devices or if the addressed device does not want to
acknowledge the request, it transmits a no
acknowledgement (NACK) by not pulling the SDA line
low. The absence of an acknowledgement, results in an
SDA line value of ‘1’ due to the pull−up resistor
implementation.

• If no acknowledgement is transmitted by the slave, the
master may end the write transfer with a STOP event. The
master can also generate a repeated START condition for
a retry attempt.

• The master may transmit data to the bus if it receives an
acknowledgement. The addressed slave transmits an
acknowledgement to confirm the receipt of every byte of
data written. Upon receipt of this acknowledgement, the
master may transmit another data byte.

• When the transfer is complete, the master generates a
STOP condition.

http://www.onsemi.com/

AND9836

www.onsemi.com
82

Read Transfer

Figure 48. Master Read Data Transfer

MSB LSB

START Slave address (7 bits) Read ACK ACKData (8 bits) STOP

Read data transfer (Master reads the data)

SDA

SCL

LEGEND :
SDA: Serial Data Line
SCL: Serial Clock Line (always driven by the master)

Slave Transmit / Master Receive

• A typical read transfer begins with the master generating
a START condition on the I2C bus. The master then writes
a 7− bit I2C slave address and a read indicator (‘1’) after
the START condition. The addressed slave transmits an
acknowledgement by pulling the data line low during the
ninth bit time.

• If the slave address does not match with that of the
connected slave device or if the addressed device does not
want to acknowledge the request, a no acknowledgement
(NACK) is transmitted by not pulling the SDA line low.
The absence of an acknowledgement, results in an SDA
line value of ‘1’ due to the pull−up resistor
implementation.

• If no acknowledgement is transmitted by the slave, the
master may end the read transfer with a STOP event. The
master can also generate a repeated START condition for
a retry attempt.

• If the slave acknowledges the address, it starts
transmitting data after the acknowledgement signal. The
master transmits an acknowledgement to confirm the
receipt of each data byte sent by the slave. Upon receipt
of this acknowledgement, the addressed slave may
transmit another data byte.

• The master can send a NACK signal to the slave to stop
the slave from sending data bytes. This completes the read
transfer.

• When the transfer is complete, the master generates a
STOP condition.

Easy I2C (EZI2C) Protocol
The Easy I2C (EZI2C) protocol is a unique

communication scheme built on top of the I2C protocol. It
uses a software wrapper around the standard I2C protocol to
communicate to an I2C slave using indexed memory
transfers.

This removes the need for CPU intervention at the level
of individual frames.

The EZI2C protocol defines an 8−bit address that indexes
a memory array (8−bit wide 32 locations) located on the

slave device. Five lower bits of the EZ address are used to
address these 32 locations. The number of bytes transferred
to or from the EZI2C memory array can be found by
comparing the EZ address at the START event and the EZ
address at the STOP event.

NOTE: Note The I2C block has a hardware FIFO
memory, which is 16 bits wide and 16 locations
deep with byte write enable. The access methods
for EZ and non−EZ functions are different. In
non−EZ mode, the FIFO is split into TXFIFO
and RXFIFO. Each has 16−bit wide eight
locations. In EZ mode, the FIFO is used as a
single memory unit with 8−bit wide 32
locations.

EZI2C has two types of transfers: a data write from the
master to an addressed slave memory location, and a read by
the master from an addressed slave memory location.

Memory Array Write
An EZ write to a memory array index is by means of an

I2C write transfer. The first transmitted write data is used to
send an EZ address from the master to the slave. The five
lowest significant bits of the write data are used as the “new”
EZ address at the slave. Any additional write data elements
in the write transfer are bytes that are written to the memory
array. The EZ address is automatically incremented by the
slave as bytes are written into the memory array. If the
number of continuous data bytes written to the EZI2C buffer
exceeds EZI2C buffer boundary, it overwrites the last
location for every subsequent byte.

Memory Array Read
An EZ read from a memory array index is by means of an

I2C read transfer. The EZ read relies on an earlier EZ write
to have set the EZ address at the slave. The first received read
data is the byte from the memory array at the EZ address
memory location. The EZ address is automatically
incremented as bytes are read from the memory array. The
address wraps around to zero when the final memory
location is reached.

http://www.onsemi.com/

AND9836

www.onsemi.com
83

Figure 49. EZI2C Write and Read Data Transfer

MS
B

LS
B

SDA

SCL

START Slave address (7 bits) Write EZ address (8 bits)

Write data transfer (single write data)

MSB LSB

START Slave address (7 bits) Read ACK Read Data (8 bits)

Read data transfer (single read data)

SDA

SCL

Write Data (8 bits) ACK

EZ address

Address

Data

LEGEND :
SDA: Serial Data Line
SCL: Serial Clock Line (always driven by the master)

Slave Transmit / Master Receive

ACK ACK STOP

EZ Buffer
(32 bytes SRAM)

STOPACK

http://www.onsemi.com/

AND9836

www.onsemi.com
84

I2C Registers
The I2C interface is controlled by reading and writing a set

of configuration, control, and status registers, as listed in
Table 61.

Table 61. I2C REGISTERS

Register Description

SCB_CTRL Enables the I2C block and selects the type of serial interface (SPI, UART,I2C). Also used to select inter-
nally and externally clocked operation and EZ and non−EZ modes of operation.

SCB_I2C_CTRL Selects the mode (master, slave) and sends an ACK or NACK signal based on receiver FIFO status.

SCB_I2C_STATUS Indicates bus busy status detection, read/write transfer status of the slave/master, and stores the EZ
slave address.

SCB_I2C_M_CMD Enables the master to generate START, STOP, and ACK/NACK signals.

SCB_I2C_S_CMD Enables the slave to generate ACK/NACK signals.

SCB_STATUS Indicates whether the externally clocked logic is using the EZ memory. This bit can be used by software to
determine whether it is safe to issue a software access to the EZ memory.

SCB_I2C_CFG Configures filters, which remove glitches from the SDA and SCL lines.

SCB_TX_CTRL Specifies the data frame width; also used to specify whether MSB or LSB is the first bit in transmission.

SCB_TX_FIFO_CTRL Specifies the trigger level, clearing of the transmitter FIFO and shift registers, and FREEZE operation of
the transmitter FIFO.

SCB_TX_FIFO_STATUS Indicates the number of bytes stored in the transmitter FIFO, the location from which a data frame is read
by the hardware (read pointer), the location from which a new data frame is written (write pointer), and
decides if the transmitter FIFO holds the valid data.

SCB_TX_FIFO_WR Holds the data frame written into the transmitter FIFO. Behavior is similar to that of a PUSH operation.

SCB_RX_CTRL Performs the same function as that of the SCB_TX_CTRL register, but for the receiver. Also decides
whether a median filter is to be used on the input interface lines.

SCB_RX_FIFO_CTRL Performs the same function as that of the SCB_TX_FIFO_CTRL register, but for the receiver.

SCB_RX_FIFO_STATUS Performs the same function as that of the SCB_TX_FIFO_STATUS register, but for the receiver.

SCB_RX_FIFO_RD Holds the data read from the receiver FIFO. Reading a data frame removes the data frame from the FI-
FO; behavior is similar to that of a POP operation. This register has a side effect when read by software: a
data frame is removed from the FIFO.

SCB_RX_FIFO_RD_SILEN
T

Holds the data read from the receiver FIFO. Reading a data frame does not remove the data frame from
the
FIFO; behavior is similar to that of a PEEK operation.

SCB_RX_MATCH Stores slave device address and is also used as slave device address MASK.

SCB_EZ_DATA Holds the data in an EZ memory location.

NOTE: Detailed descriptions of the I2C register bits are
available in the AND9835 AXM0F243 MCU
Registers

http://www.onsemi.com/
https://www.onsemi.com/pub/Collateral/AND9835-D.PDF
https://www.onsemi.com/pub/Collateral/AND9835-D.PDF

AND9836

www.onsemi.com
85

I2C Interrupts
The fixed−function I2C block generates interrupts for the

following conditions.
• I2C Master

♦ I2C master lost arbitration
♦ I2C master received NACK
♦ I2C master received ACK
♦ I2C master sent STOP
♦ I2C bus error (unexpected stop/start condition

detected)
• I2C Slave

♦ I2C slave lost arbitration
♦ I2C slave received NACK
♦ I2C slave received ACK
♦ I2C slave received STOP
♦ I2C slave received START
♦ I2C slave address matched
♦ I2C bus error (unexpected stop/start condition

detected)
• TX

♦ TX FIFO has less entries than the value specified by
TRIGGER_LEVEL in SCB_TX_FIFO_CTRL

♦ TX FIFO is not full
♦ TX FIFO is empty
♦ TX FIFO overflow
♦ TX FIFO underflow

• RX
♦ RX FIFO has less entries than the value specified by

TRIGGER_LEVEL in SCB_RX_FIFO_CTRL
♦ RX FIFO is full
♦ RX FIFO is not empty
♦ RX FIFO overflow
♦ RX FIFO underflow

• I2C Externally Clocked
♦ Wake up request on address match
♦ I2C STOP detection at the end of each transfer
♦ I2C STOP detection at the end of a write transfer
♦ I2C STOP detection at the end of a read transfer

The I2C interrupt signal is hard−wired to the Cortex−M0
NVIC and cannot be routed to external pins.

The interrupt output is the logical OR of the group of all
possible interrupt sources. The interrupt is triggered when
any of the enabled interrupt conditions are met. Interrupt
status registers are used to determine the actual source of the
interrupt. For more information on interrupt registers, see
the AND9835 AXM0F243 MCU Registers.

Enabling and Initializing the I2C
The following section describes the method to configure

the I2C block for standard (non−EZ) mode and EZI2C
mode.

Configuring for I2C Standard (Non−EZ) Mode
The I2C interface must be programmed in the following

order.
1. Program protocol specific information using the

SCB_I2C_CTRL register according to Table 62.
This includes selecting master − slave
functionality.

2. Program the generic transmitter and receiver
information using the SCB_TX_CTRL and
SCB_RX_CTRL registers, as shown in Table 63.
a. Specify the data frame width.
b. Specify that MSB is the first bit to be
transmitted/received.

3. Program transmitter and receiver FIFO using the
SCB_TX_FIFO_CTRL and
SCB_RX_FIFO_CTRL registers, respectively, as
shown in Table 64.
a. Set the trigger level.
b. Clear the transmitter and receiver FIFO and
Shift registers.

4. Program the SCB_CTRL register to enable the I2C
block and select the I2C mode. These register bits
are shown in Table 65. For a complete description
of the I2C registers, see the AND9835
AXM0F243 MCU Registers.

Table 62. SCB_I2C_CTRL REGISTER

Bits Name Value Description

30 SLAVE_MODE 1 Slave mode

31 MASTER_MODE 1 Master mode

http://www.onsemi.com/
https://www.onsemi.com/pub/Collateral/AND9835-D.PDF
https://www.onsemi.com/pub/Collateral/AND9835-D.PDF
https://www.onsemi.com/pub/Collateral/AND9835-D.PDF

AND9836

www.onsemi.com
86

Table 63. SCB_TX_CTRL/SCB_RX_CTRL REGISTER

Bits Name Description

[3:0] DATA_WIDTH ‘DATA_WIDTH + 1’ is the number of bits in the transmitted or received data frame. For I2C, this is
always 7.

8 MSB_FIRST 1 = MSB first (this should always be true for I2C)

0 = LSB first

9 MEDIAN This is for SCB_RX_CTRL only.
Decides whether a digital three−tap median filter is applied on the input interface lines. This filter
should reduce susceptibility to errors, but it requires higher oversampling values.
1 = Enabled
0 = Disabled

Table 64. SCB_TX_FIFO_CTRL/SCB_RX_FIFO_CTRL

Bits Name Description

[7:0] TRIGGER_LEVEL Trigger level. When the transmitter FIFO has less entries or the receiver FIFO has more entries than
the value of this field, a transmitter or receiver trigger event is generated in the respective case.

16 CLEAR When ‘1’, the transmitter or receiver FIFO and the shift registers are cleared.

17 FREEZE When ‘1’, hardware reads/writes to the transmitter or receiver FIFO have no effect. Freeze does not
advance the TX or RX FIFO read/write pointer.

Table 65. SCB_CTRL REGISTERS

Bits Name Value Description

[25:24] MODE 00 I2C mode

01 SPI mode

10 UART mode

11 Reserved

31 ENABLED 0 SCB block disabled

1 SCB block enabled

Configuring for EZI2C Mode
To configure the I2C block for EZI2C mode, set the

following I2C register bits
1. Select the EZI2C mode by writing ‘1’ to the

EZ_MODE bit (bit 10) of the SCB_CTRL register.
2. Follow steps 2 to 4 mentioned in Configuring for

EZI2C Mode.
3. Set the S_READY_ADDR_ACK (bit 12) and

S_READY_DATA_ACK (bit 13) bits of the
SCB_I2C_CTRL register.

Internal and External Clock Operation in I2C
The I2C block supports both internally and externally

clocked operation for data−rate generation. Internally
clocked operations use a clock signal derived from the
AXM0F243 MCU system bus clock. Externally clocked
operations use a clock provided by the user. Externally
clocked operation allows limited functionality in the
Deep−Sleep power mode, in which on−chip clocks are not
active. For more information on system clocking, see the
Clocking System chapter on page 36.

Externally clocked operation is limited to the following
cases:
• Slave functionality.

• EZ functionality.
TX and RX FIFOs do not support externally clocked

operation; therefore, it is not used for non−EZ functionality.
Internally and externally clocked operations are determined
by two register fields of the SCB_CTRL register:
• EC_AM_MODE (Externally Clocked Address Matching

Mode): Indicates whether I2C address matching is
internally (‘0’) or externally (‘1’) clocked.

• EC_OP_MODE (Externally Clocked Operation Mode):
Indicates whether the rest of the protocol operation
(besides I2C address match) is internally (‘0’) or
externally (‘1’) clocked. As mentioned earlier, externally
clocked operation does not support non−EZ functionality.
These two register fields determine the functional

behavior of I2C. The register fields should be set based on
the required behavior in Active, Sleep, and Deep−Sleep
system power modes. Improper setting may result in faulty
behavior in certain power modes. Table 16 and Table 67
describe the settings for I2C in EZ and non−EZ mode.

http://www.onsemi.com/

AND9836

www.onsemi.com
87

I2C Non−EZ Mode of Operation
Externally clocked operation is not supported for non−EZ

functionality because there is no FIFO support for this mode.
So, the EC_OP_MODE should always be set to ‘0’for
non−EZ mode. However, EC_AM_MODE can be set to ‘0’
or ‘1’. Table 16 gives an overview of the possibilities. The
combination EC_AM_MODE = 0 and EC_OP_MODE = 1
is invalid and the block will not respond.

EC_AM_MODE is ‘0’ and EC_OP_MODE is ‘0’.
This setting only works in Active and Sleep system power

modes. All the functionality of the I2C is provided in the
internally clocked domain.

EC_AM_MODE is ‘1’ and EC_OP_MODE is ‘0’.
This setting works in Active, Sleep, and Deep−Sleep

system power modes. I2C address matching is performed by
the externally clocked logic in Active, Sleep, and
Deep−Sleep system power modes. When the externally
clocked logic matches the address, it sets a wakeup interrupt
cause bit, which can be used to generate an interrupt to
wakeup the CPU.

Table 66. I2C OPERATION IN NON−EZ MODE

I2C (Non−EZ) Mode

System Power

EC_OP_MODE = 0 EC_OP_MODE = 1

EC_AM_MODE = 0 EC_AM_MODE = 1 EC_AM_MODE = 0 EC_AM_MODE = 1

Active and
Sleep

Address match using internal clock
 Operation using internal clock

Address match using external clock
 Operation using internal clock

Not supported

Deep−Sleep Not supported Address match using external clock
 Operation using internal clock

• In Active system power mode, the CPU is active and the
wakeup interrupt cause is disabled (associated MASK bit
is ‘0’). The externally clocked logic takes care of the
address matching and the internally locked logic takes
care of the rest of the I2C transfer.

• In the Sleep mode, wakeup interrupt cause can be either
enabled or disabled based on the application. The
remaining operations are similar to the Active mode.

• In the Deep−Sleep mode, the CPU is shut down and will
wake up on I2C activity if the wakeup interrupt cause is
enabled. CPU wakeup up takes time and the ongoing I2C
transfer is either negatively acknowledged (NACK) or
the clock is stretched. In the case of a NACK, the
internally clocked logic takes care of the first I2C transfer
after it wakes up. For clock stretching, the internally
clocked logic takes care of the ongoing/stretched transfer

when it wakes up. The register bit
S_NOT_READY_ADDR_NACK (bit 14) of the
SCB_I2C_CTRL register determines whether the
externally clocked logic performs a negative
acknowledge (‘1’) or clock stretch (‘0’).

I2C EZ Operation Mode
EZ mode has three possible settings. EC_AM_MODE can

be set to ‘0’ or ‘1’ when EC_OP_MODE is ‘0’ and
EC_AM_MODE must be set to ‘1’ when EC_OP_MODE is
‘1’. Table 67 gives an overview of the possibilities. The grey
cells indicate a possible, yet not recommended setting
because it involves a switch from the externally clocked
logic (slave selection) to the internally clocked logic (rest of
the operation). The combination EC_AM_MODE = 0 and
EC_OP_MODE = 1 is invalid and the block will not
respond.

Table 67. I2C OPERATION IN EZ MODE

I2C, EZ Mode

System Power

EC_OP_MODE = 0 EC_OP_MODE = 1

EC_AM_MODE = 0 EC_AM_MODE = 1 EC_AM_MODE = 0 EC_AM_MODE = 1

Active and
Sleep

Address match using internal
clock

Operation using internal clock

Address match using external
clock

Operation using internal clock

Invalid Address match using external
clock

Operation using external clock

Deep−Sleep Not supported Address match using external
clock.

Operation using internal clock.

Address match using external
clock

Operation using external clock

http://www.onsemi.com/

AND9836

www.onsemi.com
88

• EC_AM_MODE is ‘0’ and EC_OP_MODE is ‘0’. This
setting only works in Active and Sleep system power
modes.

• EC_AM_MODE is ‘1’ and EC_OP_MODE is ‘0’. This
setting works same as I2C non−EZ mode.

• EC_AM_MODE is ‘1’ and EC_OP_MODE is ‘1’. This
setting works in Active and Deep−Sleep system power
modes.
The I2C block’s functionality is provided in the externally

clocked domain. Note that this setting results in externally
clocked accesses to the block’s SRAM. These accesses may
conflict with internally clocked accesses from the device.
This may cause wait states or bus errors. The field
FIFO_BLOCK (bit 17) of the SCB_CTRL register
determines whether wait states (‘1’) or bus errors (‘0’) are
generated.

Wake up from Sleep
The system wakes up from Sleep or Deep−Sleep system

power modes when an I2C address match occurs. The
fixed−function I2C block performs either of two actions
after address match: Address ACK or Address NACK.

Address ACK − The I2C slave executes clock stretching
and waits until the device wakes up and ACKs the address.

Address NACK − The I2C slave NACKs the address
immediately. The master must poll the slave again after the
device wakeup time is passed. This option is only valid in the
slave or multi−master−slave modes.

NOTE: The interrupt bit WAKE_UP (bit 0) of the
SCB_INTR_I2C_EC register must be enabled
for the I2C to wake up the device on slave
address match while switching to the Sleep
mode.

NOTE: If the device is configured in I2C slave mode,
the clock to the SCB should be disabled when
entering Deep−Sleep power mode; enable the
clock when waking up from Deep−Sleep mode.

http://www.onsemi.com/

AND9836

www.onsemi.com
89

Master Mode Transfer Examples
Master mode transmits or receives data.

Master Transmit

Figure 50. Single Master Mode Write Operation Flow
Chart

Begin

Disable Fixed
Function I2C block

Select Master
mode

Enable
TX FIFO

Enable SCB I2C
block

No
(stretch)

E

Address ACK’ed or
NACK’ed?

Error

Yes

NACK

Set Fixed
Function I2C

block to transmit
mode

Transmission
of one byte

data complete?

Byte ACK’ed or
NACK’ed?

Yes

NACK STOP/
RESTART

Data transfer
complete?

ACK

No

Send STOP
signal

Yes

Send START
signal

ACK

E
Error

STOP

E

Report and
handle error

TX FIFO
Empty? EYes

No

RESTART

End

Transmission
of one byte

slave address
complete?

No
(stretch)

STOP/
RESTART

http://www.onsemi.com/

AND9836

www.onsemi.com
90

Master Receive

Figure 51. Single Master Mode Read Operation Flow Chart

Begin

Select Master
mode

Enable Fixed
Function I2C block

E

Address ACK’ed or
NACK’ed?

Error

Yes

NACK

RX FIFO
full?

Yes

Yes
E

Data transfer
complete?

No

Send STOP
signal

Yes

Send START
signal

ACK

EError

STOP

E

Send ACK

Send NACK

No

No

RESTART

End

Disable Fixed
Function I2C block

Enable
RX FIFO

No
(stretch)

Set Fixed
Function I2C

block to receive
mode

Receiving
 one byte data

 complete?

Report and
handle error

Transmission
of one byte

slave address
complete?

STOP/
RESTART

http://www.onsemi.com/

AND9836

www.onsemi.com
91

Slave Mode Transfer Examples
Slave mode transmits or receives data.

Slave Transmit

Figure 52. Slave Mode Write Operation Flow Chart

Begin

Disable Fixed
Function I2C block

Select Slave
mode

Enable
TX FIFO

Enable Fixed
Function I2C block

No
(stretch)

E

Address ACK’ed or
NACK’ed?

Error

Yes

NACK

Set Fixed Function
I2C block

to transmit mode

Transmitting one byte
data complete?

TX FIFO
empty?

Yes

Yes
E

Byte ACK’ed
or NACK’ed?

ACK

ACK

No
E

Error

Begin

E

START detected

Wake up

No

NACK

Data transfer
complete?

No

Yes

End
Receiving

one byte slave
address

complete?

Report and
handle error

http://www.onsemi.com/

AND9836

www.onsemi.com
92

Slave Receive

Begin

Select Slave
mode

E

Address ACK’ed or
NACK’ed?

Error

Yes

NACK

Receiving one byte
data complete?

RX FIFO
full?

Yes

Yes
E

ACK

E
Error

E

START detected

Wake up

No

Data transfer
complete?

No

Yes

Send
ACK

End

Figure 53. Slave Mode Read Operation Flow Chart

Disable Fixed
Function I2C block

Enable
RX FIFO

Enable Fixed
Function I2C block

No
(stretch)

Set Fixed Function
I2C block to
receive mode

No
(stretch)

Report and
handle error

Send
NACK

Enable Fixed
Function I2C block

Receiving
one byte

slave address
complete?

http://www.onsemi.com/

AND9836

www.onsemi.com
93

EZ Slave Mode Transfer Example
The EZ Slave mode transmits or receives data.

EZ Slave Transmit

Transmitting one byte
data complete?

EZ buffer
empty?

Yes

Yes
E

Byte ACK’ed
or NACK’ed?

ACK

No
E

Error

Begin

No

NACK

Data transfer
complete?

No

Yes

Select transmit
mode

E

Report and
handle error

Begin

Disable Fixed
Function I2C block

Select Slave
mode

Enable
TX FIFO

Select EZ
mode

Receiving
one byte

slave address
complete?

No
(stretch)

E

Address ACK’ed or
NACK’ed?

Error

Yes

NACK

START detected

Wake up

Wait for START End

Figure 54. EZI2C Slave Mode Write Operation Flow Chart

Enable Fixed
Function I2C block

http://www.onsemi.com/

AND9836

www.onsemi.com
94

EZ Slave Receive

Begin

Disable Fixed
Function I2C block

Select Slave
mode

Enable
RX FIFO

Enable Fixed
Function I2C block

Select EZ
mode

Receiving
one byte

slave address
complete?

No
(stretch)

E

Address ACK’ed or
NACK’ed?

Error

Yes

NACK

ACK

START detected

Wake up

Receiving one byte
data complete?

EZ buffer
full

Yes
E

No
(stretch)

E
Error

No

Select receive
mode

E

Report and
handle error

Receiving
one byte EZ

address
complete?

Address ACK’ed or
NACK’ed?

ACK

BeginNACK

Yes

No
(stretch)

Yes

Data transfer
complete?

No

Yes

Send
ACK

Send
NACK

End

Wait for START

Figure 55. EZI2C Slave Mode Read Operation Flow Chart

http://www.onsemi.com/

AND9836

www.onsemi.com
95

Multi−Master Mode Transfer Example
In multi−master mode, data can be transferred with the

slave mode enabled or not enabled.

 Multi−Master − Slave Not Enabled

Begin

Disable Fixed
Function I2C block

Select Master
mode

Enable
TX FIFO

Enable Fixed
Function I2C block

Send START
signal

Transmission
of one byte

slave address
complete?No

(stretch)

E

Lost arbitration?

Error

Yes

Begin

Bus busy?

No

Bus busy?
Yes

No

Yes

No

Continue with data transfer as
in single master

E

Report and
handle error

Yes

End

Figure 56. Multi−Master, Slave Not Enabled Flow Chart

http://www.onsemi.com/

AND9836

www.onsemi.com
96

Multi−Master − Slave Enabled

Figure 57. Multi−Master, Slave Enabled Flow Chart

Begin

Disable Fixed
Function I2C block

Select Master and
Slave mode

Enable
TX FIFO

Enable Fixed
Function I2C block

Send START
signal

Transmission
of one byte

slave address
complete?

No
(stretch)

E

Bus busy or
lost arbitration?

Error

Yes

Bus busy?

No

Yes

No

Continue with data transfer as
in single master

E

Report and
handle error

Yes
Continue with address
recognition as a slave

End

http://www.onsemi.com/

AND9836

www.onsemi.com
97

TIMER, COUNTER, AND PWM
The Timer, Counter, and Pulse Width Modulator

(TCPWM) block in AXM0F243 MCU implements the
16−bit timer, counter, pulse width modulator (PWM), and
quadrature decoder functionality. The block can be used to
measure the period and pulse width of an input signal
(timer), find the number of times a particular event occurs
(counter), generate PWM signals, or decode quadrature
signals. This chapter explains the features, implementation,
and operational modes of the TCPWM block.

Features
• Up to five 16−bit timers, counters, or pulse width

modulators (PWM)
• The TCPWM block supports the following operational

modes:
♦ Timer
♦ Capture
♦ Quadrature decoding
♦ Pulse width modulation
♦ Pseudo−random PWM
♦ PWM with dead time

• Multiple counting modes – up, down, and up/down

• Clock prescaling (division by 1, 2, 4, ... 64, 128)

• Double buffering of compare/capture and period values

• Supports interrupt on:
♦ Terminal Count – The final value in the counter

register is reached
♦ Capture/Compare – The count is captured to the

capture/compare register or the counter value equals
the compare value

• Underflow, overflow, and capture/compare output signals
that can be routed to trigger SAR ADC

• Complementary line output for PWMs

• Selectable start, reload, stop, count, and capture event
signals for the TCPWM from other TCPWM s
underflow, compare match or overflow signal, SAR
ADC’s end−of−conversion (EOC) or Sample_Done
signal, CTBm comparator output, or low−power
comparator (LPCOMP) output signal and from the
dedicated GPIOs with rising edge, falling edge, both
edges, and level trigger options

Block Diagram

Bus Interface

Underflow,
Overflow,
Capture/compare

Interrupt line_out,
line_compl_out

Trigger_in
[13:0]

14
Counter

Tr
ig

ge
r

S
yn

ch
ro

ni
za

tio
n

C
on

fig
ur

at
io

n
R

eg
is

te
rsBus Interface Logic

23

CPU Subsystem

Figure 58. TCPWM Block Diagram

The block has these interfaces:
• Bus interface: Connects the block to the CPU subsystem.

• I/O signal interface: Connects input triggers (such as
reload, start, stop, count, and capture) to dedicated
GPIOs.

• Interrupts: Provides interrupt request signals from the
counter, based on terminal count (TC) or CC conditions.

• System interface: Consists of control signals such as
clock and reset from the system resources subsystem.
This TCPWM block can be configured by writing to the

TCPWM registers. See “TCPWM Registers” on page 115 for
more information on all registers required for this block.

Enabling and Disabling Counter in TCPWM Block
The counter can be enabled by setting the

COUNTER_ENABLED field (bit 0) of the control register
TCPWM_CTRL.

NOTE: The counter must be configured before enabling
it. If the counter is enabled after being
configured, registers are updated with the new
configuration values. Disabling the counter
retains the values in the registers until it is
enabled again (or reconfigured).

http://www.onsemi.com/

AND9836

www.onsemi.com
98

Clocking
The TCPWM receives the HFCLK through the system

interface to synchronize all events in the block. The counter
enable signal (counter_en), which is generated when the
counter is enabled, gates the HFCLK to provide a
counter−specific clock (counter_clock). Output triggers
(explained later in this chapter) are also synchronized with
the HFCLK.

Clock Prescaling: counter_clock can be prescaled, with
divider values of 1, 2, 4… 64, 128. This prescaling is done
by modifying the GENERIC field of the counter control
(TCPWM_CNT_CTRL) register, as shown in Table 68.

Table 68. BIT−FIELD SETTING TO PRESCALE
COUNTER CLOCK

GENERIC[10:8] Description

0 Divide by 1

1 Divide by 2

2 Divide by 4

3 Divide by 8

4 Divide by 16

5 Divide by 32

6 Divide by 64

7 Divide by 128

NOTE: Clock prescaling cannot be done in quadrature
mode and PWM−DT mode.

Events Based on Trigger Inputs
These are the events triggered by hardware or software.

• Reload

• Start

• Stop

• Count

• Capture/switch
Hardware triggers can be level signal, rising edge, falling

edge, or both edges. Figure 59 shows the selection of edge
detection type for any event trigger signal.

Any edge (rising, falling, or both) or level (high or low)
can be selected for the occurrence of an event by configuring
the trigger control register 1 (TCPWM_CNT_TR_CTRL1).
This edge/level configuration can be selected for each
trigger event separately. Alternatively, firmware can
generate an event by writing to the counter command
register (TCPWM_CMD), as shown in Figure 59.

trigger control register

rising edge

falling edge

both

pass through

event

2

Trigger signal

System bus
clock

Figure 59. Trigger Signal Edge Detection

Trigger
Synchronization

Edge
Detector
Circuit

counter command
register (SW generated)

The trigger signal to generate an event can be a GPIO
signal, TCPWM’s underflow, compare match or overflow
signal, SAR ADC’s end−of−comparison (EOC) or

Sample_Done signal, CTBm comparator output, or a
low−power comparator (LPCOMP) output signal. Figure 60
shows the trigger signal selection for all the events.

http://www.onsemi.com/

AND9836

www.onsemi.com
99

zero

TCPWM[0] Overflow

TCPWM[1] Overflow

TCPWM[2] Overflow

TCPWM[3] Overflow

TCPWM[4] Overflow

TCPWM[0] Compare Match

TCPWM[1] Compare Match

TCPWM[2] Compare Match

TCPWM[3] Compare Match

TCPWM[4] Compare Match

TCPWM[0] Underflow

TCPWM[1] Underflow

TCPWM[2] Underflow

TCPWM[3] Underflow

TCPWM[4] Underflow

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

0

20

21

P0[0]

P0[1]

tr_in[0]

tr_in[1]

tr_in[6]

tr_in[13]

14

14

14

Capture

Count

Reload

Stop

Start

Capture

Count

Reload

Stop

Start

Capture

Count

Reload

Stop

Start

TCPWM[0]
Trigger
Inputs

TCPWM[1]
Trigger
Inputs

TCPWM[4]
Trigger
Inputs

TCPWM_CNT0_TR_CTRL0

TCPWM_CNT1_TR_CTRL0

TCPWM_CNT4_TR_CTRL0

To use GPIOs for trigger,
HSIOM_PORT_SELx register should
be written

PERI_TR_GROUP0_TR_OUT_CTL0

PERI_TR_GROUP0_TR_OUT_CTL6

SAR SAMPLE_DONE

SAR EOC

CTBm CMP0

CTBm CMP1

LPCOMP[0] Output

LPCOMP[1] Output

P1[2]

P1[3]

tr_in[2]

tr_in[3]

P2[0]

P2[1]

tr_in[4]

tr_in[5]

Figure 60. Trigger Mux in AXM0F243 MCU

The events derived from these triggers can have different
definitions in different modes of the TCPWM block.
• Reload: A reload event initializes and starts the counter.

♦ In UP counting mode and DOWN counting mode,
the count register (TCPWM_CNT_COUNTER) is
initialized with ‘0’.

♦ In UP/DOWN counting mode, the count register is
initialized with ‘1’.

♦ In quadrature mode, the reload event acts as a
quadrature index event. An index/reload event
indicates a completed rotation and can be used to
synchronize quadrature decoding.

• Start: A start event is used to start counting; it can be used
after a stop event or after re−initialization of the counter
register to any value by software. Note that the count
register is not initialized on this event.
♦ In quadrature mode, the start event acts as

quadrature phase input phiB, which is explained in
detail in “Quadrature Decoder Mode” on page 106.

• Count: A count event causes the counter to increment or
decrement, depending on its configuration.
♦ In quadrature mode, the count event acts as

quadrature phase input phiA.

http://www.onsemi.com/

AND9836

www.onsemi.com
100

• Stop: A stop event stops the counter from incrementing or
decrementing. A start event will start the counting again.
♦ In the PWM modes, the stop event acts as a kill

event. A kill event disables all the PWM output
lines.

• Capture: A capture event copies the counter register value
to the capture register and capture register value to the
buffer capture register. In the PWM modes, the capture
event acts as a switch event. It switches the values of the
capture/compare and period registers with their buffer
counterparts. This feature can be used to modulate the
pulse width and frequency.

NOTE:
• All trigger inputs are synchronized to the HFCLK.

• When more than one event occurs in the same counter
clock period, one or more events may be missed. This can
happen for high−frequency events (frequencies close to
the counter frequency) and a timer configuration in which
a pre−scaled (divided) counter clock is used.

Output Signals
The TCPWM block generates several output signals, as

shown in Figure 61.

TCPWM block

Interrupt

Underflow
Overflow
Capture / Compare
line_out
line_compl_out

Figure 61. TCPWM Output Signals

Signals upon Trigger Conditions
• Counter generates an internal overflow (OV) condition

when counting up and the count register reaches the
period value.

• Counter generates an internal underflow (UN) condition
when counting down and the count register reaches zero.

• The capture/compare (CC) condition is generated by the
TCPWM when the counter is running and one of the
following conditions occur:
♦ The counter value equals the compare value.
♦ A capture event occurs − When a capture event

occurs, the TCPWM_CNT_COUNTER register
value is copied to the capture register and the
capture register value is copied to the buffer capture
register.

NOTE: These signals, when they occur, remain at logic
high for two cycles of the HFCLK. For reliable
operation, the condition that causes this trigger
should be less than a quarter of the HFCLK. For
example, if the HFCLK is running at 24 MHz,
the condition causing the trigger should occur at
a frequency less than 6 MHz.

Interrupts
The TCPWM block provides a dedicated interrupt output

signal from the counter. An interrupt can be generated for a
TC condition or a CC condition. The exact definition of
these conditions is mode−specific.

Four registers are used for interrupt handling in this block,
as shown in Table 69.

Table 69. INTERRUPT REGISTER

Interrupt Registers Bits Name Description

TCPWM_CNT_INTR
(Interrupt request register)

0 TC This bit is set to ‘1’, when a terminal count is detected. Write ‘1’ to clear this
bit.

1 CC_MATCH This bit is set to ‘1’ when the counter value matches capture/compare
register value. Write ‘1’ to clear this bit.

TCPWM_CNT_INTR_SET
(Interrupt set request register)

0 TC Write ‘1’ to set the corresponding bit in the interrupt request register. When
read, this register reflects the interrupt request register status.

1 CC_MATCH Write ‘1’ to set the corresponding bit in the interrupt request register. When
read, this register reflects the interrupt request register status.

TCPWM_CNT_INTR_MASK
(Interrupt mask register)

0 TC Mask bit for the corresponding TC bit in the interrupt request register.

1 CC_MATCH Mask bit for the corresponding CC_MATCH bit in the interrupt request
register.

TCPWM_CNT_INTR_MASKED
(Interrupt masked request register)

0 TC Logical AND of the corresponding TC request and mask bits.

1 CC_MATCH Logical AND of the corresponding CC_MATCH request and mask bits.

http://www.onsemi.com/

AND9836

www.onsemi.com
101

Outputs
The TCPWM has two outputs, line_out and

line_compl_out (complementary of line_out). Note that the

OV, UN, and CC conditions can be used to drive line_out and
line_compl_out if needed, by configuring the
TCPWM_CNT_TR_CTRL2 register (Table 70).

Table 70. CONFIGURING OUTPUT LINE FOR OV, UN, AND CC CONDITIONS

Field Bit Value Event Description

CC_MATCH_MODE
Default Value = 3

1:0 0 Set line_out to ‘1 Configures output line on a compare
 match (CC) event

1 Clear line_out to ‘0

2 Invert line_out

3 No change

OVERFLOW_MODE
Default Value = 3

3:2 0 Set line_out to ‘1 Configures output line on a overflow
 (OV) event

1 Clear line_out to ‘0

2 Invert line_out

3 No change

UNDERFLOW_MODE
Default Value = 3

5:4 0 Set line_out to ‘1 Configures output line on a underflow
 (UN) event

1 Clear line_out to ‘0

2 Invert line_out

3 No change

Power Modes
The TCPWM block works in Active and Sleep modes.

The TCPWM block is powered from VCCD. The

configuration registers and other logic are powered in
Deep−Sleep mode to keep the states of configuration
registers. See Table 30 for details.

Table 71. POWER MODES IN TCPWM BLOCK

Power Mode Block Status

Active This block is fully operational in this mode with clock running and power switched on.

Sleep All counter clocks are on, but bus interface cannot be accessed.

Deep−Sleep In this mode, the power to this block is still on but no bus clock is provided; hence, the logic is not functional.
All the configuration registers will keep their state.

Modes of Operation
The counter block can function in six operational modes,

as shown in Table 48. The MODE [26:24] field of the
counter control register (TCPWM_CNTx_CTRL)
configures the counter in the specific operational mode.

Table 72. OPERATIONAL MODE CONFIGURATION

Mode

MODE
Field

[26:24] Description

Timer 000 Implements a timer or counter. The counter increments or decrements by ‘1’ at every counter clock cycle in
which a count event is detected.

Capture 01 Implements a timer or counter with capture input. The counter increments or decrements by ‘1’ at every
counter clock cycle in which a count event is detected. When a capture event occurs, the counter value
copies into the capture register.

Quadrature
Decoder

011 Implements a quadrature decoder, where the counter is decremented or incremented, based on two phase
inputs according to the selected (X1, X2 or X4) encoding scheme.

PWM 100 Implements edge/center−aligned PWMs with an 8−bit clock prescaler and buffered compare/period regis-
ters.

PWM−DT 101 Implements edge/center−aligned PWMs with configurable 8−bit dead time (on both outputs) and buffered
compare/period registers.

PWM−PR 110 Implements a pseudo−random PWM using a 16−bit linear feedback shift register (LFSR).

http://www.onsemi.com/

AND9836

www.onsemi.com
102

The counter can be configured to count up, down, and
up/down by setting the UP_DOWN_MODE[17:16] field in
the TCPWM_CNT_CTRL register, as shown in Table 73.

Table 73. COUNTING MODE CONFIGURATION

Counting Modes
UP_DOWN_
MODE[17:16] Description

UP Counting Mode 00 Increments the counter until the period value is reached. A Terminal Count (TC)
condition is generated when the counter reaches the period value.

DOWN Counting Mode 01 Decrements the counter from the period value until 0 is reached. A TC condition is
generated when the counter reaches ‘0’.

UP/DOWN Counting Mode 0 10 Increments the counter until the period value is reached, and then decrements the
counter until ‘0’ is reached. A TC condition is generated only when ‘0’ is reached.

UP/DOWN Counting Mode 1 11 Similar to up/down counting mode 0 but a TC condition is generated when the
counter reaches ‘0’ and when the counter value reaches the period value.

Timer Mode
The timer mode is commonly used to measure the time of

occurrence of an event or to measure the time difference
between two events.

Block Diagram

PERIOD

COUNTER

COMPARE

==

==

Reload

Start

CC

TC

counter_clock

Figure 62. Timer Mode Block Diagram

Stop

Count

BUFFER
COMPARE

UN

OV

How It Works
The timer can be configured to count in up, down, and

up/down counting modes. It can also be configured to run in
either continuous mode or one−shot mode. The following
explains the working of the timer:
• The timer is an up, down, and up/down counter.

♦ The current count value is stored in the count
register (TCPWM_CNTx_COUNTER).
NOTE: It is not recommended to write values to

this register while the counter is running.
♦ The period value for the timer is stored in the period

register.

• The counter is re−initialized in different counting modes
as follows:
♦ In the up counting mode, after the count reaches the

period value, the count register is automatically
reloaded with 0.

♦ In the down counting mode, after the count register
reaches zero, the count register is reloaded with the
value in the period register.

♦ In the up/down counting modes, the count register
value is not updated upon reaching the terminal
values. Instead the direction of counting changes
when the count value reaches 0 or the period value.

• The CC condition is generated when the count register
value equals the compare register value. Upon this
condition, the compare register and buffer compare
register switch their values if enabled by the
AUTO_RELOAD_CC bit−field of the counter control
(TCPWM_CNT_CTRL) register. This condition can be
used to generate an interrupt request.
Figure 63 shows the timer operational mode of the counter

in four different counting modes. The period register
contains the maximum counter value.
• In the up counting mode, a period value of A results in

A + 1 counter cycles (0 to A).
• In the down counting mode, a period value of A results in

A + 1 counter cycles (A to 0).
• In the two up/down counting modes (0 and 1), a period

value of A results in 2*A counter cycles (0 to A and back
to 0).

http://www.onsemi.com/

AND9836

www.onsemi.com
103

Period

TC

Counter

Timer, down counting mode

0xFFFF

counter_clock

0xFFFF

0xFFFE

0xFFFD

0xFFFC

0x0001

0x0000

0x0002

0x0003

UN

OV

0xFFFF

0xFFFE

0xFFFD

0xFFFC

0x0001

0xFFFF

0xFFFE

Period

TC

Counter

Timer, up counting mode

0xFFFF

0x0000

0xFFFE

0xFFFF

counter_clock

0x0003

0xFFFE

0xFFFF

0xFFFE

UN

OV

0x0001

0x0002

0x0003

0x0002

0x0001

0x0002

0x0001

0xFFFF

Figure 63. Timing Diagram for Timer in Multiple Counting Modes

Period

TC

Counter

0xFFFF

counter_clock

UN

OV

0xFFFE

0xFFFF

0x0002

0x0001

0x0000

0x0003

0xFFFE

0xFFFE

0xFFFE

0x0001

0xFFFE

0xFFFF

0x0002

0x0003

0xFFFF

Timer, up/down counting mode 0

0x0001

http://www.onsemi.com/

AND9836

www.onsemi.com
104

Period

TC

Counter

Timer, up/down counting mode 1

0xFFFF

0xFFFE

0xFFFF

counter_clock

UN

OV

0x0002

0x0001

0x0000

0x0003

0xFFFE

0xFFFD

0xFFFC

0xFFFE

0xFFFF

0x0002

0x0001

0x0003

0xFFFF

Figure 63. Timing Diagram for Timer in Multiple Counting Modes (continued)

NOTE: The OV and UN signals remain at logic high for
two cycles of the HFCLK, as explained in
“Signals upon Trigger Conditions” on page 100.
The figures in this chapter assume that HFCLK
and counter clock are the same.

Configuring Counter for Timer Mode
The steps to configure the counter for Timer mode of

operation and the affected register bits are as follows.
1. Disable the counter by writing ‘0’ to the

COUNTER_ENABLED field of the
TCPWM_CTRL register.

2. Select Timer mode by writing ‘000’ to the
MODE[26:24] field of the TCPWM_CNT_CTRL
register.

3. Set the required 16−bit period in the
TCPWM_CNT_PERIOD register.

4. Set the 16−bit compare value in the
TCPWM_CNT_CC register and the buffer
compare value in the TCPWM_CNT_CC_BUFF
register.

5. Set AUTO_RELOAD_CC field of the
TCPWM_CNT_CTRL register, if required to
switch values at every CC condition.

6. Set clock prescaling by writing to the
GENERIC[15:8] field of the
TCPWM_CNT_CTRL register, as shown in Table
68.

7. Set the direction of counting by writing to the
UP_DOWN_MODE[17:16] field of the
TCPWM_CNT_CTRL register, as shown in Table
48.

8. The timer can be configured to run either in
continuous mode or one−shot mode by writing 0
or 1, respectively to the ONE_SHOT[18] field of
TCPWM_CNT_CTRL.

9. Set the TCPWM_CNT_TR_CTRL0 register to
select the trigger that causes the event (Reload,
Start, Stop, Capture, and Count).

10. Set the TCPWM_CNT_TR_CTRL1 register to
select the edge of the trigger that causes the event
(Reload, Start, Stop, Capture, and Count).

11. If required, set the interrupt upon TC or CC
condition, as shown in “Interrupts” on page 100.

12. Enable the counter by writing ‘1’ to the
COUNTER_ENABLED field of the
TCPWM_CTRL register. A start trigger must be
provided through firmware (TCPWM_CMD
register) to start the counter if the hardware start
signal is not enabled.

Capture Mode
In the capture mode, the counter value can be captured at

any time either through a firmware write to command
register (TCPWM_CMD) or a capture trigger input. This
mode is used for period and pulse width measurement.

Block Diagram

PERIOD

COUNTER

CAPTURE

==

Reload

Start

CC

TC

counter_clock

Figure 64. Timer Mode Block Diagram

Stop

Count

BUFFER
CAPTURE

Capture

UN

OV

http://www.onsemi.com/

AND9836

www.onsemi.com
105

How it Works
The counter can be set to count in up, down, and up/down

counting modes by configuring the
UP_DOWN_MODE[17:16] bitfield of the counter control
register (TCPWM_CNT_CTRL).

Operation in capture mode occurs as follows:
• During a capture event, generated either by hardware or

software, the current count register value is copied to the
capture register (TCPWM_CNT_CC) and the capture

register value is copied to the buffer capture register
(TCPWM_CNT_CC_BUFF).

• A pulse on the CC output signal is generated when the
counter value is copied to the capture register. This
condition can also be used to generate an interrupt
request.
Figure 65 illustrates the capture behavior in the up

counting mode.

Period

Counter

TC

Capture, up counting mode

CC

counter_clock

0xFFFF

Capture trigger

0x0002

0x0002

0xFFFE

0xFFFE

0x0003

0xFFFE

0xFFFF

0x0002

0x0003

0x0000

0x0001

0xFFFE

0xFFFF

0x0002

0x0003

0x0001

0x0002

0x0001

0xFFFF

Figure 65. Timing Diagram of Counter in Capture Mode, Up Counting Mode

In the figure, observe that:
• The period register contains the maximum count value.

• Internal overflow (OV) and TC conditions are generated
when the counter reaches the period value.

• A capture event is only possible at the edges or through
software. Use trigger control register 1 to configure the
edge detection.

• Multiple capture events in a single clock cycle are
handled as:
♦ Even number of capture events − no event is

observed
♦ Odd number of capture events − single event is

observed
This happens when the capture signal frequency is greater

than the counter_clock frequency.

Configuring Counter for Capture Mode
The steps to configure the counter for Capture mode

operation and the affected register bits are as follows.

1. Disable the counter by writing ‘0’ to the
COUNTER_ENABLED field of the
TCPWM_CTRL register.

2. Select Capture mode by writing ‘010’ to the
MODE[26:24] field of the TCPWM_CNT_CTRL
register.

3. Set the required 16−bit period in the
TCPWM_CNT_PERIOD register.

4. Set clock prescaling by writing to the
GENERIC[15:8] field of the
TCPWM_CNT_CTRL register, as shown in Table
68.

5. Set the direction of counting by writing to the
UP_DOWN_MODE[17:16] field of the
TCPWM_CNT_CTRL register, as shown in
Table 48.

6. Counter can be configured to run either in
continuous mode or one−shot mode by writing 0
or 1, respectively to the ONE_SHOT[18] field of
the TCPWM_CNT_CTRL register.

http://www.onsemi.com/

AND9836

www.onsemi.com
106

7. Set the TCPWM_CNT_TR_CTRL0 register to
select the trigger that causes the event (Reload,
Start, Stop, Capture, and Count).

8. Set the TCPWM_CNT_TR_CTRL1 register to
select the edge that causes the event (Reload, Start,
Stop, Capture, and Count).

9. If required, set the interrupt upon TC or CC
condition, as shown in “Interrupts” on page 100.

10. Enable the counter by writing ‘1’ to the
COUNTER_ENABLED field of the
TCPWM_CTRL register. A start trigger must be
provided through firmware (TCPWM_CMD
register) to start the counter if the hardware start
signal is not enabled.

Quadrature Decoder Mode
Quadrature decoders are used to determine speed and

position of a rotary device (such as servo motors, volume
control wheels, and PC mice). The quadrature encoder
signals are used as phiA and phiB inputs to the decoder.

Block Diagram

Figure 66. Quadrature Mode Block Diagram

PERIOD

COUNTER

CAPTURE

 BUFFER CAPTURE

==

index

phiA

Stop

phiB

CC

TC

counter_clock

How It Works
Quadrature decoding only runs on counter_clock. It can

operate in three sub−modes: X1, X2, and X4 modes. These
encoding modes can be controlled by the
QUADRATURE_MODE[21:20] field of the counter
control register (TCPWM_CNT_CTRL). This mode uses
double buffered capture registers.

The Quadrature mode operation occurs as follows:
• Quadrature phases phiA and phiB: Counting direction is

determined by the phase relationship between phiA and
phiB. These phases are connected to the count and the

start trigger inputs, respectively as hardware input to the
decoder.

• Quadrature index signal: This is connected to the reload
signal as a hardware input. This event generates a TC
condition, as shown in Figure 67.
On TC, the counter is set to 0x0000 (in the up counting
mode) or to the period value (in the down counting mode).
NOTE: The down counting mode is recommended to be

used with a period value of 0x8000 (the
mid−point value).

• A pulse on CC output signal is generated when the count
register value reaches 0x0000 or 0xFFFF. On a CC
condition, the count register is set to the period value
(0x8000 in this case).

• On TC or CC condition:
♦ Count register value is copied to the capture register
♦ Capture register value is copied to the buffer capture

register
♦ This condition can be used to generate an interrupt

request
• The value in the capture register can be used to determine

which condition caused the event and whether:
♦ A counter underflow occurred (value 0)
♦ A counter overflow occurred (value 0xFFFF)
♦ An index/TC event occurred (value is not equal to

either 0 or 0xFFFF)
• The DOWN bit field of counter status

(TCPWM_CNTx_STATUS) register can be read to
determine the current counting direction. Value ‘0’
indicates a previous increment operation and value ‘1’
indicates previous decrement operation. Figure 67
illustrates quadrature behavior in the X1 encoding mode.
♦ A positive edge on phiA increments the counter

when phiB is ‘0’ and decrements the counter when
phiB is ‘1’.

♦ The count register is initialized with the period value
on an index/reload event.

♦ Terminal count is generated when the counter is
initialized by index event. This event can be used to
generate an interrupt.

♦ When the count register reaches 0xFFFF (the
maximum count register value), the count register
value is copied to the capture register and the count
register is initialized with period value (0x8000 in
this case).

http://www.onsemi.com/

AND9836

www.onsemi.com
107

Period

TC

CC

Quadrature, X1 encoding

0x8000

Ycapture

buffer capture
X Y

0x8000 0x8001 0x8002 0x8000 0x7FFFcounter

phiA

phiB

index/reload
event

0x8003

counter_clock

0xFFFF

Figure 67. Timing Diagram for Quadrature Mode, X1 Encoding

0xFFFF

The quadrature phases are detected on the counter_clock.
Within a single counter_clock period, the phases should not
change value more than once. The X2 and X4 quadrature
encoding modes count twice and four times as fast as the X1
encoding mode.

Figure 68 illustrates the quadrature mode behavior in the
X2 and X4 encoding modes.

Period

TC

Quadrature, X2 encoding

4

counter

phiA

index/reload
event

counter_clock

4 5

Period

TC

Quadrature, X4 encoding

4

counter

phiA

phiB

index/reload
event

counter_clock

4

Figure 68. Timing Diagram for Quadrature Mode, X2 and X4 Encoding

phiB

5 6 7 8 9 10 11 891011

6 7 678

12

http://www.onsemi.com/

AND9836

www.onsemi.com
108

Configuring Counter for Quadrature Mode
The steps to configure the counter for quadrature mode of

operation and the affected register bits are as follows.
1. Disable the counter by writing ‘0’ to the

COUNTER_ENABLED field of the
TCPWM_CTRL register.

2. Select Quadrature mode by writing ‘011’ to the
MODE[26:24] field of the TCPWM_CNT_CTRL
register.

3. Set the required 16−bit period in the
TCPWM_CNT_PERIOD register.

4. Set the required encoding mode by writing to the
QUADRATURE_MODE[21:20] field of the
TCPWM_CNT_CTRL register.

5. Set the TCPWM_CNT_TR_CTRL0 register to
select the trigger that causes the event (Index and
Stop).

6. Set the TCPWM_CNT_TR_CTRL1 register to
select the edge that causes the event (Index and
Stop).

7. If required, set the interrupt upon TC or CC
condition, as shown in “Interrupts” on page 100.

8. Enable the counter by writing ‘1’ to the
COUNTER_ENABLED field of the
TCPWM_CTRL register.

Pulse Width Modulation Mode
The PWM mode is also called the Digital Comparator

mode. The comparison output is a PWM signal whose
period depends on the period register value and duty cycle
depends on the compare and period register values.

PWM period = (period value/counter clock frequency) in
left− and right−aligned modes

PWM period = (2 x (period value/counter clock
frequency)) in center−aligned mode

Duty cycle = (compare value/period value) in left− and
right−aligned modes

Duty cycle = ((period value−compare value)/period
value) in center−aligned mode

Block Diagram

line_out_compl

PERIOD

COUNTER

COMPARE

 BUFFER COMPARE

==

reload

start

stop

switch

UN

OV

CC

TC

counter_clock

BUFFER PERIOD

PWM
line_out

count

How It Works
The PWM mode can output left, right, center, or

asymmetrically aligned PWM signals. The desired output
alignment is achieved by using the counter’s up, down, and
up/down counting modes selected using
UP_DOWN_MODE[17:16] bits in the
TCPWM_CNT_CTRL register, as shown in Table 73.

This CC signal along with OV and UN signals control the
PWM output line. The signals can toggle the output line or
set it to a logic ‘0’ or ‘1’ by configuring the
TCPWM_CNT_TR_CTRL2 register. By configuring how
the signals impact the output line, the desired PWM output
alignment can be obtained.

The recommended way to modify the duty cycle is:
• The buffer period register and buffer compare register are

updated with new values.

• On TC, the period and compare registers are
automatically updated with the buffer period and buffer
compare registers when there is an active switch event.
The AUTO_RELOAD_CC and
AUTO_RELOAD_PERIOD fields of the counter control
register are set to ‘1’. When a switch event is detected, it
is remembered until the next TC event. Pass through
signal (selected during event detection setting) cannot
trigger a switch event.

• Updates to the buffer period register and buffer compare
register should be completed before the next TC with an
active switch event; otherwise, switching does not reflect
the register update, as shown in Figure 70.

http://www.onsemi.com/

AND9836

www.onsemi.com
109

In the center−aligned mode, the output line is set to ‘0’ at
Terminal Count and toggled at the CC condition

At the reload event, the count register is initialized and
starts counting in the appropriate mode. At every count, the

count register value is compared with compare register
value to generate the CC signal on match.

Figure 69 illustrates center−aligned PWM with buffered
period and compare registers (up/down counting mode 0).

Figure 69. Timing Diagram for Center Aligned PWM

PWM center aligned buffered

new period value B, new compare value N

A

B

A

BA

M

M

N

N

M

SW update of buffers

reload event

period buffer

period

compare

compare buffer

Counter

A

0

M

N

TC

CC

line_out

counter_clock

Switch at TC condition

N

B

Figure 69 illustrates center−aligned PWM with software
generated switch events:
• Software generates a switch event only after both the

period buffer and compare buffer registers are updated.

• Because the updates of the second PWM pulse come late
(after the terminal count), the first PWM pulse is repeated.

• Note that the switch event is automatically cleared by
hardware at TC after the event takes effect.

http://www.onsemi.com/

AND9836

www.onsemi.com
110

Figure 70. Timing Diagram for Center Aligned PWM (software switch event

A B

BA

M

M

N

N

Switch event

reload event

period buffer

period

compare

compare buffer

Counter

A

0

M
N

TC

CC

line_out

M

A

PWM, center aligned, buffered (software switch event)

counter_clock

Switch at TC condition
B

Other Configurations
• For asymmetric PWM, the up/down counting mode 1

should be used. This causes a TC when the counter
reaches either ‘0’ or the period value. To create an
asymmetric PWM, the compare register is changed at
every TC (when the counter reaches either ‘0’ or the
period value), whereas the period register is only changed
at every other TC (only when the counter reaches ‘0’).

• For left−aligned PWM, use the up counting mode;
configure the OV condition to set output line to ‘1’ and
CC condition to reset the output line to ‘0’. See Table 70.

• For right−aligned PWM, use the down counting mode;
configure UN condition to reset output line to ‘0’ and CC
condition to set the output line to ‘1’. See Table 70.

Kill Feature
The kill feature gives the ability to disable both output

lines immediately. This event can be programmed to stop the
counter by modifying the PWM_STOP_ON_KILL and
PWM_SYNC_KILL fields of the counter control register, as
shown in Table 74.

Table 74. FIELD SETTING FOR STOP ON KILL MODE

PWM_STOP_ON_KILL Field Comments

0 The kill trigger temporarily blocks the PWM output line but the counter is still running.

1 The kill trigger temporarily blocks the PWM output line and the counter is also stopped.

A kill event can be programmed to be asynchronous or
synchronous, as shown in Table 75.

Table 75. FIELD SETTING FOR SYNCHRONOUS/ASYNCHRONOUS KILL

PWM_SYNC_KILL Field Comments

0 An asynchronous kill event lasts as long as it is present. This event requires pass through mode.

1 A synchronous kill event disables the output lines until the next TC event. This event requires rising edge
mode.

http://www.onsemi.com/

AND9836

www.onsemi.com
111

In the synchronous kill, PWM cannot be started before the
next TC. To restart the PWM immediately after kill input is
removed, kill event should be asynchronous (see Table 75).
The generated stop event disables both output lines. In this
case, the reload event can use the same trigger input signal
but should be used in falling edge detection mode.

Configuring Counter for PWM Mode
The steps to configure the counter for the PWM mode of

operation and the affected register bits are as follows.
1. Disable the counter by writing ‘0’ to the

COUNTER_ENABLED field of the
TCPWM_CTRL register.

2. Select PWM mode by writing ‘100’ to the
MODE[26:24] field of the TCPWM_CNT_CTRL
register.

3. Set clock prescaling by writing to the
GENERIC[15:8] field of the
TCPWM_CNT_CTRL register, as shown in
Table 68.

4. Set the required 16−bit period in the
TCPWM_CNT_PERIOD register and the buffer
period value in the
TCPWM_CNT_PERIOD_BUFF register to switch
values, if required.

5. Set the 16−bit compare value in the
TCPWM_CNT_CC register and buffer compare
value in the TCPWM_CNT_CC_BUFF register to
switch values, if required.

6. Set the direction of counting by writing to the
UP_DOWN_MODE[17:16] field of the
TCPWM_CNT_CTRL register to configure
left−aligned, right−aligned, or center−aligned
PWM, as shown in Table 73.

7. Set the PWM_STOP_ON_KILL and
PWM_SYNC_KILL fields of the
TCPWM_CNT_CTRL register as required.

8. Set the TCPWM_CNT_TR_CTRL0 register to
select the trigger that causes the event (Reload,
Start, Kill, Switch, and Count).

9. Set the TCPWM_CNT_TR_CTRL1 register to
select the edge that causes the event (Reload, Start,
Kill, Switch, and Count).

10. line_out and line_out_compl can be controlled by
the TCPWM_CNT_TR_CTRL2 register to set,
reset, or invert upon CC, OV, and UN conditions.

11. If required, set the interrupt upon TC or CC
condition, as shown in “Interrupts” on page 100.

12. Enable the counter by writing ‘1’ to the
COUNTER_ENABLED field of the
TCPWM_CTRL register. A start trigger must be
provided through firmware (TCPWM_CMD
register) to start the counter if the hardware start
signal is not enabled.

Pulse Width Modulation with Dead Time Mode
Dead time is used to delay the transitions of both

‘line_out’ and ‘line_out_compl’ signals. It separates the
transition edges of these two signals by a specified time
interval. Two complementary output lines ‘dt_line’ and
‘dt_line_compl’ are derived from these two lines. During
the dead band period, both compare output and complement
compare output are at logic ‘0’ for a fixed period. The dead
band feature allows the generation of two non−overlapping
PWM pulses. A maximum dead time of 255 clocks can be
generated using this feature.

Block Diagram

Figure 71. PWM−DT Mode Block Diagram

PERIOD

COUNTER

COMPARE

 BUFFER COMPARE

==

Reload

Start

Stop

Switch

CC

TC

counter_clock

BUFFER PERIOD

PWM
dt_line

Count
Dead Time

dt_line_compl

http://www.onsemi.com/

AND9836

www.onsemi.com
112

How It Works
The PWM operation with Dead Time mode occurs as

follows:
• On the rising edge of the PWM line_out, depending upon

UN, OV, and CC conditions, the dead time block sets the
dt_line and dt_line_compl to ‘0’.

• The dead band period is loaded and counted for the period
configured in the register.

• When the dead band period is complete, dt_line is set to
‘1’.

• On the falling edge of the PWM line_out depending upon
UN, OV, and CC conditions, the dead time block sets the
dt_line and dt_line_compl to ‘0’.

• The dead band period is loaded and counted for the period
configured in the register.

• When the dead band period has completed,
dt_line_compl is set to ‘1’.

• A dead band period of zero has no effect on the dt_line and
is the same as line_out.

• When the duration of the dead time equals or exceeds the
width of a pulse, the pulse is removed.
This mode follows PWM mode and supports the

following features available with that mode:
• Various output alignment modes

• Two complementary output lines, dt_line and
dt_line_compl, derived from PWM “line_out” and
“line_out_compl”, respectively
♦ Stop/kill event with synchronous and asynchronous

modes
♦ Conditional switch event for compare and buffer

compare registers and period and buffer period
registers

This mode does not support clock prescaling.
Figure 72 illustrates how the complementary output lines

“dt_line” and “dt_line_compl” are generated from the PWM
output line, “line_out”.

Figure 72. Timing Diagram for PWM, with and without Dead Time

PWM, Deadtime insertion

line_out

Dead time duration : 0

dt_line

dt_line_compl

Deadtime duration :

dt_line

dt_line_compl

Configuring Counter for PWM with Dead Time Mode
The steps to configure the counter for PWM with Dead

Time mode of operation and the affected register bits are as
follows:

1. Disable the counter by writing ‘0’ to the
COUNTER_ENABLED field of the
TCPWM_CTRL register.

2. Select PWM with Dead Time mode by writing
‘101’ to the MODE[26:24] field of the
TCPWM_CNT_CTRL register.

3. Set the required dead time by writing to the
GENERIC[15:8] field of the
TCPWM_CNT_CTRL register, as shown in
Table 68.

4. Set the required 16−bit period in the
TCPWM_CNT_PERIOD register and the buffer
period value in the

TCPWM_CNT_PERIOD_BUFF register to switch
values, if required.

5. Set the 16−bit compare value in the
TCPWM_CNT_CC register and the buffer
compare value in the TCPWM_CNT_CC_BUFF
register to switch values, if required.

6. Set the direction of counting by writing to the
UP_DOWN_MODE[17:16] field of the
TCPWM_CNT_CTRL register to configure
left−aligned, right−aligned, or center−aligned
PWM, as shown in Table 73.

7. Set the PWM_STOP_ON_KILL and
PWM_SYNC_KILL fields of the
TCPWM_CNT_CTRL register as required, as
shown in the “Pulse Width Modulation Mode” on
page 108.

http://www.onsemi.com/

AND9836

www.onsemi.com
113

8. Set the TCPWM_CNT_TR_CTRL0 register to
select the trigger that causes the event (Reload,
Start, Kill, Switch, and Count).

9. Set the TCPWM_CNT_TR_CTRL1 register to
select the edge that causes the event (Reload, Start,
Kill, Switch, and Count).

10. dt_line and dt_line_compl can be controlled by the
TCPWM_CNT_TR_CTRL2 register to set, reset,
or invert upon CC, OV, and UN conditions.

11. If required, set the interrupt upon TC or CC
condition, as shown in “Interrupts” on page 100.

12. Enable the counter by writing ‘1’ to the
COUNTER_ENABLED field of the
TCPWM_CTRL register. A start trigger must be
provided through firmware (TCPWM_CMD
register) to start the counter if hardware start
signal is not enabled.

Pulse Width Modulation Pseudo−Random Mode
This mode uses the linear feedback shift register (LFSR).

LFSR is a shift register whose input bit is a linear function
of its previous state.

Block Diagram

Figure 73. PWM−PR Mode Block Diagram

PERIOD

LFSR / COUNTER

COMPARE

 BUFFER COMPARE

==

reload

start

stop

switch

CC

TC

counter_clock

BUFFER PERIOD

<
line_out

How It Works
The counter register is used to implement LFSR with the

polynomial: x16 + x14 + x13 + x11 + 1, as shown in Figure 74.

It generates all the numbers in the range [1, 0xFFFF] in a
pseudo−random sequence. Note that the counter register
should be initialized with a non−zero value.

Figure 74. Pseudo−Random Sequence Generation using Counter Register

0

011 0 1 0 1 1 0 0 1 1 0 0 0 1

http://www.onsemi.com/

AND9836

www.onsemi.com
114

The following steps describe the process:
• The PWM output line, ‘line_out’, is driven with ‘1’ when

the lower 15−bit value of the counter register is smaller
than the value in the compare register (when
counter[14:0] < compare[15:0]). A compare value of
‘0x8000’ or higher always results in a ‘1’ on the PWM
output line. A compare value of ‘0’ always results in a ‘0’
on the PWM output line.

• A reload event behaves similar to a start event; however,
it does not initialize the counter.

• Terminal count is generated when the counter value
equals the period value. LFSR generates a predictable
pattern of counter values for a certain initial value. This
predictability can be used to calculate the counter value
after a certain amount of LFSR iterations ‘n’. This
calculated counter value can be used as a period value and
the TC is generated after ‘n’ iterations.

• At TC, a switch/capture event conditionally switches the
compare and period register pairs (based on the
AUTO_RELOAD_CC and AUTO_RELOAD_PERIOD
fields of the counter control register).

• A kill event can be programmed to stop the counter as
described in previous sections.

• One shot mode can be configured by setting the
ONE_SHOT field of the counter control register. At
terminal count, the counter is stopped by hardware.

• In this mode, underflow, overflow, and trigger condition
events do not occur.

• CC condition occurs when the counter is running and its
value equals compare value. Figure 75 illustrates
pseudo−random noise behavior.

• A compare value of 0x4000 results in 50 percent duty
cycle (only the lower 15 bits of the 16− bit counter are
used to compare with the compare register value).

Pseudo Random PWM

reload event

compare

period

counter

line_out

0x4000

0xACE1

0xACE1 0x5670 0xAB38 0x2ACE 0x1567

counter_clock

Figure 75. Timing Diagram for Pseudo−Random PWM

0x559C

A capture/switch input signal may switch the values
between the compare and compare buffer registers and the
period and period buffer registers. This functionality can be
used to modulate between two different compare values
using a trigger input signal to control the modulation.

NOTE: Note Capture/switch input signal can only be
triggered by an edge (rising, falling, or both).
This input signal is remembered until the next
terminal count.

Configuring Counter for Pseudo−Random PWM Mode
The steps to configure the counter for pseudo−random

PWM mode of operation and the affected register bits are as
follows.

1. Disable the counter by writing ‘0’ to
COUNTER_ENABLED of the TCPWM_CTRL
register.

2. Select pseudo−random PWM mode by writing
‘110’ to the MODE[26:24] field of the
TCPWM_CNT_CTRL register.

3. Set the required period (16 bit) in the
TCPWM_CNT_PERIOD register and buffer
period value in the

TCPWM_CNT_PERIOD_BUFF register to switch
values, if required.

4. Set the 16−bit compare value in the
TCPWM_CNT_CC register and the buffer
compare value in the TCPWM_CNT_CC_BUFF
register to switch values.

5. Set the PWM_STOP_ON_KILL and
PWM_SYNC_KILL fields of the
TCPWM_CNT_CTRL register as required.

6. Set the TCPWM_CNT_TR_CTRL0 register to
select the trigger that causes the event (Reload,
Start, Kill, and Switch).

7. Set the TCPWM_CNT_TR_CTRL1 register to
select the edge that causes the event (Reload, Start,
Kill, and Switch).

8. line_out and line_out_compl can be controlled by
the TCPWM_CNT_TR_CTRL2 register to set,
reset, or invert upon CC, OV, and UN conditions.

9. If required, set the interrupt upon TC or CC
condition, as shown in “Interrupts” on page 100.

10. Enable the counter by writing ‘1’ to the
COUNTER_ENABLED field of the
TCPWM_CTRL register.

http://www.onsemi.com/

AND9836

www.onsemi.com
115

TCPWM Registers

Table 76. LIST OF TCPWM REGISTERS

Register Comment Features

TCPWM_CTRL TCPWM control register Enables the counter block

TCPWM_CMD TCPWM command register Generates software events

TCPWM_INTR_CAUSE TCPWM counter interrupt cause register Determines the source of the combined interrupt signal

TCPWM_CNT_CTRL Counter control register Configures counter mode, encoding modes, one shot
 mode, switching, kill feature, dead time, clock
 pre−scaling, and counting direction

TCPWM_CNT_STATUS Counter status register Reads the direction of counting, dead time duration, and
 clock pre−scaling; checks if the counter is running

TCPWM_CNT_COUNTER Count register Contains the 16−bit counter value

TCPWM_CNT_CC Counter compare/capture register Captures the counter value or compares the value with
 counter value

TCPWM_CNT_CC_BUFF Counter buffered compare/capture register Buffer register for counter CC register; switches period
 value

TCPWM_CNT_PERIOD Counter period register Contains upper value of the counter

TCPWM_CNT_PERIOD_BUFF Counter buffered period register Buffer register for counter period register; switches
 compare value

TCPWM_CNT_TR_CTRL0 Counter trigger control register 0 Selects trigger for specific counter events

TCPWM_CNT_TR_CTRL1 Counter trigger control register 1 Determine edge detection for specific counter input
 signals

TCPWM_CNT_TR_CTRL2 Counter trigger control register 2 Controls counter output lines upon CC, OV, and UN
 conditions

TCPWM_CNT_INTR Interrupt request register Sets the register bit when TC or CC condition is detected

TCPWM_CNT_INTR_SET Interrupt set request register Sets the corresponding bits in interrupt request register

TCPWM_CNT_INTR_MASK Interrupt mask register Mask for interrupt request register

TCPWM_CNT_INTR_MASKED Interrupt masked request register Bitwise AND of interrupt request and mask registers

http://www.onsemi.com/

AND9836

www.onsemi.com
116

ANALOG SYSTEM

This section encompasses the following chapter:
• SAR ADC chapter on page 117

• Low−Power Comparator chapter on page 141

• Continuous Time Block mini (CTBm) chapter on page 146

• Temperature Sensor chapter on page 153

Top Level Architecture

SA R ADC
(12−bi t)

SARMUX CTBm
2x OpAmp

Peripherals

PCLK Peripheral Interconnect (MMIO)

High Speed I/O Matrix and Smart I/O
Power Modes
Active / Sleep

DeepSleep

I/O Subsystem

36x GPIOs (fine pitch)

x1

2x
 L

P
 C

om
pa

ra
to

r

Programmable
Analog

x1

Figure 76. Analog Block Diagram

http://www.onsemi.com/

AND9836

www.onsemi.com
117

SAR ADC
The AXM0F243 MCU has one successive approximation

register analog−to−digital converter (SAR ADC). The SAR
ADC is designed for applications that require moderate
resolution and high data rate. It consists of the following
blocks (see Figure 77):
• SARMUX

• SAR ADC core

• SARREF

• SARSEQ
The SAR ADC core is a fast 12−bit ADC with sampling

rate of 1 Msps. Preceding the SAR ADC is the SARMUX,
which can route external pins and internal signals
(AMUXBUS−A/−B, CTBm, temperature sensor output) to
the 16 internal channels of SAR ADC. SARREF is used for
multiple reference selection. The sequencer controller
SARSEQ is used to control SARMUX and SAR ADC to do
an automatic scan on all enabled channels without CPU
intervention and for pre−processing, such as averaging the
output data.

The result from each channel is double−buffered and a
complete scan may be configured to generate an interrupt at
the end of the scan. The sequencer may also be configured
to flag overflow, collision, and saturation errors that can be
configured to assert an interrupt.

For more flexibility, it is also possible to control most
analog switches, including those in the SARMUX with the
firmware. This makes it possible to implement an alternative
sequencer with the firmware.

Features
• Operates across the entire device power supply range

• Maximum 1 Msps sample rate

• Sixteen individually configurable channels and one
injection channel

• Each channel has the following features:
♦ Input from external pin (only for eight channels in

single−ended mode and four channels in differential
mode) or internal signal
(AMUXBUS/CTBm/temperature sensor)

♦ Programmable acquisition times
♦ Selectable 8−, 10−, and 12−bit resolution
♦ Single−ended or differential measurement
♦ Averaging
♦ Results are double−buffered
♦ Result may be left or right aligned

• Scan triggered by firmware, timer, CTBm comparator,
low−power comparator, and by SAR end of conversion
signal
♦ Hardware/firmware trigger (one shot), and

free−running (continuous conversion) modes
• Hardware averaging support

♦ First order accumulate
♦ Samples averaging from 2 to 256 (powers of 2)

• Results represented in 16−bit sign extended values

• Selectable voltage references
♦ Internal VDDA and VDDA/2 references
♦ Internal 1.2−V reference with buffer
♦ External reference

• Interrupt generation
♦ Finished scan conversion
♦ Saturation detect and over−range (configurable)

detect for every channel
♦ Scan results overflow
♦ Collision detect

• Configurable injection channel
♦ Triggered by firmware
♦ Can be interleaved between two scan sequences

(tailgating)
♦ Selectable sample time, resolution, single−ended or

differential, averaging
• Low−power modes

♦ ADC core and reference voltage have dedicated low
power modes

Block Diagram

SARMUX
SAR ADC SARSEQ

Configuration
Registers

VPLUS

VMINUS

SARREF

VREFsREF
Bypass

Port with
SARMUX

Connectivity AHB
System Bus

CTBm, AMUXBUS

Result

Figure 77. Block Diagram

http://www.onsemi.com/

AND9836

www.onsemi.com
118

How it Works
This section includes the following contents:

• Introduction of each block: SAR ADC core, SARMUX,
SARREF, and SARSEQ

• SAR ADC system resource: Interrupt, low−power mode,
and SAR ADC status
♦ System operation

• Configuration examples

SAR ADC Core
AXM0F243 MCU SAR ADC core is a 12−bit SAR ADC.

The maximum sample rate for this ADC is 1 Msps. The SAR
ADC core has the following features:
• Fully differential architecture; also supports

single−ended mode
• 12−bit resolution and a selectable alternate resolution:

either 8−bit or 10−bit
• Programmable acquisition time

• Programmable power mode (full, one−half, one−quarter)

• Supports single and continuous conversion mode

Single−ended and Differential Mode
AXM0F243 MCU SAR ADC can operate in single−ended

and differential mode. It is designed in a fully differential
architecture, optimized to provide 12−bit accuracy in the
differential mode of operation. It gives full range output (0
to 4095) for differential inputs in the range of –VREF to
+VREF. SAR ADC can be configured in single−ended mode
by fixing the negative input. Differential or single−ended
mode can be configured by channel configuration register,
SAR_CHANx_CONFIG.

The single−ended mode options of negative input include:
VSSA, VREF, or an external input from any of the eight pins
with SARMUX connectivity. See the AXM0F243 datasheet
for the pin details. This mode is configured by the global
configuration register SAR_CTRL. When Vminus is
connected to these SARMUX pins, the single−ended mode
is equivalent to differential mode. However, when the odd
pin of each differential pair is connected to the common
alternate ground, these conversions are 11−bit, because
measured signal value (SARMUX.vplus) cannot go below
ground.

To get a single−ended conversion with 12 bits, it is
necessary to connect VREF to the negative input of the SAR
ADC; then, the input range can be from 0 to 2 x VREF.

Note that temperature sensor can only be used in
single−ended mode; it will override the SAR_CTRL[11:9]
to 0. The differential conversion is not available for
temperature sensors; the result is undefined.

Input Range
All inputs should be in the range of VSSA to VDDA. Input

voltage range is also limited by VREF. If voltage on negative
input is Vn and the ADC reference is VREF, the range on the
positive input is Vn ± VREF. This criteria applies for both
single−ended and differential modes. In single−ended mode,
Vn is connected to VSSA, VREF or an external input.

Note that Vn ± VREF should be in the range of VSSA to
VDDA. For example, if negative input is connected to VSSA,
the range on the positive input is 0 to VREF, not –VREF to
VREF. This is because the signal cannot go below VSSA.
Only half of the ADC range is usable because the positive
input signal cannot swing below VSS, which effectively only
generates an 11−bit result.

Result Data Format
Result data format is configurable from two aspects:

• Signed/unsigned

• Left/right alignment

• When the result is considered signed, the most significant
bit of the conversion is used for sign extension to 16 bits
with MSB. For an unsigned conversion, the result is zero
extended to 16−bits. It can be configured by
SAR_SAMPLE_CTRL[3:2] for differential and
single−ended conversion, respectively.

• The sample value can either be right−aligned or
left−aligned within the 16 bits of the result register. By
default, data is right−aligned in data[11:0], with sign
extension to 16 bits, if required. A lower resolution
combined with left−alignment will cause lower
significant bits to be made zero.
Combined with signed and unsigned, and left and right

alignment for 12−, 10−, and 8−bit conversion, the result data
format can be shown as follows.

Table 77. RESULT DATA FORMAT

Alignment
Signed/

Unsigned Resolution

Result Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Right Unsigned 12 – – – – 11 10 9 8 7 6 5 4 3 2 1 0

10 – – – – – – 9 8 7 6 5 4 3 2 1 0

8 – – – – – – – – 7 6 5 4 3 2 1 0

Right Signed 12 11 11 11 11 11 10 9 8 7 6 5 4 3 2 1 0

10 9 9 9 9 9 9 9 8 7 6 5 4 3 2 1 0

8 7 7 7 7 7 7 7 7 7 6 5 4 3 2 1 0

Left – 12 11 10 9 8 7 6 5 4 3 2 1 0 – – – –

10 9 8 7 6 5 4 3 2 1 0 – – – – – –

8 7 6 5 4 3 2 1 0 – – – – – – – –

http://www.onsemi.com/
https://www.onsemi.com/pub/Collateral/AXM0F243-D.PDF

AND9836

www.onsemi.com
119

Negative Input Selection
The negative input connection choice affects the voltage

range, SNR, and effective resolution (Table 46). In

single−ended mode, negative input of the SAR ADC can be
connected to VSSA, VREF, or any of the eight pins with
SARMUX connectivity.

Table 78. NEGATIVE INPUT SELECTION COMPARISON

Single−ended/ Differential Signed/Unsigned
SARMUX Vmi-

nus
SARMUX Vplus

Range Result Register Maximum SNR

Single−ended N/A (Note 5) VSSA +VREF
VSSA = 0

0x7FF
0x000

Better

Single−ended Unsigned VREF +2 x VREF
VREF

VSSA = 0

0xFFF
0x800

0

Good

Single−ended Signed VREF +2 x VREF
VREF

VSSA = 0

0x7FF
0x000
0x800

Good

Single−ended Unsigned Vx Vx + VREF
Vx

Vx – VREF

0xFFF
0x800

0

Best

Single−ended Signed Vx Vx + VREF
Vx

Vx – VREF

0x7FF
0x000
0x800

Best

Differential Unsigned Vx Vx + VREF
Vx

Vx – VREF

0xFFF
0x800

0

Best

Differential Signed Vx Vx + VREF
Vx

Vx – VREF

0x7FF
0x000
0x800

Best

5. For single−ended mode with Vminus connected to VSSA, conversions are effectively 11−bit because voltages cannot swing below VSSA on any
AXM0F243 MCU pin.

Because of this, the global configuration bit
SINGLE_ENDED_SIGNED (SAR_SAMPLE_CTRL[2])
will be ignored and the result is always (0x000−0x7FF).

To get a single−ended conversion with 12−bits, it is
necessary to connect VREF to the negative input of the SAR
ADC; then, the input range can be from 0 to 2 x VREF.

Note that single−ended conversions with Vminus
connected to the pins with SARMUX connectivity are
electrically equivalent to differential mode. However, when

the odd pin of each differential pair is connected to the
common alternate ground, these conversions are 11−bit,
because measured signal value (SARMUX.vplus) cannot go
below ground.

Resolution
AXM0F243 MCU supports 12−bit resolution (default)

and a selectable alternate resolution: either 8−bit or 10−bit
for each channel. Resolution affects conversion time:

Conversion time (sar_clk) � resolution (bit) � 2 (eq. 1)

Total acquisition and conversion time (sar_clk) � acquisition time � resolution (bit) � 2
(eq. 2)

For 12−bit conversion and acquisition time = 4, 18 sar_clk
is required. For example, if sar_clk is 18 MHz, 18 sar_clk is
required for conversion and you will get 1 Msps conversion
rate. Lower resolution results in higher conversion rate.

Acquisition Time
Acquisition time is the time taken by sample and hold

(S/H) circuit inside SAR ADC to settle. After acquisition
time, the input signal source is disconnected from the
SARADC core, and the output of the S/H circuit will be used
for conversion. Each channel can select one from four
acquisition time options, from 4 to 1023 SAR clock cycles
defined in global configuration registers
SAR_SAMPLE_TIME01 and SAR_SAMPLE_TIME23.

+

−

DAC

RSW1RSW2

CSHOLD

SWACQ

DC

RSRC

Source

Inside AXM0F243 MCU
Signal

Figure 78. Acquisition Time

http://www.onsemi.com/

AND9836

www.onsemi.com
120

The acquisition time should be sufficient to charge the
internal hold capacitor of the ADC through the resistance of
the routing path, as shown in Figure 78. The recommended
value of acquisition time is:

tACQ ≥ 9 � (RSRC � RSW2 � RSW1) � CHOLD (eq. 3)

Where:
CSHOLD ~= 10 pF
RSW2 + RSW1 = ~ 500 to 1000 ohms, depending on the

routing path (See Analog Routing on page 121 for details).
RSRC = series resistance of the signal source

SAR ADC Clock
SAR ADC clock frequency must be between 1 MHz and

18 MHz, which comes from the HFCLK via a clock divider.
Note that a fractional divider is not supported for SAR ADC.
To get a 1−Msps sample rate, an 18−MHz SAR ADC clock
is required. To achieve this, the system clock (HFCLK) must
be set to 36 MHz rather than 48 MHz. A 12−bit ADC

conversion with the minimum acquisition time of four
clocks (at 18 MHz) requires 18 clocks in which to complete.
A 10−bit and 8−bit conversion requires 16 and 14 clocks
respectively. Note that the minimum acquisition time of four
clock cycles at 18 MHz is based on the minimum acquisition
time supported by the SAR block (RSW1 and CSHOLD in
Figure 78), which is 194 ns.

SAR ADC Timing
Figure 79 shows the SAR ADC timing diagram. A 12−bit

resolution conversion needs 14 clocks (one bit needs one
sar_clk, plus two excess sar_clk for G and F state). With
acquisition time equal to four sar_clk cycles by default, 18
clock sar_clk cycles are required for total ADC acquisition
and conversion. After sample (acquisition), it will output the
next pulse. The SARMUX can route to another pin and
signal; this will be done automatically with sequencer
control (see SARSEQ on page 128 for details).

F FSAMPLE SAMPLES1S2S3S4S5S6S7S8S9S10S11S12 S1S2S3S4S5S6

SOC

Data

S7S8S9S10G S11S12G* SAMPLE

SARADC CLK

DSI trigger

sample

State

EOC

Next

Data_out

18 sar_clk cycles

Figure 79. SAR ADC Timing

Data

http://www.onsemi.com/

AND9836

www.onsemi.com
121

SARMUX
SARMUX is an analog dedicated programmable

multiplexer. The main features of SARMUX are:
• Switch on resistance: 600 � (maximum)
• Internal temperature sensor
• Controlled by sequencer controller block (SARSEQ) or

firmware
• Charge pump inside:

♦ If VDDA < 4.0 V, charge pump should be turned on
to reduce switch resistance

♦ If VDDA ≥ 4.0 V, charge pump is turned off and
delivers VDDA as its output

• Multiple inputs:
♦ Analog signals from pins (port 2)

♦ Temperature sensor output
♦ CTBm output via sarbus0/1 (not fast enough to

sample at 1 Msps)
♦ AMUXBUS_A/B (not fast enough to sample at

1 Msps)

Analog Routing
SARMUX has many switches that may be controlled by

SARSEQ block (sequencer controller)or firmware. The
sequencer is the hardware control method, which can be
masked by the hardware control bit in the register,
SAR_MUX_SWITCH_HW_CTRL. Different control
methods have different control capability on the switches.
See Figure 80.

P
3[

7]
P

3[
6]

P
3[

5]
P

3[
4]

P
3[

3]
P

3[
2]

P
3[

1]
P

3[
0]

P
1[

0]
P

1[
1]

P
1[

2]

P
1[

3]
P

1[
4]

P
1[

5]
P

1[
6]

P
1[

7]

+−

~

1x 10
x

+ −

~

1x10
x

Port 1 Port 3

CTBm

OA0 OA1

Firmware Only

Firmware + SAR−Sequencer

AMUXBUS_A
AMUXBUS_B

Switch Control Legend

Comp out Comp out

vp
lu

s

vm
in

us

SARADC0

ext_vref

SAR

TEMP0
temp
Vssa_kelvin

P
or

t 2

S
A

R
M

U
X

P2[7]
P2[6]
P2[5]
P2[4]
P2[3]
P2[2]
P2[1]
P2[0]

sarbus0
sarbus1

P
0[

7]
P

0[
6]

P
0[

5]
P

0[
4]

P
0[

3]
P

0[
2]

P
0[

1]
P

0[
0]

LPCOMP0

Port 0

LPCOMP1

Figure 80. SARMUX Switches and Control Capability

vplus
vminus

vplus
vminus

vplus
vminus

P4[3]
P4[2]
P4[1]
P4[0]

P
ort 4

Sequencer control: The switches are controlled by the
sequencer in SARSEQ block. After configuring each
channel’s analog routing, it enables multi−channel
automatic scan in a round−robin fashion, without CPU
intervention. Not every switch can be controlled by the
sequencer; see Figure 80. The corresponding registers are:
SAR_CHANx_CONFIG, SAR_MUX_SWITCH0,
SAR_CTRL, and SAR_MUX_SWITCH_HW_CTRL.

Firmware control: Programmable registers directly
define the VPLUS/VMINUS connection. It can control
every switch in SARMUX; see Figure 80. For example, in
firmware control, it is possible to do a differential
measurement between any two pins or signals, not just two
adjacent pins (as in sequencer control). However, it needs

CPU intervention for multi−channel acquisition. The
corresponding registers are: SAR_MUX_SWITCH0,
SAR_MUX_SWITCH_HW_CTRL. and SAR_CTRL.

Analog Interconnection
AXM0F243 MCU analog interconnection is very

flexible. SAR ADC can be connected to multiple inputs via
SARMUX, including both external pins and internal signals.
For example, it can connect to a neighboring block such as
CTBm. It can also connect to other pins except port 2
through AMUXBUS_A/B, at the expense of scanning
performance (more parasitic coupling, longer RC time to
settle).

Several cases are discussed here to provide a better
understanding of analog interconnection.

http://www.onsemi.com/

AND9836

www.onsemi.com
122

Input from External Pins
Figure 81 shows how two GPIOs that support SARMUX

are connected to SAR ADC as a differential pair
(Vpuls/Vminus) via switches. These two switches can be
controlled by sequencer, or firmware. The pins are arranged

in adjacent pairs; for example, in SARMUX port P2[0] and
P2[1], P2[2] and P2[3], and so on. If you need to use pins that
are not paired as a differential pair, such as P2[1] and P2[2],
the sequencer does not work; use firmware.

Figure 81. Input from External Pins

P
3[

7]
P

3[
6]

P
3[

5]
P

3[
4]

P
3[

3]
P

3[
2]

P
3[

1]
P

3[
0]

P
1[

0]
P

1[
1]

P
1[

2]

P
1[

3]
P

1[
4]

P
1[

5]
P

1[
6]

P
1[

7]

+−

~

1x 10
x

+ −

~

1x10
x

Port 1 Port 3

CTBm

OA0 OA1

AMUXBUS_A
AMUXBUS_B

Comp out Comp out

vp
lu

s

vm
in

us

SARADC0

ext_vref

SAR

TEMP0
temp
Vssa_kelvin

P
or

t 2

S
A

R
M

U
X

P2[7]
P2[6]
P2[5]
P2[4]
P2[3]
P2[2]
P2[1]
P2[0]

sarbus0
sarbus1

P
0[

7]
P

0[
6]

P
0[

5]
P

0[
4]

P
0[

3]
P

0[
2]

P
0[

1]
P

0[
0]

LPCOMP0

Port 0

LPCOMP1

P4[3]
P4[2]
P4[1]
P4[0]

P
ort 4

Firmware Only

Firmware + SAR−Sequencer

Switch Control Legend

vplus
vminus

vplus
vminus

vplus
vminus

http://www.onsemi.com/

AND9836

www.onsemi.com
123

Input from Analog Bus (AMUXBUS_A/B)
Figure 82 shows how two pins that do not support

SARMUX connectivity are connected to ADC as a
differential pair. Additional switches must connect these two
pins to AMUXBUS_A and AMUX−BUS_B, and then
connect AMUXBUS_A and AMUXBUS_B to ADC.

The additional switches reduce the scanning performance
(more parasitic coupling, longer RC time to settle) – it is not
fast enough to sample at 1 Msps. This is not recommended
for external signals; the dedicated SARMUX port should be
used, if possible.

Figure 82. Input from Analog Bus

P
3[

7]
P

3[
6]

P
3[

5]
P

3[
4]

P
3[

3]
P

3[
2]

P
3[

1]
P

3[
0]

P
1[

0]
P

1[
1]

P
1[

2]

P
1[

3]
P

1[
4]

P
1[

5]
P

1[
6]

P
1[

7]

+−

~

1x 10
x

+ −

~

1x10
x

Port 1 Port 3

CTBm

OA0 OA1

AMUXBUS_A
AMUXBUS_B

Comp out Comp out

vp
lu

s

vm
in

us

SARADC0

ext_vref

SAR

TEMP0
temp
Vssa_kelvin

P
or

t 2

S
A

R
M

U
X

P2[7]
P2[6]
P2[5]
P2[4]
P2[3]
P2[2]
P2[1]
P2[0]

sarbus0
sarbus1

P
0[

7]
P

0[
6]

P
0[

5]
P

0[
4]

P
0[

3]
P

0[
2]

P
0[

1]
P

0[
0]

LPCOMP0

Port 0

LPCOMP1

P4[3]
P4[2]
P4[1]
P4[0]

P
ort 4

Firmware Only

Firmware + SAR−Sequencer

Switch Control Legend

vplus
vminus

vplus
vminus

vplus
vminus

http://www.onsemi.com/

AND9836

www.onsemi.com
124

Input from CTBm Output via sarbus
SAR ADC can be connected to CTBm output via sarbus

0/1. Figure 83 shows how to connect an opamp (configured
as a follower) output to a single−ended SAR ADC. Negative
terminal is connected to VREF. Figure 84 shows how to
connect two opamp outputs to SAR ADC as a differential

pair. It must connect opamp output to sarbus 0/1, then
connect SAR ADC input to sarbus 0/1. Because there are
also additional switches, it is not fast enough to sample at 1
Msps. However, the on−chip opamps add value for many
applications.

Figure 83. Input from CTBm Output via sarbus

P
3[

7]
P

3[
6]

P
3[

5]
P

3[
4]

P
3[

3]
P

3[
2]

P
3[

1]
P

3[
0]

P
1[

0]
P

1[
1]

P
1[

2]

P
1[

3]
P

1[
4]

P
1[

5]
P

1[
6]

P
1[

7]

+−

~

1x 10
x

+ −

~

1x10
x

Port 1 Port 3

CTBm

OA0 OA1

AMUXBUS_A
AMUXBUS_B

Comp out Comp out

vp
lu

s

vm
in

us

SARADC0

ext_vref

SAR

TEMP0
temp
Vssa_kelvin

P
or

t 2

S
A

R
M

U
X

P2[7]
P2[6]
P2[5]
P2[4]
P2[3]
P2[2]
P2[1]
P2[0]

sarbus0
sarbus1

P
0[

7]
P

0[
6]

P
0[

5]
P

0[
4]

P
0[

3]
P

0[
2]

P
0[

1]
P

0[
0]

LPCOMP0

Port 0

LPCOMP1

P4[3]
P4[2]
P4[1]
P4[0]

P
ort 4

Firmware Only

Firmware + SAR−Sequencer

Switch Control Legend

vplus
vminus

vplus
vminus

vplus
vminus

http://www.onsemi.com/

AND9836

www.onsemi.com
125

Figure 84. Inputs from CTBm Output via sarbus0 and sarbus1

P
3[

7]
P

3[
6]

P
3[

5]
P

3[
4]

P
3[

3]
P

3[
2]

P
3[

1]
P

3[
0]

P
1[

0]
P

1[
1]

P
1[

2]

P
1[

3]
P

1[
4]

P
1[

5]
P

1[
6]

P
1[

7]

+−

~

1x 10
x

+ −
~

1x10
x

Port 1 Port 3

CTBm

OA0 OA1

AMUXBUS_A
AMUXBUS_B

Comp out Comp out

vp
lu

s

vm
in

us

SARADC0

ext_vref

SAR

TEMP0
temp
Vssa_kelvin

P
or

t 2

S
A

R
M

U
X

P2[7]
P2[6]
P2[5]
P2[4]
P2[3]
P2[2]
P2[1]
P2[0]

sarbus0
sarbus1

P
0[

7]
P

0[
6]

P
0[

5]
P

0[
4]

P
0[

3]
P

0[
2]

P
0[

1]
P

0[
0]

LPCOMP0

Port 0

LPCOMP1

P4[3]
P4[2]
P4[1]
P4[0]

P
ort 4

Firmware Only

Firmware + SAR−Sequencer

Switch Control Legend

vplus
vminus

vplus
vminus

vplus
vminus

http://www.onsemi.com/

AND9836

www.onsemi.com
126

Input from Temperature Sensor
One on−chip temperature sensor is available for

temperature sensing and temperature−based calibration.
Note for temperature sensor, differential conversions are not
available (conversion result is undefined), thus always use
it in singled−ended mode.

As Figure 85 shows, temperature sensor can be routed to
positive input of SAR ADC via switch, which can be

controlled by sequencer, firmware. Setting the
MUX_FW_TEMP_VPLUS bit
(SAR_MUX_SWITCH0[17]) can enable the temperature
sensor and connect its output to VPLUS of SAR ADC;
clearing this bit will disable temperature sensor by cutting its
bias current.

Figure 85. Inputs from Temperature Sensor

P
3[

7]
P

3[
6]

P
3[

5]
P

3[
4]

P
3[

3]
P

3[
2]

P
3[

1]
P

3[
0]

P
1[

0]
P

1[
1]

P
1[

2]

P
1[

3]
P

1[
4]

P
1[

5]
P

1[
6]

P
1[

7]

+−

~

1x 10
x

+ −

~

1x10
x

Port 1 Port 3

CTBm

OA0 OA1

Comp out Comp out

vp
lu

s

vm
in

us

SARADC0

ext_vref

SAR

TEMP0
temp
Vssa_kelvin

P
or

t 2

S
A

R
M

U
X

P2[7]
P2[6]
P2[5]
P2[4]
P2[3]
P2[2]
P2[1]
P2[0]

sarbus0
sarbus1

P
0[

7]
P

0[
6]

P
0[

5]
P

0[
4]

P
0[

3]
P

0[
2]

P
0[

1]
P

0[
0]

LPCOMP0

Port 0

LPCOMP1

P4[3]
P4[2]
P4[1]
P4[0]

P
ort 4

AMUXBUS_A
AMUXBUS_B

Firmware Only

Firmware + SAR−Sequencer

Switch Control Legend

vplus
vminus

vplus
vminus

vplus
vminus

http://www.onsemi.com/

AND9836

www.onsemi.com
127

SARREF
The main features of SARREF are:

• Reference options: VDDA, VDDA/2, 1.2−V bandgap
(±1 percent), external reference

• Reference buffer + bypass cap to enhance internal
reference drive capability

S
A

R
R

E
F

M
U

X

Reference
 buffer

VDD

VDD/2B
andgap

Internal 1.2 V Vref

SARREF

Vref for
SAR ADC
core

Vref_ext /
bypass

cap

Figure 86. SARREF Block Diagram

Reference Options
The reference voltage selection for the SAR ADC consists

of a reference mux and switches inside the SARREF. The
selection allows connecting VDDA, VDDA/2, and 1.2−V
internal reference from a bandgap or an external VREF
connected to an Ext Vref/SAR bypass pin (see the
AXM0F243 datasheet for details). The control for the
reference mux in SARREF is in the global configuration
register SAR_CTRL[6:4].

Bypass Capacitors
The internal references, 1.2 V from bandgap or VDDA/2

are buffered with the reference buffer. This reference may be
routed to the Ext Vref/SAR bypass pin where an external
capacitor can be used to filter internal noise that may exist
on the reference signal. The SAR ADC sample rate is limited
to 100 ksps (at 12−bit) without an external reference bypass
capacitor. For example, without a bypass capacitor and with
1.2−V internal VREF, the maximum SAR ADC clock
frequency is 1.6 MHz. When using an external reference, it
is recommended that an external capacitor is used. Bypass
capacitors can be enabled by setting SAR_CTRL[7].Table
79 lists different reference modes and its maximum
frequency/sample rate for 12−bit continuous mode
operation.

Table 79. REFERENCE MODES

Reference Mode
Reference

SAR_CTRL[6:4]
Bypass Cap

SAR_CTRL[7] Buffer
Max

Frequency
Max Sample
Rate (12−bit)

 1.2 V internal VREF without bypass cap 4 0 Yes 1.6 MHz 100 ksps

 1.2 V internal VREF with bypass cap 4 1 Yes 18 MHz 1 Msps

 External VREF (low−impedance path) 5 X No 18 MHz 1 Msps

 VDDA/2 without bypass cap 6 0 Yes 1.6 MHz 100 ksps

 VDDA/2 with bypass cap 6 1 Yes 18 MHz 1 Msps

 VDDA 7 X No 9 MHz 500 ksps

1.2−V internal VREF startup time varies with the different
bypass capacitor size, Table 80 lists two common values for
the bypass capacitor and its startup time specification. If
reference selection is changed between scans or when
scanning after Sleep/Deep−Sleep, make sure the 1.2−V
internal VREF is settled when SAR ADC starts sampling.
The worst case settling time (when VREF is completely
discharged) is the same as the startup time.

Table 80. BYPASS CAPACITOR VALUE

Internal VREF Startup Time Maximum Specification

Startup time for reference with
external capacitor (1 �F)

2 ms

Startup time for reference with
external capacitor (100 nF)

200 �s

Input Range versus Reference
All inputs should be between VSSA and VDDA. The ADCs

input range is limited by VREF selection. If negative input is
Vn and the ADC reference is VREF, the range on the positive
input is Vn ± VREF. This criteria applies for both
single−ended and differential modes as long as both
negative and positive inputs stay within VSSA to VDDA.

http://www.onsemi.com/
https://www.onsemi.com/pub/Collateral/AXM0F243-D.PDF

AND9836

www.onsemi.com
128

SARSEQ
SARSEQ is a dedicated sequencer controller that

automatically sequences the input mux from one channel to
the next while placing the result in an array of registers, one
per channel.
• Controls SARMUX analog routing automatically

without CPU intervention
• Controls SAR ADC core (such as resolution, acquisition

time, and reference)
• Receives data from SAR ADC and does pre−processing

(average, range detect)
• Uses double buffer to store the result so the CPU can

safely read the results of the last scan while the next scan
is in progress.
The features of SARSEQ are:

• Sixteen channels can be individually enabled as an
automatic scan without CPU intervention

• An additional channel (injection channel) for infrequent
signal to insert in an automatic scan

• Each channel has the following features:
♦ Single−ended or differential mode
♦ Input from external pin (only for eight channels in

single−ended mode and four channels in differential
mode) or internal signal (AMUXBUS/CTBm/
temperature sensor)

♦ Up to four programmable acquisition time

♦ Default 12−bit resolution, selectable alternate
resolution: either 8−bit or 10−bit

♦ Result averaging
• Scan triggering

♦ One shot, periodic, or continuous mode
♦ Triggered by TCPWM block, CTBm comparator,

low−power comparator, SAR ADC end of
conversion signal, and by firmware

• Hardware averaging support
♦ First order accumulate
♦ From 2 to 256 samples averaging (powers of 2)
♦ Results in 16−bit representation

• Double buffering of output data
♦ Left or right adjusted results
♦ Results in working register and result register

• Interrupt generation
♦ Finished scan conversion
♦ Channel saturation detect in all control modes
♦ Over range (configurable) detect for every channel
♦ Scan results overflow
♦ Collision detect

• Configurable injection channel
♦ Triggered by firmware
♦ Can be interleaved between two scan sequences

(tailgating)
♦ Selectable sample time, resolution, single ended, or

differential, averaging

http://www.onsemi.com/

AND9836

www.onsemi.com
129

IO
 p

in
s

ch
an

_i
d[

3:
0]

da
ta

[1
1:

0]

sa
r_

in
te

rr
up

t

(to NVIC)

ra
ng

e_
in

tr

saturate_intr

eo
s/

co
llis

io
n/

ov
er

flo
w

_i
nt

r

Trigger Input from TCPWM, CTBm
Comparator, LPCOMP

Output Signals

SARBUS 0/1

S
A

R
M

U
X

AHB bus interface

SARADC

SARSEQ

Accumulate / Average
 / Align / Sign Extend

Configuration
Registers

STATUS

RANGE_THRES

RANGE_COND

INTR_MASK

<
=
>

vref_ext E
O

C

Sequencer logic
and statemachine

INTR

AMUXBUS_A/B

Temp Sensor
SARREF

Saturation
Detect

Result Registers

CHAN 0

CHAN 1

CHAN 15

INJ_CHANNEL

E
O

S

Figure 87. SARSEQ Block Diagram

Averaging
The SARSEQ block has a 20−bit accumulator and shift

register to implement averaging. Averaging is after signed
extension. The global configuration
SAR_SAMPLE_CTRL register specifies the details of
averaging.

Channel configuration SAR_CHAN_CONFIG register
has an enable bit (AVG_EN) to enable averaging.

In global configuration, AVG_CNT
(SAR_SMAPLE_CTRL[6:4]) specifies the number of
samples (N) according to this formula:

N � 2 � (AVG_CNT � 1) N range � [2..256]
(eq. 4)

For example, if AVG_CNT
(SAR_SMAPLE_CTRL[6:4]) = 3, then N = 16.

AVG_SHIFT bit (SAR_SAMPLE_CTRL[7]) is used to
shift the result to get averaged; it should be set if averaging
is enabled.

If a channel is configured for averaging, the SARSEQ will
take N consecutive samples of the specified channel in every
scan. Because the conversion result is 12−bit and the
maximum value of N is 256 (left shift 8 bits), the 20−bit
accumulator will never overflow.

If AVG_SHIFT in SAR_SAMPLE_CTRL register is set,
SAR sequencer performs sign extension and then
accumulation. The accumulated result is shifted right
AVG_CNT + 1 bits to get averaged. If it is not, the result is
forced to shift right to ensure it fits in 16 bits. Right shift is
done by maximum (0, AVG_CNT−3) – if the number of
samples is more than 16 (AVG_CNT >3), then the
accumulation result is shifted right AVG_CNT−3bits; it
AVG_CNT<3, the result is not shifted. Note in this case, the
average result is bigger than expected; it is recommended to
set AVG_SHIFT. This mode always uses the selected
resolution of ADC (12, 10, or 8 bits).

http://www.onsemi.com/

AND9836

www.onsemi.com
130

Range Detection
The SARSEQ supports range detection to allow

automatic detection of result values compared to two
programmable thresholds without CPU involvement. Range
detection is defined by the SAR_RANGE_THRES register.
The RANGE_LOW field (SAR_RANGE_THRES[15:0])
value defines the lower threshold and RANGE_HIGH field
(SAR_RANGE_THRES[31:16]) defines the upper
threshold of the range.

The SAR_RANGE_COND bits define the condition that
triggers a channel maskable range detect interrupt
(RANGE_INTR). The following conditions can be
selected:

0: result < RANGE_LOW (below range)
1: RANGE_LOW ≤ result < RANGE_HIGH (inside

range)
2: RANGE_HIGH ≤ result (above range)
3: result <RANGE_LOW || RANGE_HIGH <= result

(outside range)
See Range Detection Interrupts on page 133 for details.

Double Buffer
Double buffering is used so that firmware can read the

results of a complete scan while the next scan is in progress.
The SAR ADC results are written to a set of working
registers until the scan is complete, at which time the data is
copied to a second set of registers where the data can be read
by the user’s application. This action allows sufficient time
for the firmware to read the previous scan before the present
scan is completed. All input channels are double buffered
with 16 registers, except the injection channel. The injection
channel is not required to be doubled buffered because it is
not normally part of a normal channel scan.

Injection Channel
The injection channel is similar to the other channels, with

the exception that it is not part of a regular scan. The
injection channel is used for incidental or rare conversions;
for example, sampling the temperature sensor every two
seconds. Note that if SAR is operating in continuous mode,
enabling the injection channel will change the sample rate.

The injection channel can only be controlled by the
firmware with a firmware trigger (one−shot). This means the
injection channel does not support continuous trigger.
Because the only trigger is one−shot, there is no need for
double buffering or an overflow interrupt.

The conversions for the injection channel can be
configured in the same way as the regular channels by
setting SAR_INJ_CHAN_CONFIG register, it supports:
• Pin or signal selection

• Single−ended or differential selection

• Choice of resolution between 12−bit or the globally
specified SUB_RESOLUTION

• Sample time select from one of the four globally specified
sample times

• Averaging select
It supports the same interrupts as the regular channel

except the overflow interrupt.
• Maskable end−of−conversion interrupt INJ_EOC_INTR

• Maskable range detect interrupt INJ_RANGE_INTR

• Maskable saturation detect interrupt
INJ_SATURATE_INTR

• Maskable collision interrupt INJ_COLLISION_INTR
SAR_INTR, SAR_INTR_MASK,

SAR_INTR_MASKED, and SAR_INTR_SET are the
corresponding registers.

These features are described in detail in Global SARSEQ
Configuration on page 136, Channel Configurations on page
137, and Interrupt on page 132.

Tailgating
The injection channel conversion can be triggered by

setting the start or enable bit INJ_START_EN
(SAR_INJ_CHAN_CONFIG[31]). It is recommended to
select tailgating by setting INJ_TAILGATING = 1
(SAR_INJ_CHAN_CONFIG[30]). The injection channel
will be scanned at the end of the ongoing scan of regular
channels without any collision. However, if there is no
ongoing scan or the SAR ADC is idle, and tailgating is
selected, INJ_START_EN will enable the injection channel
to be scanned at the end of the next scan of regular channels.

If tailgating is not selected, setting the INJ_START_EN
bit immediately starts the conversion of the injection
channel provided there is no ongoing scan or SAR ADC is
idle. If a scan of the regular channels is ongoing, then the
injection channel will be scanned at the end of the ongoing
scan, but it will cause a collision and generate a collision
interrupt (INJ_COLLISION_INTR). Another potential
problem without tailgating is that it can cause the next scan
of the regular channels to collide with the injection channel
conversion (FW_COLLISION_INTR is raised). As a result,
the next scan of regular channels is postponed until the
injection scan is finished, thus causing jitter on a regular
scan.

http://www.onsemi.com/

AND9836

www.onsemi.com
131

Figure 88. Injection Channel Flow Chart

Ongoing
scan1?

Trigger injection
channel

Tailgating?

Ongoing
scan1?

Y
Scan injection channel
after the ongoing scan

Scan injection
channel

Generate interrupt
(INJ_COLLISION_INTR)

Y N

N

Y

May collide with next scan of
regular channels

(FW_COLLISION_INT)

N

Scan injection channel
after the ongoing scan

1 scan here means scan of ALL the regular channels

The disadvantage of tailgating is that it may be a long time
before the next trigger occurs. If there is no risk of colliding
or causing jitter on the regular channels, the injection
channel can be used safely without tailgating.

After completing the conversion for the injection channel,
the end−of conversion interrupt (INJ_EOC_INTR) is set
and the INJ_START_EN bit is cleared. The conversion data
of the injection is put in the SAR_INJ_RESULT register.
Similar to the SAR_CHAN_RESULT, the registers contain

mirror bits for “valid” (=INJ_EOC_INTR), range detect,
saturation detect interrupt, and a mirror bit of the collision
interrupt (INJ_COLLISSION_INTR).

Figure 89 is an example when injection channel is enabled
during a continuous scan (channel 1, 3, 5, and 7 are enabled),
and tailgating is enabled. Note that the INJ_START_EN bit
is immediately cleared when the SAR is disabled (but only
if it was enabled before).

Regular Scan
Channel 1, 3, 5, 7

Injection
Channel

CONTINUOUS
INJ_START_EN
INJ_TAILGATING = 1

EOC_INJ_INTR = 1
INJ_START_EN = 0

Fill SAR_INJ_RESULT

Figure 89. Injection Channel Enabled with Tailgating

Regular Scan
Channel 1, 3, 5, 7

Regular Scan
Channel 1, 3, 5, 7

http://www.onsemi.com/

AND9836

www.onsemi.com
132

Interrupt
An interrupt can be generated on different events:

• End of Scan – When scanning is complete for all the
enabled channels.

• Overflow – When the result register is updated before the
previous result is read.

• Collision – When a new trigger is received while the SAR
ADC is still processing the previous trigger.

• Injection End of Conversion – When the injection channel
is converted.

• Range Detection – When the channel result meets the
threshold value.

• Saturation Detection – When the channel result is equal
to the minimum or maximum value of the set resolution.
This section describes each interrupt in detail. These

interrupts have an interrupt mask in the SAR_INTR_MASK
register. By making the interrupt mask low, the
corresponding interrupt source is ignored. The SAR
interrupt is generated if the interrupt mask bit is high and the
corresponding interrupt source is pending.

When servicing an interrupt, the interrupt service routine
(ISR) clears the interrupt source by writing a 1 to the
interrupt bit after reading the data.

The SAR_INTR_MASKED register is the logical AND
between the interrupts sources and the interrupt mask. This
register provides a convenient way for the firmware to
determine the source of the interrupt.

For verification and debug purposes, a set bit (such as
EOS_SET in the SAR_INTR_SET register) is used to
trigger each interrupt. This action allows the firmware to
generate an interrupt without the actual event occurring.

End−of−Scan Interrupt (EOS_INTR)
After completing a scan, the end−of−scan interrupt

(EOS_INTR) is raised. Firmware should clear this interrupt
after picking up the data from the RESULT registers.

Optionally, the EOS_INTR can also be sent out on the
GPIO by setting the EOS_DSI_OUT_EN bit in
SAR_SAMPLE_CTRL[31]. The EOS_INTR signal is
maintained for two system clock cycles. These cycles
coincide with the data_valid signal for the last channel of the
scan (if selected).

EOS_INTR can be masked by making the EOS_MASK
bit 0 in the SAR_INTR_MASK register. EOS_MASKED
bit of the SAR_INTR_MASKED register is the logic AND
of the interrupt flags and the interrupt masks. Writing a ‘1’
to EOS_SET bit in SAR_INTR_SET register can set the
EOS_INTR, which is intended for debug and verification.

Overflow Interrupt
If a new scan completes and the hardware tries to set the

EOS_INTR and EOS_INTR is still high (firmware does not
clear it fast enough), then an overflow interrupt
(OVERFLOW_INTR) is generated by the hardware. This

usually means that the firmware is unable to read the
previous results before the current scan completes. In this
case, the old data is overwritten.

OVERFLOW_INTR can be masked by making the
OVERFLOW_MASK bit 0 in SAR_INTR_MASK register.
OVERFLOW_MASKED bit of SAR_INTR_MASKED
register is the logic AND of the interrupt flags and the
interrupt masks, which is for firmware convenience. Writing
a ‘1’ to the OVERFLOW_SET bit in SAR_INTR_SET
register can set OVERFLOW_INTR, which is intended for
debug and verification.

Collision Interrupt
It is possible that a new trigger is generated while the

SARSEQ is still busy with the scan started by the previous
trigger. Therefore, the scan for the new trigger is delayed
until after the ongoing scan is completed. It is important to
notify the firmware that the new sample is invalid. This is
done through the collision interrupt, which is raised any time
a new trigger, other than the continuous trigger, is received.

There are three collision interrupts: for the firmware
trigger (FW_COLLISION_INTR), for the external trigger
(DSI_COLLISION_INTR), and for the injection channel
(INJ_COLLISION_INTR). These interrupts allow the
firmware to identify which trigger collided with an ongoing
scan.

When the external trigger is used in level mode, the
DSI_COLLISION_INTR will never be set.

The three collision interrupts can be masked by making
the corresponding bit ‘0’ in the SAR_INTR_MASK
register. The corresponding bit in the
SAR_INTR_MASKED register is the logic AND of the
interrupt flags and the interrupt masks. Writing a ‘1’ to the
corresponding bit in SAR_INTR_SET register can set the
collision interrupt, which is intended for debug and
verification.

Injection End−of−Conversion Interrupt (INJ_EOC_INTR)
After completing a conversion for the injection channel,

the injection end−of−conversion interrupt is raised
(INJ_EOC_INTR). The firmware clears this interrupt after
picking up the data from the INJ_RESULT register.

Note that if the injection channel is tailgating a scan, the
EOS_INTR is raised in parallel to starting the injection
channel conversion. The injection channel is not considered
part of the scan.

INJ_EOC_INTR can be masked by making the
INJ_EOC_MASK bit ‘0’ in the SAR_INTR_MASK
register. The INJ_EOC_MASKED bit of
SAR_INTR_MASKED register is the logic AND of the
interrupt flags and the interrupt masks. Writing a ‘1’ to the
INJ_EOC_SET bit in SAR_INTR_SET register can set
INJ_EOC_INTR, which is intended for debug and
verification.

http://www.onsemi.com/

AND9836

www.onsemi.com
133

Range Detection Interrupts
Range detection interrupt flag can be set after averaging,

alignment, and sign extension (if applicable). This means it
is not required to wait for the entire scan to complete to
determine whether a channel conversion is over−range. The
threshold values need to have the same data format as the
result data.

Range detection interrupt for a specified channel can be
masked by setting the SAR_RANGE_INTR_MASK
register specified bit to ‘0’. Register
SAR_RANGE_INTR_MASKED reflects a bitwise AND
between the interrupt request and mask registers. If the value
is not zero, then the SAR interrupt signal to the NVIC is high.

SAR_RANGE_INTR_SET can be used for
debug/verification. Write a ‘1’ to set the corresponding bit
in the interrupt request register; when read, this register
reflects the interrupt request register.

There is a range detect interrupt for each channel
(RANGE_INTR and INJ_RANGE_INTR).

Saturate Detection Interrupts
The saturation detection is always applied to every

conversion. This feature detects if a sample value is equal to
the minimum or maximum value for the specific resolution
and sets a maskable interrupt flag for the corresponding
channel. This action allows the firmware to take action, such
as discarding the result, when the SAR ADC saturates. The
sample value is tested right after conversion, before
averaging. This means that the interrupt is set while the
averaged result in the data register is not equal to the
minimum or maximum.

When a 10−bit or 8−bit resolution is selected for the
channel, saturate detection is done on 10−bit or 8−bit data.

Saturation interrupt flag is set immediately to enable a fast
response to saturation, before the full scan and averaging.
Saturation detection interrupt for specified channel can be
masked by setting the SAR_SATURATE_INTR_MASK
register specified bit to ‘0’.
SAR_SATURATE_INTR_MASKED register reflects a
bit−wise AND between the interrupt request and mask
registers. If the value is not zero, then the SAR interrupt
signal to the NVIC is high.

SAR_SARTURATE_INTR_SET can be used for
debug/verification. Write a ‘1’ to set the corresponding bit
in the interrupt request register; when read, this register
reflects the interrupt request register.

Interrupt Cause Overview
INTR_CAUSE register contains an overview of all the

pending SAR interrupts. It allows the ISR to determine the
cause of the interrupt. The register consists of a mirror copy
of SAR_INTR_MASKED. In addition, it has two bits that
aggregate the range and saturate detection interrupts of all
channels. It includes a logical OR of all the bits in
RANGE_INTR_MASKED and
SATURATE_INTR_MASKED registers (does not include
INJ_RANGE_INTR and INJ_SATURATE_INTR).

Trigger
The three possible ways to trigger a scan are:

• A firmware or one−shot trigger is generated when the
firmware writes to the FW_TRIGGER bit of the
SAR_START_CTRL register. After the scan is
completed, the SARSEQ clears the FW_TRIGGER bit
and goes back to idle mode waiting for the next trigger.
The FW_TRIGGER bit is cleared immediately after the
SAR is disabled.

• An external trigger can be TCPWM outputs, CTBm
comparator outputs, low−power comparator outputs, and
SAR ADC’s end−of−sampling and end−of−conversion
signals. Hardware trigger is enabled by writing ‘1’ to the
DSI_TRIGGER_EN bit of the SAR_SAMPLE_CTRL
register. Signal for the trigger is selected using the
PERI_TR_GROUP1_TR_OUT_CTL0 register in
AXM0F243 MCU.

Table 81. HARDWARE TRIGGER SOURCE SELECTION
IN AXM0F243 MCU

PERI_TR_GROUP1_
TR_OUT_CTL0[6:0] Trigger Source

0 Hardwired to 0 (firmware trigger)

1 TCPWM 0 Overflow

2 TCPWM 1 Overflow

3 TCPWM 2 Overflow

4 TCPWM 3 Overflow

5 TCPWM 4 Overflow

6 TCPWM 0 Compare Match

7 TCPWM 1 Compare Match

8 TCPWM 2 Compare Match

9 TCPWM 3 Compare Match

10 TCPWM 4 Compare Match

11 TCPWM 0 Underflow

12 TCPWM 1 Underflow

13 TCPWM 2 Underflow

14 TCPWM 3 Underflow

15 TCPWM 4 Underflow

16 SAR ADC Sample Done (sdone)
Signal

17 SAR ADC End of Conversion (eoc)
Signal

18 CTBm Comparator 0 Output

19 CTBm Comparator 1 Output

20 LPCOMP 0 Output

21 LPCOMP 1 Output

• A continuous trigger is activated by setting the
CONTINUOUS bit in SAR_SAMPLE_CTRL register.

http://www.onsemi.com/

AND9836

www.onsemi.com
134

In this mode, after completing a scan the SARSEQ starts
the next scan immediately; therefore, the SARSEQ is
always BUSY. As a result, all other triggers are essentially
ignored. Note that FW_TRIGGER will still get cleared by
hardware on the next completion.
The three triggers are mutually exclusive, although there

is no hardware requirement. If an external trigger coincides
with a firmware trigger, the external trigger is handled first
and a separate scan is done for the firmware trigger (and a
collision interrupt is set). When an external trigger coincides
with a continuous trigger, both triggers are effectively
handled at the same time (a collision interrupt may be set for
the external trigger).

For firmware continuous trigger, it takes only one SAR
ADC clock cycle before the sequencer tells the SAR ADC
to start sampling (provided the sequencer is idle). For the
external trigger, it depends on the trigger configuration
setting.

External Trigger Configuration
• Synchronization

If the incoming external trigger signal is not synchronous
to the AHB clock, the signal needs to be synchronized by
double flopping it (default). However, if the trigger signal is

already synchronized with the AHB clock, then these two
flops can be bypassed. The configuration bit,
DSI_SYNC_TRIGGER in the SAR_SAMPLE_CTRL
register, controls the double flop bypass.
DSI_SYNC_TRIGGER affects the trigger width (TW) and
trigger interval (TI) requirement of the pulse trigger signal.
• Trigger Level

The trigger can either be a pulse or a level; this is indicated
by the configuration bit, DSI_TRIGGER_LEVEL in the
SAR_SAMPLE_CTRL register. If it is a level, then the SAR
starts new scans for as long as the trigger signal remains
high. When the trigger signal is a pulse input, a positive edge
detected on the trigger signal triggers a new scan.
• Transmission Time

After the ‘dsi_trigger’ is raised, it takes some transmission
time before the SAR ADC is told to start sampling. With
different DSI_SYNC_TRIGGER and
DSI_TRIGGER_LEVEL configuration, the transmission
time is different; Table 82 shows the maximum time. Two
trigger pulse intervals should be longer than the
transmission time, otherwise, the second trigger is ignored.

When the SAR is disabled (ENABLED = 0), the trigger
is ignored.

Table 82. EXTERNAL TRIGGER MAXIMUM TIME

Maximum External_TRIGGER
Transmission Time

Bypass Sync
DSI_SYNC_TRIGGER = 0

Enable Sync
DSI_SYNC_TRIGGER = 1 (by default)

Pulse trigger: DSI_TRIGGER_LEVEL = 0 (by default) 1 clk_sys + 2 clk_sar 3 clk_sys + 2 clk_sar

Level Trigger: DSI_TRIGGER_LEVEL = 1 2 clk_sar 2 clk_sys + 2 clk_sar

Table 83. TRIGGER SIGNAL REQUIREMENT

Trigger Specification Requirement

Trigger Width (TW) TW should be greater enough so that a trigger can be locked. If DSI_SYNC_TRIGGER = 1, TW ≥ 2
clk_sys cycle. If DSI_SYNC_TRIGGER = 0, TW ≥ 1 SAR clock cycle.

Trigger interval (TI) Trigger interval should be longer than the transmission time (as specified in Table 82); otherwise,
the second trigger pulse will be ignored.

SAR ADC Status
The current SAR status can be observed through the

BUSY and CUR_CHAN fields in the SAR_STATUS
register. The BUSY bit is high whenever the SAR is busy
sampling or converting a channel; the CUR_CHAN[4:0]
bits indicate the number of the current channel being
sampled (channel 16 indicates the injection channel).
SW_VREF_NEG bit indicates the current switch status that
shorts NEG with VREF input.

CHAN_WORK_VALID in the CHAN_WORK_VALID
register will be set if the WORK data that was sampled
during the last scan is valid. When

CHAN_RESULT_VALID is set in the
CHAN_RESULT_VALID register, indicating that the
RESULT data is valid, then the corresponding
CHAN_WORK_VALID bit is cleared. The
CUR_AVG_ACCU and CUR_AVG_CNT fields in the
SAR_AVG_STAT register indicate the current averaging
accumulator contents and the current sample counter value
for averaging (counts down).

The SAR_MUX_SWITCH_STATUS register gives the
current switch status of MUX_SWITCH0 register. These
status registers help to debug SAR behavior.

http://www.onsemi.com/

AND9836

www.onsemi.com
135

Low−Power Mode
The current consumption of the SAR ADC can be divided

into two parts: SAR ADC core and SARREF. There are
several methods to reduce the power consumption of the
SAR ADC core. The easiest way is to reduce the trigger
frequency; that is, reduce the number of conversions per
second. Another option is to use a lower resolution for

channels that do not need high accuracy. This action shortens
the conversion by up to four out of 18 cycles (for 8−bit
resolution and minimum sample time). In addition, the SAR
ADC offers the ICONT_LV[1:0] configuration bits, which
control overall power of the SAR ADC. Maximum clock
rates for each power setting should be observed.

Table 84. ICONT_LV FOR LOW POWER CONSUMPTION

ICONT_LV[1:0]
Relative Power of

SAR ADC Core [%]
Maximum Frequency

[MHz]
Minimum Sample Time

[cycles]

Maximum Sample
Speed (at 12− bit)

[ksps]

0 100 18 4 1000

1 50 9 3 529

2 133 18 4 1000

3 25 4.5 2 281

In addition to controlling the power of the SAR ADC core,
the power consumed by VREF buffer (if used) can also be
configured. Note that for full VDDA range (1.7 V to 3.6 V)
operation without external bypass capacitor, the VREF
buffer should be operated in 2x power mode. However, the

maximum sample rate supported without external bypass
capacitor remains at 100 ksps. For a 1−Msps sample rate, an
external bypass capacitor and an 18−MHz clock are
required. See Table 85 for details.

Table 85. SAR VREF POWER OPTIONS

PWR_CTRL_
VREF[1:0]

External Bypass
Capacitor Required

Relative VREF
Power [%]

Maximum
Frequency

[MHz]
Minimum Sample

Time [cycles]
Maximum Sample

Speed (at 12−bit) [ksps] VDDA Range

0 Yes 100 18 4 1000 1.7 V − 3.6 V

0 No 100 1.6 2 100 2.7 V − 3.6 V

2 No 200 1.6 2 100 1.7 V − 3.6 V

1 or 3 Invalid setting − Should not be used

Using an external VREF eliminates the need for the VREF
buffer and bypass capacitor, which in turn reduces overall
power consumption of the SAR ADC block.

System Operation
After the SAR analog is enabled by setting the ENABLED

bit (SAR_CTRL[31]), follow these steps to start ADC
conversions with the SARSEQ:

1. Set SARMUX analog routing (pin/signal
selection) via sequencer/firmware

2. Set the global SARSEQ conversion configurations
3. Configure each channel source (such as pin

address)
4. Enable the channels

5. Set the trigger type
6. Set interrupt masks
7. Start the trigger source
8. Retrieve data after each end of conversion

interrupt
9. Perform injection conversions if needed

Use registers to configure the SAR ADC; this is the most
common usage. Detailed register bit definition is available
in the AND9835 AXM0F243 MCU Registers.

SARMUX Analog Routing
There are two ways to control the SARMUX analog

routing: sequencer and firmware.

http://www.onsemi.com/
https://www.onsemi.com/pub/Collateral/AND9835-D.PDF

AND9836

www.onsemi.com
136

Sequencer Control
It is essential that the appropriate hardware control bits in

MUX_SWITCH_HW_CTRL register and the firmware
control bits in MUX_SWITCH0 register are both set to ‘1’.
Ensure that SWITCH_DISABLE = 0; setting
SWITCH_DISABLE disables sequencer control.

With sequencer control, the pin or internal signal a
channel converts is specified by the combination of port and

pin address. The PORT_ADDR bits are
SAR_CHANx_CONFIG[6:4] and PIN_ADDR bits are
SAR_CHANx_CONFIG[2:0]. Table 86 shows the
PORT_ADDR and PIN_ADDR setup with corresponding
SARMUX selection. The unused port/pins are reserved.

Table 86. PORT_ADDR AND PIN_ADDR

PORT_ADDR PIN_ADDR Description

0 0..7 8 dedicated pins of the SARMUX

1 X sarbus0 (Note 6)

1 X sarbus1 (Note 6)

7 0 Temperature sensor

7 2 AMUXBUS−A

7 3 AMUXBUS−B

6. sarbus0 and sarbus1 connect to the output of the CTBm block, which contains opamp0/1. See the Continuous Time Block mini (CTBm)
chapter on page 146 for more information. When PORT_ADDR = 1, sarbus0 connects to positive terminal of SAR ADC regardless of the value
of PIN_ADDR; sarbus1 can only connect to the negative terminal of SAR ADC when differential mode is enabled and PORT_ADDR = 1.

For differential conversion, the negative terminal
connection is dependent on the positive terminal
connection, which is defined by PORT_ADDR and
PIN_ADDR. By setting DIFFERENTIAL_EN, the channel
will do a differential conversion on the even/odd pin pair
specified by the pin address with PIN_ADDR[0] ignored.
P.0/P.1, P.2/P.3, P.4/P.5, P.6/P.7 are valid differential pairs for
sequencer control. More flexible analog can be
implemented by firmware.

For single−ended conversions, NEG_SEL
(SAR_CTRL[11:9]) is intended to decide which signal is
connected to negative input. In differential mode, these bits
are ignored. Negative input choice affects the input voltage
range and effective resolution. See Negative Input Selection
on page 119 for details. The options include: VSSA, VREF, or
an external input from any of the eight pins with SARMUX
connectivity. To connect negative input to VREF, an
additional bit, SAR_HW_CTRL_NEGVREF
(SAR_CTRL[13]) must be set, because the
MUX_SWITCH_HW_CTRL register does not have that
hardware control bit.

Firmware Control
By default, the SARMUX operates in firmware control.

VPLUS (positive) and VMINUS (negative) inputs of
SAR ADC can be controlled separately by setting the
appropriate bits in SAR_MUX_SWITCH0[29:0]. Clear
appropriate bits in the hardware switch control register
(SAR_MUX_SWITCH_HW_CTR[n] = 0). Otherwise,
hardware control method (sequencer) will control the
SARMUX analog routing.

SAR_CTRL register bit SWITCH_DISABLE is used to
disable SAR sequencer from enabling routing switches.
Note that firmware control mode can always close switches
independent of this bit value; however, it is recommended to
set it to ‘1’.

NEG_SEL (SAR_CTRL[11:9]) decides which signal is
connected to the negative terminal (vminus) of SAR ADC
in single−ended mode. In differential mode, these bits are
ignored. In single−ended mode, when using sequencer
control, you must set these bits. When using firmware
control, NEG_SEL is ignored and SAR_MUX_SWITCH0
should be set to control the negative input. A special case is
when SAR_MUX_SWITCH0 does not connect internal
VREF to vminus; then, set NEG_SEL to ‘7’. Negative input
choice affects the input voltage range, SNR, and effective
resolution. See Negative Input Selection on page 119 for
details.

Global SARSEQ Configuration
A number of conversion options that apply to all channels

are configured globally. In several cases, the channel
configuration has bits to choose what parts of the global
configuration to use.

SAR_CTRL, SAR_SAMPLE_CTRL,
SAR_SAMPLE01, SAR_SAMPLE23,
SAR_RANGE_THES, and SAR_RANGE_COND are all
global configuration registers. Typically, these
configurations should not be modified while a scan is in
progress. If configuration settings that are in use are
changed, the results are undefined. Configuration settings
that are not currently in use can be changed without affecting
the ongoing scan.

http://www.onsemi.com/

AND9836

www.onsemi.com
137

Table 87. GLOBAL CONFIGURATION REGISTERS

Configurations Control Registers Detailed Reference

Reference selection SAR_CTRL[6:4] Reference Options

Signed/unsigned selection SAR_SAMPLE_CTRL[3:2] Result Data Format

Data left/right alignment SAR_SAMPLE_CTRL[1] Result Data Format

Negative input selection in single−ended mode SAR_CTRL[11:9] Negative Input Selection

Resolution SAR_SAMPLE_CTRL[0] (Note 7) Resolution

Acquisition time SAR_SAMPLE_TIME01[25:0]
SAR_SAMPLE_TIME32[25:0]

 Acquisition Time

Averaging count SAR_SAMPLE_CTRL[7:4] Averaging

Range detection SAR_RANGE_THRES[31:0]
SAR_RANGE_COND[31:30]

 Range Detection

7. The alternate resolution should be enabled by the SAR_RESOLUTION bit in the SAR_CHAN_CONFIG register. If the alternate resolution
is not enabled, the ADC operates at 12−bits of resolution, irrespective of the resolution set by the SAR_SAMPLE_CTRL register.

Channel Configurations
Channel configuration includes:

• Differential or single−ended mode selection

• Global configuration selection: sample time, resolution,
averaging enable

• DSI output enable
As a general rule, the channel configurations should only

be updated between scans (same as global configurations).

However, if a channel is not enabled for the ongoing scan,
then the configuration for that channel can be changed freely
without affecting the ongoing scan. If this rule is violated,
the results are undefined. The channels that enable
themselves are the only exception to this rule; enabled
channels can be changed during the on−going scan, and it
will be effective in the next scan. Changing the enabled
channels may change the sample rate.

Table 88. CHANNEL CONFIGURATION REGISTERS

Configurations Registers Detailed Reference

Single−ended/differential SAR_CHANx_CONFIG[8] Single−ended and Differential Mode

Acquisition time selection SAR_CHANx_CONFIG[13:12] Acquisition Time

Resolution selection SAR_CHANx_CONFIG[9] Resolution

Average enable SAR_CHANx_CONFIG[10] Averaging

SUB_RESOLUTION (SAR_SAMPLE_CTRL[0]) can
choose which alternate resolution will be used, either 8−bit
or 10 bit. Resolution (SAR_CHANx_CONFIG[9]) can
determine whether default resolution 12−bit or alternate

resolution is used. When averaging is enabled, the
SUB_RESOLUTION is ignored; the resolution will be
fixed to the maximum 12−bit.

Table 89. RESULUTION

Average
SUB_RESOLUTION

SAR_SAMPLE_CTRL[0]
Register Mode Resolution
SAR_CHANx_CONFIG[9] Channel Resolution

OFF 0 1 8−bit

OFF 1 1 10−bit

OFF 0 0 12−bit

OFF 1 0 12−bit

ON X X 12−bit

http://www.onsemi.com/

AND9836

www.onsemi.com
138

Channel Enables
A CHAN_EN register is available to individually enable

each channel. All enabled channels are scanned when the
next trigger happens. After a trigger, the channel enables can
immediately be updated to prepare for the next scan. This
action does not affect the ongoing scan. Note that this is an
exception to the rule; all other configurations (global or
channel) should not be changed while a scan is in progress.

Interrupt Masks
There are six interrupt sources; all have an interrupt mask:

• End−of−scan interrupt

• Overflow interrupt

• Collision interrupt

• Injection end−of−conversion interrupt

• Range detection interrupt

• Saturate detection interrupt
Each interrupt has an interrupt request register (INTR,

SATURATE_INTR, RANGE_INTR), a software interrupt
set register (INTR_SET, SATURATE_INTR_SET,
RANGE_INTR_SET), an interrupt mask register
(INTR_MASK, SATURATE_INTR_MASK,
RANGE_INTR_MASK), and an interrupt re−quest masked
result register (INTR_MASKED,
SATURATE_INTR_MASKED,
RANGE_INTR_MASKED). An interrupt cause register is
also added to have an overview of all the currently pending
SAR interrupts and allows the ISR to determine the interrupt
cause by just reading this register.

Data Unit
See Interrupt for details.

Trigger
The three ways to start an A/D conversion are:

• Firmware trigger: SAR_START_CTRL[0]

• External trigger: dsi_trigger

• Continuous trigger: SAR_SAMPLE_CTRL[16] See
Trigger for details.

Retrieve Data after Each Interrupt
Make sure you read the data from the result register after

each scan; otherwise, the data may change because of the
next scan’s configuration.

The 16−bit data registers are used to implement double
buffering for up to eight channels (injection channel do not
have double buffer). Double buffering means that there is
one working register and one result register for each
channel. Data is written to the working register immediately
after sampling this channel. It is then copied to the result
register from the working register after all enabled channels
in this scan have been sampled.

The CHAN_WORK_VALID bit is set after the
corresponding WORK data is valid, that is, it was already
sampled during the current scan. Corresponding
CHAN_RESULT_VALID is set after completed scan. When
CHAN_RESULT_VALID is set, the corresponding
CHAN_WORK_VALID bit is cleared.

For firmware convenience, bit [31] in
SAR_CHAN_WORK register is the mirror bit of the
corresponding bit in SAR_CHAN_WORK_VALID
register. Bit [29], bit [30], and bit [31] in
SAR_CHAN_RESULT are the mirror bits of the
corresponding bit in SAR_SATURATE_INTR,
SAR_RANGE_INTR, and
SAR_CHAN_RESULT_VALID registers. Note that the
interrupt bits mirrored here are the raw (unmasked) interrupt
bits. It helps firmware to check if the data is valid by just
reading the data register.

Injection Conversions
Injection channel can be triggered by setting the start bit

INJ_START_EN (INJ_CHAN_CONFIG[31]). To prevent
the collision of regular automatic scan, it is recommended to
enable tailgating by setting INJ_CHAN_CONFIG[30].
When it is enabled, INJ_START_EN will enable the
injection channel to be scanned at the end of next scan of
regular channels. See Injection Channel for details.

http://www.onsemi.com/

AND9836

www.onsemi.com
139

Temperature Sensor Configuration
One on−chip temperature sensor is available for

temperature sensing and temperature−based calibration.
Differential conversions are not available for temperature
sensors (conversion result is undefined). Therefore, always
use it in single−ended mode. The reference is from internal
1.2 V.

A pin or signal can be routed to the SAR ADC in three
ways. Table 90 lists the methods to route temperature

sensors to SAR ADC. Setting the
MUX_FW_TEMP_VPLUS bit
(SAR_MUX_SWITCH0[17]) can enable the temperature
sensor and connect its output to VPLUS of SAR ADC;
clearing this bit disables temperature sensor by cutting its
bias current.

Table 90. ROUTE TEMPERATURE TO SAR ADC

Control Methods Setup

Sequencer DIFFERENTIAL_EN = 0 (SAR_CHANx_CONFIG[8])
VREF_SEL = 0 (SAR_CTRL[6:4])
PORT_ADDR = 7 (SAR_CHANx_CONFIG[6:4])
PIN_ADDR = 0 (SAR_CHANx_CONFIG[2:0])
SWITCH_DISABLE = 0 (SAR_CTRL[30])
SAR_MUX_SWITCH0[16] = 1
SAR_MUX_SWITCH0[17] = 1
SAR_MUX_SWITCH_HW_CTRL[16] = 1
SAR_MUX_SWITCH_HW_CTRL[17] = 1
NEG_SEL = 0 (SAR_CTRL[11:9]) override to 0 (Note 8)

Firmware DIFFERENTIAL_EN = 0 (SAR_CHANx_CONFIG[8])
VREF_SEL = 0 (SAR_CTRL[6:4])
SWITCH_DISABLE = 1 (SAR_CTRL[30])
SAR_MUX_SWITCH0[16] = 1
SAR_MUX_SWITCH0[17] = 1
SAR_MUX_SWITCH_HW_CTRL[16] = 0
SAR_MUX_SWITCH_HW_CTRL[17] = 0
NEG_SEL = 0 (SAR_CTRL[11:9]) override to 0 (Note 8)

8. For temperature sensor, override NEL_SEG (SAR_CTRL[11:9]) to ‘0’.

http://www.onsemi.com/

AND9836

www.onsemi.com
140

Registers

Table 91. REGISTERS

Name Offset Qty. Width Description

SAR_CTRL 0x0000 1 32 Global configuration register
 Analog control register

SAR_SAMPLE_CTRL 0x0004 1 32 Global configuration register
 Sample control register

SAR_SAMPLE_TIME01 0x0010 1 32 Global configuration register
 Sample time specification ST0 and ST1

SAR_SAMPLE_TIME23 0x0014 1 32 Global configuration register
 Sample time specification ST2 and ST3

SAR_RANGE_THRES 0x0018 1 32 Global range detect threshold register

SAR_RANGE_COND 0x001C 1 32 Global range detect mode register

SAR_CHAN_EN 0x0020 1 32 Enable bits for the channels

SAR_START_CTRL 0x0024 1 32 Start control register (firmware trigger)

SAR_CHAN_CONFIG 0x0080 8 32 Channel configuration register

SAR_CHAN_WORK 0x0100 8 32 Channel working data register

SAR_CHAN_RESULT 0x0180 8 32 Channel result data register

SAR_CHAN_WORK_VALID 0x0200 1 32 Channel working data register valid bits

SAR_CHAN_RESULT_VALID 0x0204 1 32 Channel result data register valid bits

SAR_STATUS 0x0208 1 32 Current status of internal SAR registers (for debug)

SAR_AVG_STAT 0x020C 1 32 Current averaging status (for debug)

SAR_INTR 0x0210 1 32 Interrupt request register

SAR_INTR_SET 0x0214 1 32 Interrupt set request register

SAR_INTR_MASK 0x0218 1 32 Interrupt mask register

SAR_INTR_MASKED 0x021C 1 32 Interrupt masked request register: If the value is not zero, then the
 SAR interrupt signal to the NVIC is high. When read, this register
 reflects a bit−wise AND between the interrupt request and mask
 registers

SAR_SATURATE_INTR 0x0220 1 32 Saturate interrupt request register

SAR_SATURATE_INTR_SET 0x0224 1 32 Saturate interrupt set request register

SAR_SATURATE_INTR_MASK 0x0228 1 32 Saturate interrupt mask register

SAR_SATURATE_INTR_MASKED 0x022C 1 32 Saturate interrupt masked request register

SAR_RANGE_INTR 0x0230 1 32 Range detect interrupt request register

SAR_RANGE_INTR_SET 0x0234 1 32 Range detect interrupt set request register

SAR_RANGE_INTR_MASK 0x0238 1 32 Range detect interrupt mask register

SAR_RANGE_INTR_MASKED 0x023C 1 32 Range interrupt masked request register

SASR_INTR_CAUSE 0x0240 1 32 Interrupt cause register

SAR_INJ_CHAN_CONFIG 0x0280 1 32 Injection channel configuration register

SAR_INJ_RESULT 0x0290 1 32 Injection channel result register

SAR_MUX_SWITCH0 0x0300 1 32 SARMUX firmware switch controls

SAR_MUX_SWITCH_CLEAR0 0x0304 1 32 SARMUX firmware switch control clear

SAR_MUX_SWITCH_HW_CTRL 0x0340 1 32 SARMUX switch hardware control

SAR_MUX_SWITCH_STATUS 0x0348 1 32 SARMUX switch status

SAR_PUMP_CTRL 0x0380 1 32 Switch pump control

http://www.onsemi.com/

AND9836

www.onsemi.com
141

LOW−POWER COMPARATOR
AXM0F243 MCU4 devices have two low−power

comparators. These comparators can perform fast analog
signal comparison in all system power modes. Refer to the
Power Modes chapter on page 46 for details on various
device power modes. The positive and negative inputs can
be connected to dedicated GPIO pins or to
AMUXBUS−A/AMUXBUS−B. The comparator output
can be read by the CPU through a status register, used as an
interrupt or wakeup source or routed to a GPIO.

Features
AXM0F243 MCU comparators have the following

features:
• Configurable positive and negative inputs

• Programmable power and speed

• Ultra low−power mode support (<4 �A)

• Optional 10−mV input hysteresis

• Low−input offset voltage (<4 mV after trim)

• Wakeup source in Deep−Sleep mode

Block Diagram
Figure 90 shows the block diagram for the low−power

comparator.

Comparator 0

Comparator 1

Edge Detector

Edge Detector

MMIO Registers

AHB IFAHB

I/0 pad
P0.0

I/0 pad
P0.1

I/0 pad
P0.2

I/0 pad
P0.3

comp_intr

In
tr

_c
lr

Active Power Domain

DeepSleep Power Domain

F
al

lin
g,

R
is

in
g,

bo
th

in
tr

_c
om

p1

in
tr

_c
om

p2

A
M

U
X

B
U

S
_A

A
M

U
X

B
U

S
_B

Not part of Low power comparator
It is in GPIO block

Each GPIO connects to AMUXBUS_A/_B

Sync

Interrupt
Generation

S
yn

c

S
yn

c

In
tr

_c
lr

F
al

lin
g,

R
is

in
g,

bo
th

Active Power Domain

<To MMIO Registers>

MMIO interface signals
Comparator related signals

S
yn

c

lpcomp_comp[1]

lpcomp_comp[0]

Signal connection to HSIOM

Figure 90. Low−Power Comparator Block Diagram

How It Works
The following sections describe the operation of the

AXM0F243 MCU low−power comparator, including input

configuration, power and speed mode, output and interrupt
configuration, hysteresis, wake up from low−power modes,
comparator clock, and offset trim.

http://www.onsemi.com/

AND9836

www.onsemi.com
142

Input Configuration
Inputs to the comparators can be as follows:

• Both positive and negative inputs from dedicated input
pins.

• Both positive and negative inputs from any pin through
AMUXBUS (not available in Deep−Sleep mode).

• One input from an external pin and another input from an
internally−generated signal. Both inputs can be
connected to either positive or negative inputs of the
comparator. The internally−generated signal is connected
to the comparator input through the analog AMUXBUS.

• Both positive and negative inputs from
internally−generated signals. The internally−generated
signals are connected to the comparator input through
AMUXBUS−A/ AMUXBUS−B.
From Figure 90, note that P0.0 and P0.1 connect to

positive and negative inputs of Comparator 0; P0.2 and P0.3
connect to the inputs of Comparator 1. Also, note that the
AMUXBUS nets do not have a direct connection to the
comparator inputs. Therefore, the comparator connection is
routed to the AMUXBUS nets through the corresponding
input pin. These input pins will not be available for other
purposes when using AMUXBUS for comparator
connections. They should be left open in designs that use
AMUXBUS for comparator input connection. Note that
AMUXBUS connections are not available in Deep−Sleep
mode. If Deep−Sleep operation is required, the low−power
comparator must be connected to the dedicated pins. This
restriction also includes routing of any internally−generated
signal, which uses the AMUXBUS for the connection. See
the I/O System chapter on page 19 for more details on
connecting the GPIO to AMUXBUS A/B or setting up the
GPIO for comparator input.

Output and Interrupt Configuration
The output of Comparator0 and Comparator1 are

available in the OUT1 bit [6] and OUT2 bit [14],
respectively, in the LPCOMP_CONFIG register (Table 48).
The comparator outputs are synchronized to SYSCLK
before latching them to the OUTx bits in the
LPCOMP_CONFIG register. The output of each
comparator is connected to a corresponding edge detector
block. This block determines the edge that triggers the
interrupt. The edge selection and interrupt enable is
configured using the INTTYPE1 bits [5:4] and INTTYPE2
bits [13:12] in the LPCOMP_CONFIG register. Using the

INTTYPEx bits, the interrupt type can be selected to
disabled, rising edge, falling edge, or both edges, as
described in Table 48.

Each comparator’s output can be routed directly to a
GPIO pin through the HSIOM. The comparator outputs are
available as Deep−Sleep source 2 connection in the HSIOM.
See High−Speed I/O Matrix on page 23 for details on
HSIOM. For details on the pins that support the low−power
comparator output, refer to the AXM0F243 datasheet. The
output on these pins are direct output from the comparator
and are not synchronized. Because they act as Deep−Sleep
source for the pins, the comparator output is available in
Deep−Sleep power mode as well.

During an edge event, the comparator will trigger an
interrupt (intr_comp1/intr_comp2 signals in Figure 90). The
interrupt request is registered in the COMP1 bit [0] and
COMP2 bit [1] of the LPCOMP_INTR register for
Comparator0 and Comparator1, respectively. Both
Comparator0 and Comparator1 share a common interrupt
(comp_intr signal in Figure 90), which is a logical OR of the
two interrupts and mapped as the low−power comparator
block’s interrupt in the CPU NVIC. Refer to the Interrupts
chapter on page 11 for details. If both the comparators are
used in a design, the COMP1 and/or COMP2 bits of the
LPCOMP_INTR register need to be read in the interrupt
service routine to know which one triggered the interrupt.
Alternatively, COMP1_MASK bit [0] and COMP2_MASK
bit [1] of the LPCOMP_INTR_MASK register can be used
to mask the Comparator0 and Comparator1 interrupts to the
CPU. Only the masked interrupts will be serviced by the
CPU. After the interrupt is processed, the interrupt should be
cleared by writing a ‘1’ to the COMP1 and COMP2 bits of
the LPCOMP_INTR register in firmware. If the interrupt is
not cleared, the next compare event will not trigger an
interrupt and the CPU will not be able to process the event..

The LPCOMP interrupt (comp1_intr/comp2_intr) is
synchronous with SYSCLK. Clearing
comp1_intr/comp2_intr are all synchronous.

LPCOMP_INTR_SET register bits [1:0] can be used to
assert an interrupt for software debugging.

In Deep−Sleep mode, the wakeup interrupt controller
(WIC) can be activated by a comparator edge event, which
then wakes up the CPU. Thus, the LPCOMP has the
capability to monitor a specified signal in low−power
modes.

http://www.onsemi.com/
https://www.onsemi.com/pub/Collateral/AXM0F243-D.PDF

AND9836

www.onsemi.com
143

Table 92. OUTPUT AND INTERRUPT CONFIGURATION IN LPCOMP_CONFIG REGISTER

Register[Bit_Pos] Bit_Name Description

LPCOMP_CONFIG[6] OUT1 Current/Instantaneous output value of Comparator0

LPCOMP_CONFIG[14] OUT2 Current/Instantaneous output value of Comparator1

LPCOMP_CONFIG[5:4] INTTYPE1 Sets on which edge Comparator0 will trigger an IRQ
00: Disabled
01: Rising Edge
10: Falling Edge
11: Both rising and falling edges

LPCOMP_CONFIG[13:12
]

INTTYPE2 Sets on which edge Comparator1 will trigger an IRQ
00: Disabled
01: Rising Edge
10: Falling Edge
11: Both rising and falling edges

LPCOMP_INTR[0] COMP1 Comparator0 Interrupt: hardware sets this interrupt when Comparator0 triggers. Write a ‘1’
to clear the interrupt

LPCOMP_INTR[1] COMP2 Comparator2 Interrupt: hardware sets this interrupt when Comparator1 triggers. Write a ‘1’
to clear the interrupt

LPCOMP_INTR_SET[0] COMP1 Write a ‘1’ to trigger the software interrupt for Comparator0

LPCOMP_INTR_SET[1] COMP2 Write a 1 to trigger the software interrupt for Comparator1

Power Mode and Speed Configuration
The low−power comparators can operate in three power

modes:
• Fast

• Slow

• Ultra low−power
The power or speed setting for Comparator0 is configured

using MODE1 bits [1:0] in the LPCOMP_CONFIG register.
The power or speed setting for Comparator1 is configured
using MODE2 bits [9:8] in the same register. The power
consumption and response time vary depending on the
selected power mode; power consumption is highest in fast

mode and lowest in ultra−low−power mode, response time
is fastest in fast mode and slowest in ultra−low−power mode.
Refer to the AXM0F243 datasheet for specifications for the
response time and power consumption for various power
settings.

The comparators are enabled/disabled using ENABLE1
bit [7] and ENABLE2 bit [15] in the LPCOMP_CONFIG
register, as described in Table 93.

NOTE: The output of the comparator may glitch when
the power mode is changed while comparator is
enabled. To avoid this, disable the comparator
before changing the power mode.

Table 93. COMPARATOR POWER MODE SELECTION BITS MODE1 AND MODE2

Register[Bit_Pos] Bit_Name Description

LPCOMP_CONFIG[1:0] MODE1 Compartor0 power mode selection
00: Slow operating mode (uses less power)
01: Fast operating mode (uses more power)
10: Ultra low−power operating mode (uses lowest possible power)

LPCOMP_CONFIG[9:8] MODE2 Compartor1 power mode selection
00: Slow operating mode (uses less power)
01: Fast operating mode (uses more power)
10: Ultra low−power operating mode (uses lowest possible power)

LPCOMP_CONFIG[7] ENABLE1 Comparator0 enable bit
0: Disables Comparator0
1: Enables Comparator0

LPCOMP_CONFIG[15] ENABLE2 Comparator1 enable bit
0: Disables Comparator1
1: Enables Comparator1

http://www.onsemi.com/
https://www.onsemi.com/pub/Collateral/AXM0F243-D.PDF

AND9836

www.onsemi.com
144

Hysteresis
For applications that compare signals close to each other

and slow changing signals, hysteresis helps to avoid
oscillations at the comparator output when the signals are
noisy. For such applications, a fixed 10−mV hysteresis may
be enabled in the comparator block.

The 10−mV hysteresis level is enabled/disabled by using
the HYST1 bit [2] and HYST2 bit [10] in the
LPCOMP_CONFIG register, as described in Table 94.

Table 94. HYSTERESIS CONTROL BITS HYST1 AND HYST2

Register[Bit_Pos] Bit_Name Description

LPCOMP_CONFIG[2] HYST1 Enable/Disable 10 mV hysteresis to Comparator0
− 0: Enable Hysteresis
− 1: Disable Hysteresis

LPCOMP_CONFIG[10] HYST2 Enable/Disable 10 mV hysteresis to Comparator1
− 0: Enable Hysteresis
− 1: Disable Hysteresis

Wakeup from Low−Power Modes
The comparator is operational in the device’s low−power

modes, including Sleep and Deep−Sleep modes. The
comparator output interrupt can wake the device from Sleep
and Deep−Sleep modes. The comparator should be enabled
in the LPCOMP_CONFIG register, the INTTYPEx bits in
the LPCOMP_CONFIG register should not be set to
disabled, and the INTR_MASKx bit should be set in the
LPCOMP_INTR_MASK register for the corresponding
comparator to wake the device from low−power modes.
Comparisons involving AMUXBUS connections are not
available in DeepSleep mode.

In the Deep−Sleep power mode, a compare event on either
Comparator0 or Comparator1 output will generate a wakeup
interrupt. The INTTYPEx bits in the LPCOMP_CONFIG
register should be configured, as required, for the
corresponding comparator to wake the device from
low−power modes. The mask bits in the
LPCOMP_INTR_MASK register is used to select whether
one or both of the comparator’s interrupt is serviced by the
CPU.

Comparator Clock
The comparator uses the system main clock SYSCLK as

the clock for interrupt synchronization.

Offset Trim
The comparator offset is trimmed at the factory to less

than 4.0 mV. The trim is a two−step process, trimmed first
at common mode voltage equal to 0.1 V, then at common
mode voltage equal to VDD–0.1 V. Offset voltage is
guaranteed to be less than 10.0 mV over the input voltage
range of 0.1 V to VDD–0.1 V. For normal operation, further
adjustment of trim values is not recommended.

If a tighter trim is required at a specific input common
mode voltage, a trim may be performed at the desired input
common mode voltage. The comparator offset trim is

performed using the LPCOMP_TRIM1/2/3/4 registers.
LPCOMP_TRIM1 and LPCOMP_TRIM2 are used to trim
comparator 0. LPCOMP_TRIM3 and LPCOMP_TRIM4
are used to trim comparator 1. The bit fields that change the
trim values are TRIMA bits [4:0] in LPCOMP_TRIM1 and
LPCOMP_TRIM3, and TRIMB bits [3:0] in
LPCOMP_TRIM2 and LPCOMP_TRIM4. TRIMA bits are
used to coarse tune the offset; TRIMB bits are used to fine
tune. The use of TRIMB bits for offset correction is
restricted to slow mode of comparator operation.

Any standard comparator offset trim procedure can be
used to perform the trimming. The following method can be
used to improve the offset at a given reference/common
mode voltage input.

1. Short the comparator inputs externally and connect
the voltage reference, Vref, to the input.

2. Set up the comparator for comparison, turn off
hysteresis, and check the output.

3. If the output is high, the offset is positive.
Otherwise, the offset is negative. Follow these
steps to tune the offset:
a. Tune the TRIMA bits [4:0] until the output
switches direction. TRIMA bits [3:0] control the
amount of offset and TRIMA bit [4] controls the
polarity of offset (‘1’ indicates positive offset and
‘0’ indicates negative offset).
b. When the tuning of TRIMA bits is complete,
tune the TRIMB bits [3:0] until the output
switches direction again. The TRIMB bit tuning is
valid only for slow mode of comparator operation.
TRIMB bit[3] controls the polarity of offset.
Increasing TRIMB bits [2:0] reduces the offset.
c. After completing step 3−b, the values available
in the TRIMA and TRIMB bits will be the closest
possible trim value for that particular Vref.

http://www.onsemi.com/

AND9836

www.onsemi.com
145

Register Summary

Table 95. LOW−POWER COMPARATOR REGISTER SUMMARY

Register Description

LPCOMP_ID Includes the information of LPCOMP controller ID and revision number

LPCOMP_CONFIG LPCOMP configuration register

LPCOMP_INTR LPCOMP interrupt register

LPCOMP_INTR_SET LPCOMP interrupt set register

LPCOMP_INTR_MASK LPCOMP interrupt request mask register

LPCOMP_INTR_MASKED LPCOMP masked interrupt output register

LPCOMP_TRIM1 Trim fields for comparator 0

LPCOMP_TRIM2 Trim fields for comparator 0

LPCOMP_TRIM3 Trim fields for comparator 1

LPCOMP_TRIM4 Trim fields for comparator 1

http://www.onsemi.com/

AND9836

www.onsemi.com
146

CONTINUOUS TIME BLOCK MINI (CTBm)
The Continuous Time Block mini (CTBm) provides

discrete operational amplifiers (opamps) inside the chip for
use in continuous−time signal chains. Each CTBm block
includes a switch matrix for input/output configuration, two
identical opamps, which are also configurable as two
comparators, a charge pump inside each opamp, and a digital
interface for comparator output routing, switch controls, and
interrupts. AXM0F243 MCU device have one CTBm block,
which can be operational in Deep−Sleep power mode.

Features
The opamps in the AXM0F243 MCU CTBm block have

the following features:
• Discrete, high−performance, and highly configurable

on−chip amplifiers

• Programmable power, bandwidth, compensation, and
output drive strength

• 1−mA or 10−mA selectable output current drive
capability

• 6−MHz gain bandwidth for 20−pF load

• Less than 1−mV offset with trim

• Support for opamp follower mode

• Comparator mode with optional 10−mV hysteresis

• Buffer/pre−amplifier for SAR inputs

• Support in Deep−Sleep device power mode

Block Diagram
Figure 91 shows the block diagram for the CTBm block

available in AXM0F243 MCU devices.

10X

1X

P1.0

AMUXBUSA

P1.6

P1.1

sarbus0

P1.2

10X

1X

P1.5

AMUXBUSB

P1.7

P1.4

sarbus1

P1.3

OPAMP 0

OPAMP 1

sarbus0

CTBM_comp0_out

CTBM_comp1_out

Clk_comp

Switch Control: Firmware

SW1

SW2

SW3

Sync
Edge Detector

MUX

Clk_comp

CTBM_dsi_comp1

Interrupt Request

Pulse Output
on Edge

Sync
Edge Detector

MUX
CTBM_dsi_comp0

Interrupt Request

Pulse Output
on Edge

NOTE: 10X or 1X output driver cannot be ON at the same time.

Switch Control: Firmware + SARSEQ

Figure 91. CTBm Block Diagram

How It Works
As the block diagram shows, CTBm has two identical

opamps. Each opamp has one input and three output stages,
all of which share a common input stage, as shown in Figure
91; only one of them can be selected at a time. The output
stage can be operated as Class−A (1X), Class−AB (10X), or
comparator. The other configurable features are power and
speed, compensation, and switch routing control.

To use the CTBm block, the first step is to set up external
components (such as resistors), if required. Then, enable the
block by setting the CTB_CTRL[31] bit. To have almost
rail−to−rail input range and minimal distortion common
mode input, there is one charge pump inside each opamp.
The charge pump can be enabled by setting the

CTBM_OA_RES0_CTRL[11] bit for opamp0 and
CTBM_OA_RES1_CTRL[11] bit for opamp1.

After enabling the opamps and charge pumps, follow
these steps to set up the amplifier:

1. Configure power mode
2. Configure output strength
3. Configure compensation
4. Configure input switch
5. Configure output switch, especially when opamp

output needs to be connected to SAR ADC
Follow these steps to set up a comparator:

1. Configure the power mode
2. Configure the input switch

http://www.onsemi.com/

AND9836

www.onsemi.com
147

3. Configure the comparator output circuitry, as
required − interrupt generation, output, and so on

4. Configure hysteresis and enable the comparator

Power Mode Configuration
The opamp can operate in three power modes – low,

medium, and high. CTBm adjusts the power consumed by
adjusting the reference currents coming into the opamp.
Power modes are configured using the PWR_MODE bits
[1:0] in CTBM_OA_RESx_CTRL. The slew rate and gain
bandwidth are maximum in high−power mode and
minimum in low−power mode. Note that power mode
configuration also affects the maximum output drive
capability (IOUT) in 1X mode. See Table 96 for details. See

the AXM0F243 datasheet for gain bandwidth, slew rate, and
IOUT specifications in various power modes.

Output Strength Configuration
The output driver of each opamp can be configured to

internal driver (Class A/1X driver) or external driver (Class
AB/10X driver). 1X and 10X drivers are mutually exclusive
– they cannot be active at the same time. 1X output driver is
suited to drive smaller on−chip capacitive and resistive loads
at higher speeds. The 10X output driver is useful for driving
large off−chip capacitive and resistive loads. The 1X driver
output is routed to sarbus 0/1 and 10X driver output is routed
to an external pin. Each driver mode has a low, medium, or
high power mode, as shown in Table 96.

Table 96. OUTPUT DRIVER VERSUS POWER MODE

Power Mode IOUT Drive
Capability

CTBM_OA_RESx_CTRL[1:0]

00 (disable) 01 (low) 10 (medium) 11 (high)

External Driver (10X) Off 10 mA 10 mA 10 mA

Internal Driver (1X) Off 100 �A 400 �A 1 mA

The CTBM_OA_RESx_CTRL[2] bit is used to select
between the 10X and 1X output capability (0: 1X, 1: 10X).
If the output of the opamp is connected to the SAR ADC, it
is recommended to choose the 1X output driver. If the output
of the opamp is connected to an external pin, then, choose
the 10X output driver. In special instances, to connect the

output to an external pin with 1X output driver or an internal
load (for example, SAR ADC) with 10X output driver, set
CTBM_OAx_SW[21] to ‘1’. However, ON Semiconductor
does not guarantee performance in this case.

Table 97 summarizes the bits used to configure the opamp
output drive strength and power modes.

Table 97. OUTPUT STRENGTH AND POWER MODE CONFIGURATION IN CTBM REGISTERS

Register[Bit_Pos] Bit_Name Description

CTBM_CTB_CTRL[31] ENABLE CTBM power mode selection
0: CTBM is disabled
1: CTBM is enabled

CTBM_OA_RES0_CTRL[11] OA0_PUMP_EN Opamp0 pump enable bit
0: Opamp0 pump is disabled
1: Opamp0 pump is enabled

CTBM_OA_RES1_CTRL[11] OA1_PUMP_EN Opamp1 pump enable bit
0: Opamp1 pump is disabled
1: Opamp1 pump is enabled

CTBM_OA_RES0_CTRL[1:0] OA0_PWR_MODE Opamp0 power mode select bits
00: Opamp0 is OFF
01: Opamp0 is in low power mode
10: Opamp0 is in medium power mode
11: Opamp0 is in high power mode

CTBM_OA_RES1_CTRL[1:0] OA1_PWR_MODE Opamp1 power mode select bits
00: Opamp1 is OFF
01: Opamp1 is in low power mode
10: Opamp1 is in medium power mode
11: Opamp1 is in high power mode

CTBM_OA_RES0_CTRL[2] OA0_DRIVE_STR_SEL Opamp0 output drive strength select bits
0: Opamp0 output drive strength is 1X
1: Opamp0 output drive strength is 10X

CTBM_OA_RES1_CTRL[2] OA1_DRIVE_STR_SEL Opamp1 output drive strength select bits
0: Opamp1 output drive strength is 1X
1: Opamp1 output drive strength is 10X

http://www.onsemi.com/
https://www.onsemi.com/pub/Collateral/AXM0F243-D.PDF

AND9836

www.onsemi.com
148

Compensation
Each opamp also has a programmable compensation

capacitor block, which allows optimizing the stability of the
opamp performance based on output load. The
compensation of each opamp is controlled by the respective

CTBM_OAx_COMP_TRIM register, as explained in Table
98. Note that all the GBW slew rate specifications in the
AXM0F243 datasheet are applied for all compensation
trims.

Table 98. Opampx (Opamp0 OR Opamp1) COMPENSATION BITS IN CTBm

Register[Bit_Pos] Bit_Name Description

CTBM_OAx_COMP_TRIM[1:0] OAx_COMP_TRIM Opampx compensation trim bits
00: No compensation
01: Minimum compensation, high speed, and low stability
10: Medium compensation, balanced speed, and stability
11: Maximum compensation, low speed, and high stability

Switch Control
The CTBm has many switches to configure the opamp

input and output. Most of them are controlled by configuring
CTBm registers (CTBM_OA0_SW, CTBM_OA1_SW),
except three switches, which are used to connect the output
of opamps to SAR ADC through sarbus0 and sarbus1. They
must be controlled by SAR ADC registers, and CTBm
registers.

Switches can be closed by setting the corresponding bit in
register CTBM_OAx_SW; clearing them will cause the
corresponding switches to open. To open the switch, write
‘1’ to CTBM_OAx_SW_CLEAR, which clears the
corresponding bit in CTBM_OAx_SW. See the AND9835
AXM0F243 MCU Registers for details on the switches and
the connections they enable.

Input Configuration
Positive and negative input to the operational amplifier

can be selected from several options through analog
switches. These switches serve to connect the opamp inputs
from the external pins or AMUX buses, or to form a local
feedback loop (for buffer function). Each opamp has a
switch connecting to one of the two AMUXBUS line:
Opamp0 connects to AMUXBUS−A and Opamp1 connects
to AMUXBUS−B.

NOTE: Only one switch should be closed for the
positive and negative input paths; otherwise,
different input source may short together.

• Positive input: Both opamp0 and opamp1 have three
positive input options through analog switches: two
external pins and one AMUXBUS line. See Table 99 for
details.

Table 99. POSITIVE INPUT SELECTION

Positive Input Switch Control Bit Description

Opamp0 AMUXBUSA CTBM_OA0_SW[0] 0: open 1: close switch

P1.0 CTBM_OA0_SW[2] 0: open 1: close switch

P1.6 CTBM_OA0_SW[3] 0: open 1: close switch

Opamp1 AMUXBUSB CTBM_OA1_SW[0] 0: open 1: close switch

P1. 5 CTBM_OA1_SW[1] 0: open 1: close switch

P1.7 CTBM_OA1_SW[4] 0: open 1: close switch

• Negative input: Both opamp0 and opamp1 have two
negative input options through analog switches: one
external pin or output feedback, which is controlled by the

CTBM_OAx_SW register. Table 100 shows the control
bits.

Table 100. NEGATIVE INPUT SELECTION

Negative Input Switch Control Bit Description

Opamp0 P1.1 CTBM_OA0_SW[8] 0: open 1: close switch

Opamp0 output feedback through 1X output driver CTBM_OA0_SW[14] 0: open 1: close switch

Opamp1 P1.4 CTBM_OA1_SW[8] 0: open 1: close switch

Opamp1 output feedback through 1X output driver CTBM_OA1_SW[14] 0: open 1: close switch

http://www.onsemi.com/
https://www.onsemi.com/pub/Collateral/AXM0F243-D.PDF
https://www.onsemi.com/pub/Collateral/AND9835-D.PDF
https://www.onsemi.com/pub/Collateral/AND9835-D.PDF

AND9836

www.onsemi.com
149

Output Configuration
Each opamp’s output is connected directly to a fixed pin;

no additional setup is needed. Optionally, it can be
connected to sarbus0 or sarbus1 through three switches
(SW1/2/3). The opamp0 output can be connected to sarbus0
and opamp1 can be connected to sarbus0 or sarbus1. sarbus0
and sarbus1 are intended to connect opamp output to the
SAR ADC input mux. The three output routing switches to
sarbus are controlled by SAR ADC registers, and CTBm
register together; the other switches can be controlled only
by CTBm register.

The following truth tables (Table 101, Table 102, and
Table 103) show the control logic of the three switches.

PORT_ADDR, PIN_ADDR, and DIFFERENTIAL_EN are
from SAR_CHANx_CONFIG[6:4],
SAR_CHANx_CONFIG[2:0], and
SAR_CHANx_CONFIG[2:0], respectively. Either
PORT_ADDR = 0 or PIN_ADDR = 0 will set SW[n] = 0.
CTBM_SW_HW_CTRL bit [2] or [3] should be set when
using the SAR register to control switches.
CTBM_OAx_SW[18]/[19] can mask the other control bits
– if CTBM_OAx_SW[18]/[19] = 0, SW[n] = 0.

The CTBM SW_STATUS[30:28] register gives the
current switch status of SW1/2/3.

Table 101. TRUTH TABLE OF SW1 CONTROL LOGIC

PORT_ADDR PIN_ADDR CTBM_SW_HW_CTRL[2] CTBM_OA0_SW[18] SW1

X X X 0 0

X 0 1 1 0

0 X 1 1 0

X X X 1 1

X X 0 1 1

1 2 X 1 1

Table 102. TRUTH TABLE OF SW2 CONTROL LOGIC

DIFFERENTIAL_EN PORT_ADDR PIN_ADDR CTBM_SW_HW_CTRL[3] CTBM_OA0_SW[18] SW2

X X X X 0 0

X X 0 1 1 0

X 0 X 1 1 0

1 X X X 1 0

X X X 0 1 1

X X X X 1 1

0 1 3 X 1 1

Table 103. TRUTH TABLE OF SW3 CONTROL LOGIC

DIFFERENTIAL_EN PORT_ADDR PIN_ADDR CTBM_SW_HW_CTRL[3] CTBM_OA0_SW[18] SW3

X X X X 0 0

X X 0 1 1 0

X 0 X 1 1 0

0 X X X 1 0

X X X 0 1 1

X X X X 1 1

1 1 2 X 1 1

Comparator Mode
Each opamp can be configured as a comparator by setting

the respective CTBM_OA_RESx_CTRL[4] bit. Note that
enabling the comparator completely disables the
compensation capacitors and shuts down the Class A (1X)

and Class AB (10X) output drivers. The comparator has the
following features:
• Optional 10−mV input hysteresis

• Configurable power/speed

http://www.onsemi.com/

AND9836

www.onsemi.com
150

• Optional comparator output synchronization

• Offset trimmed to less than 1 mV

• Configurable edge detection (rising/falling/both/disable)

Comparator Configuration
The hysteresis of 10 mV ±5 percent can be enabled in one

direction (low to high). Input hysteresis can be enabled by
setting CTBM_OA_RESx_CTRL[5]. The two comparators
also have three power modes: low, medium, and high,
controlled by setting CTBM_OA_RESx_CTRL[1:0].
Power modes differ in response time and power
consumption; power consumption is maximum in fast mode

and minimum in ultra−low−power mode. Exact
specifications for power consumption and response time are
provided in the datasheet.

The synchronization of the comparator output with the
system AHB clock can be configured in
CTBM_OA_RESx_CTRL[6]. The output state of
comparator0 and comparator1 are stored in
CTBM_COMP_STAT[0] and CTBM_COMP_STAT[16],
respectively.

Table 104 summarizes various bits used to configure the
comparator mode in the CTBM block.

Table 104. COMPARATOR MODE AND CONFIGURATION REGISTER SETTINGS

Register[Bit_Pos] Bit_Name Description

CTBM_OA_RESyx_CTRL[4] OAx_COMP_EN Opampx comparator enable bit
0: Comparator mode is disabled in opampx
1: Comparator mode is enabled in opampx

CTBM_OA_RESx_CTRL[5] OAx_HYST_EN Opampx Comparator hysteresis enable bit
0: Hysteresis is disabled in opampx
1: Hysteresis is enabled in opampx

CTBM_OA_RESx_CTRL[6] OAx_BYPASS_DSI_SYNC Opampx bypass comparator output synchronization for DSI (trig-
ger) output
0: Synchronize (level or pulse)
1: Bypass

CTBM_OA_RESx_CTRL[7] OAx_DSI_LEVEL Opampx comparator DSI (trigger) output synchronization level
0: Pulse
1: Level

Comparator Interrupt
The comparator output is connected to an edge detector

block, which is used to detect the edge
(disable/rising/falling/both) that generates interrupt. It can
be configured by the CTBM_OA_RESx_CTRL[9:8] bits.

Each comparator has a separate IRQ. CTBM_INTR[0] is
for comparator0 IRQ, CTBM_INTR[1] is for comparator1
IRQ. Though each comparator have different IRQ bits, they
all share a single CTBM ISR mapped in the CPU NVIC. See
the Interrupts chapter on page 11 for details. You can check
which comparator(s) triggered the ISR by polling the
CTBMx_INTR bits.

Each interrupt has an interrupt mask bit in the
CTBM_INTR_MASK register. By setting the interrupt
mask low, the corresponding interrupt source is ignored. The
CTBm comparator interrupt to the NVIC will be raised if
logic AND of the interrupt flags in CTBM_INTR registers
and the corresponding interrupt masks in
CTBM_INTR_MASK register is 1.

Writing a ‘1’ to the CTBM_INTR bit[1:0] can clear
corresponding interrupt.

For firmware convenience, the intersection (logic AND)
of the interrupt flags and the interrupt masks is also made
available in the CTBM_INTR_MASKED register.

For verification and debug purposes, a set bit is provided
for each interrupt in the CTBM_INTR_SET register. This

bit allows the firmware to raise the interrupt without a real
comparator switch event.

Deep−Sleep Mode Operation
In Deep−Sleep mode, the block that provides the bias

current, reference voltage, and IMO clock is turned off. As
a result, the CTBm functionality, which relies on the bias
current and IMO clock for its operation is not available. See
the Power Modes chapter on page 46 for details on various
power modes and blocks available in each mode. To support
the functionality of the CTBm during deep sleep, an
alternate bias current is generated by a special block called
Deep−Sleep Amplifier Bias (DSAB) block. This current
allows the opamps in the CTBm to be functional in
Deep−Sleep mode.

Figure 92 shows the architecture of the DSAB block. This
block receives the Active mode bias current as input. It
outputs the bias current that is fed to the opamp bias circuitry.
In Active mode, the DSAB block acts similar to a
pass−through block and routes the bias current from the
input to the output. In Deep−Sleep mode, if enabled, the
DSAB generates the alternate bias current, attenuates the
output to a user−selected value, and provides the bias current
for the CTBm at its output. If the DSAB block is disabled,
the output is always connected to the input bias current and
the alternate bias current is not generated during deep sleep.

http://www.onsemi.com/

AND9836

www.onsemi.com
151

The opamps will not be functional in Deep−Sleep mode, if
the DSAB block is disabled. The ENABLED bit [31] of the
PASS_DSAB_DSAB_CTRL register enables/disables the
block; the CURRENT_SEL bits [5:0] selects the output bias
current value. The value selected is CURRENT_SEL x

0.075 �A (±5 percent). The SEL_OUT bit [8] is used to
control the selection between the two bias currents, which
can be routed to the CTBm bias. Table 105 summarizes the
bit configuration settings of the
PASS_DSAB_DSAB_CTRL register.

Deep-Sleep Bias currentDeep-Sleep Bias Current
Generator

Attenuator

DSAB

DSAB Input –
Active mode
bias current

DSAB Output –
CTBM bias

current

dsab_ib-
ias

6

ENABLED bit[31]

CURRENT_SEL
bits[5:0]

SEL_OUT bit[8]

0

1

Figure 92. Deep−Sleep Amplifier Bias Block Diagram

This feature is useful in designs that require the
opamp−based circuitry to remain active in low−power
modes, such as Deep−Sleep, to save power. For instance, in
a battery−operated system (such as a heart−rate monitor)
that requires always−on opamps, substantial power savings
can be achieved if the rest of the chip can go into Deep−Sleep
mode and only wake up as needed. Note that the bias current
provided by the DSAB block does not meet the accuracy and
stability of the Active mode bias current. In addition, the
DSAB does not generate an alternate clock. As a result, none
of the switch or opamp−related charge pumps are activated.
Consequently, the highest input common−mode voltage of
the opamps is limited to approximately VDDA – 1.3 V. In
addition, because of the unavailability of switch pumps
(required for analog switches when operating below 3.3 V),

the on−resistance of the analog switches increase beyond
normal specification as the supply voltage drops below 3.3
V. It is justifiable for the analog switches to have higher
on−resistance as long as the signal speeds are low. Thus,
VDDA can go as low as ~2.8 V before the analog switches
become too resistive. It will eventually set the
lowest−possible supply voltage. However, it is
recommended to use VDDA of 3.3 V or greater when using
opamps in Deep−Sleep mode. See the AXM0F243 datasheet
for opamp specifications during Deep−Sleep mode.

To enable the opamps in Deep−Sleep mode, set the
DEEPSLEEP_ON bit [30] of the CTBM_CTB_CTRL
register. This bit enables both the opamps of the CTBM
during deep sleep. The deep−sleep operation of the CTBm
also requires the DSAB block to be enabled.

http://www.onsemi.com/
https://www.onsemi.com/pub/Collateral/AXM0F243-D.PDF

AND9836

www.onsemi.com
152

Table 105. DSAB AND CTBM DEEP−SLEEP CONFIGURATION REGISTER SETTINGS

Register[Bit_Pos] Bit_Name Description

PASS_DSAB_DSAB_CTRL[5:0] CURRENT_SEL Current selection for the dsab_ibias; dsab_ibias = CURRENT_SEL x 0.075 �A
(±5%)

PASS_DSAB_DSAB_CTRL[8] SEL_OUT CTBm bias current selection
0: Bypass DSAB and use active mode bias current
1: Use dsab_ibias as the CTBm bias current

PASS_DSAB_DSAB_CTRL[31] ENABLED Enable/disable DSAB bias generator
0: DSAB block is disabled and the CTBm bias current is connected to the
Active mode bias current
1: DSAB block is enabled and the CTBm bias current is controlled by the
SEL_OUT signal

CTBMx_CTBM_CTB_CTRL[30] DEEPSLEEP_ON Enable/disable the CTBMx functionality in Deep−Sleep mode
0: Enabled
1: Disabled

Register Summary

Table 106. REGISTER SUMMARY

Name Description

CTBM_CTRL Global CTBm block enable

CTBM_OA_RES0_CTRL Opamp0 control register

CTBM_OA_RES1_CTRL Opamp1 control register

CTBM_COMP_STAT Comparator status

CTBM_INTR Interrupt request register

CTBM_INTR_SET Interrupt request set register

CTBM_INTR_MASK Interrupt request mask

CTBM_INTR_MASKED Interrupt request masked

CTBM_OA0_SW Opamp0 switch control

CTBM_OA0_SW_CLEAR Opamp0 switch control clear

CTBM_OA1_SW Opamp1 switch control

CTBM_OA1_SW_CLEAR Opamp1 switch control clear

CTBM_SW_HW_CTRL CTBm hardware control enable

CTBM_SW_STATUS CTBm bus switch control status

CTBM_OA0_OFFSET_TRIM Opamp0 trim control

CTBM_OA0_SLOPE_OFFSET_TRIM Opamp0 trim control

CTBM_OA0_COMP_TRIM Opamp0 trim control

CTBM_OA1_OFFSET_TRIM Opamp1 trim control

CTBM_OA1_SLOPE_OFFSET_TRIM Opamp1 trim control

CTBM_OA1_COMP_TRIM Opamp1 trim control

PASS_DSAB_DSAB_CTRL DSAB control register

PASS_DSAB_TRIM IBIAS trim register

http://www.onsemi.com/

AND9836

www.onsemi.com
153

TEMPERATURE SENSOR
AXM0F243 MCU has an on−chip temperature sensor that

is used to measure the internal die temperature. The sensor
consists of a transistor connected in diode configuration.

Features
The temperature sensor has the following features:

• ±5° Celsius accuracy over temperature range –40°C to
+85°C

• 0.5° Celsius/LSB resolution (without amplification)
when using a 12−bit SAR ADC with a 1.2−V reference

• 10 �s settling time

How it Works
The temperature sensor consists of a single bipolar

junction transistor (BJT) in the form of a diode. Its
base−to−emitter voltage (VBE) has a strong dependence on
temperature at a constant collector current and zero
collector−base voltage. This property is used to calculate the
die temperature by measuring the VBE of the transistor using
SAR ADC, as shown in Figure 93.

Temperature
Sensor

S
A

R
M

U
X

SAR ADC CPU

SAR_MUX_FW_
TEMP_VPLUS

Vssa

Current from Precision
Reference Block

vplus

vminus
12 bit

1.2 V

Vssa

vssa_kelvin

Ibias
2.5 �A

Figure 93. Temperature Sensing Mechanism

The analog output from the sensor (VBE) is measured
using the SAR ADC. Die temperature in °C can be
calculated from the ADC results as given in the following
equation:

Temp � (A � SARout � 210 � B) � Tadjust (eq. 5)

• Temp is the slope compensated temperature in °C
represented as Q16.16 fixed point number format.

• ‘A’ is the 16−bit multiplier constant. The value of A is
determined using the AXM0F243 MCU family
characterization data of two point slope calculation. It is
calculated as given in the following equation.

A � (signed int) �216 � 100°C � (� 40°C)

SAR100°C � SAR�40°C
		

(eq. 6)

Where,
SAR100C = ADC counts at 100°C
SAR–40C = ADC counts at –40°C
Constant ‘A’ is stored in a register

SFLASH_SAR_TEMP_MULTIPLIER.
• ‘B’ is the 16−bit offset value. The value of B is determined

on a per die basis by taking care of all the process

variations and the actual bias current (Ibias) present in the
chip. It is calculated as given in the following equation.

B � (unsigned int) �26 � 100°C ��A � SAR100°C

210
		

(eq. 7)

Where,
SAR100C = ADC counts at 100°C
Constant ‘B’ is stored in a register

SFLASH_SAR_TEMP_OFFSET.
• Tadjust is the slope correction factor in °C. The

temperature sensor is corrected for dual slopes using the
slope correction factor. It is evaluated based on the result
obtained without slope correction, that is, evaluating
Tinitial = (A x SARout + 210 x B). If it is greater than the
center value (15°C), then Tadjust is given by the following
equation.

Tadjust � � 0.5°C
100°C � 15°C

� (100°C � 216 � Tinitial)	 (eq. 8)

If less than center value, then Tadjust is given by the
following equation.

Tadjust � � 0.5°C
40°C � 15°C

� (40°C � 216 � Tinitial)	 (eq. 9)

http://www.onsemi.com/

AND9836

www.onsemi.com
154

Temperature
Error

Actual Temperature
15°C 100°C−40°C

0°C

0.5°C

−0.5°C

Compensation curve

Sensor Error Curve

Tadjust

Figure 94. Temperature Error Compensation

NOTE: Note A and B are 16−bit constants stored in
flash during factory calibration. Note that these
constants are valid only when the SAR ADC is
running at 12−bit resolution with a 1.2−V
reference.

Temperature Sensor Configuration
The temperature sensor output is routed to the positive

input of SAR ADC via dedicated switches, which can be
controlled by sequencer, or firmware. See the SAR ADC
chapter on page 117 for details on how to read the temperature
sensor output using the ADC.

Algorithm
1. Enable the SARMUX and SAR ADC.
2. Configure SAR ADC in single−ended mode with

VNEG = VSS, VREF = 1.2 V, 12−bit resolution, and
right−aligned result.

3. Enable the temperature sensor.
4. Get the digital output from the SAR ADC.
5. Fetch ‘A’ from

SFLASH_SAR_TEMP_MULTIPLIER and ‘B’
from SFLASH_SAR_TEMP_OFFSET.

6. Calculate the die temperature using the linear
equation (Equation 5).
For example, let A = 0xBC4B and B = 0x65B4.

Assume that the output of SAR ADC (VBE) is
0x595 at a given temperature.
Firmware does the following calculations:
a. Multiply A and VBE: 0xBC4B x 0x595 =
(–17333)10 x (1429)10 = (–24768857)10
b. Multiply B and 1024: 0x65B4 x 0x400 =
(26036)10 x (1024)10 = (26660864)10
c. Add the result of steps 1 and 2 to get Tinitial:
(–24768857)10 + (26660864)10 = (1892007)10 =
0x1CDEA7
d. Calculate Tadjust using Tinitial value: Tinitial is the
upper 16 bits multiplied by 216, that is, 0x1C00 =
(1835008)10. It is greater than 15°C (0x1C − upper
16 bits). Use Equation 4 to calculate Tadjust. It
comes to 0x6C6C = (27756)10
e. Add Tadjust to Tinitial: (1892007)10 + (27756)10 =
(1919763)10 = 0x1D4B13
f. The integer part of temperature is the upper 16
bits = 0x001D = (29)10
g. The decimal part of temperature is the lower 16
bits = 0x4B13 = (0.19219)10
h. Combining the result of steps f and g, Temp =
29.19219°C ~ 29.2°C

Registers

Table 107. REGISTERS

Name Description

SAR_MUX_SWITCH0 This register has the SAR_MUX_FW_TEMP_VPLUS field to connect the temperature sensor to
the SAR MUX terminal.

SAR_MUX_SWITCH_STATUS This register provides the status of the temperature sensor switch connection to SAR MUX.

SFLASH_SAR_TEMP_MULTIPLIER Multiplier constant ‘A’ as defined in Equation 5.

SFLASH_SAR_TEMP_OFFSET Constant ‘B’ as defined in Equation 5.

http://www.onsemi.com/

AND9836

www.onsemi.com
155

PROGRAM AND DEBUG

This section encompasses the following chapters:
• Program and Debug Interface chapter on page 156 • Nonvolatile Memory Programming chapter on page 162

Top Level Architecture

SWD/TC, MTB

FAST MUL
NVIC, IRQMUX, MPU

IO
S

S
 G

P
IO

CPU Subsystem

SPCIF

Read Accelerator

SRAM
8 KB

SRAM Controller ROM Controller

Peripherals

PCLK

System Interconnect (Single Layer AHB)

Peripheral Interconnect (MMIO)

High Speed I/O Matrix and Smart I/O

IO Subsystem

GPIOs

Cortex
M0+

48 MHz

ROM
8 KB

FLASH
64 KB

Figure 95. Program and Debug Block Diagram

http://www.onsemi.com/

AND9836

www.onsemi.com
156

PROGRAM AND DEBUG INTERFACE
The Program and Debug interface provides a

communication gateway for an external device to perform
programming or debugging. The serial wire debug (SWD)
interface is used as the communication protocol.

Features
• Programming and debugging through the SWD interface

• Four hardware breakpoints and two hardware
watchpoints while debugging

• Read and write access to all memory and registers in the
system while debugging, including the Cortex−M0+
register bank when the core is running or halted

Functional Description
Figure 96 shows the block diagram of the program and

debug interface in AXM0F243 MCU. The Cortex−M0+
debug and access port (DAP) acts as the program and debug
interface. The external programmer or debugger, also
known as the “host”, communicates with the DAP of the
AXM0F243 MCU “target” using the two pins of the SWD
interface − the bidirectional data pin (SWDIO) and the
host−driven clock pin (SWDCK). The SWD physical port
pins (SWDIO and SWDCK) communicate with the DAP
through the high−speed I/O matrix (HSIOM). See the I/O
System chapter on page 19 for details on HSIOM.

H
S

IO
M

Cortex−M0+ DAP

Debug Port (DP)

Access Port (AP)

AP Access

SWDCK

SWDIO

SWD

Cortex−M0+ CPU

AHB DAP
AHB

ARM Cortex−M0+ subsystem

AHB

S
P

C
 In

te
rf

ac
e

FLASH SRAM Peripheral
Modules

AXM0F243 MCU

Host Device

AHB

SROM

Figure 96. Program and Debug Interface

The DAP communicates with the Cortex−M0+ CPU
using the ARM−specified advanced high−performance bus
(AHB) interface. AHB is the systems interconnect protocol
used inside the device, which facilitates memory and
peripheral register access by the AHB master. The device
has two AHB masters – ARM CM0 CPU core and DAP. The
external device can effectively take control of the entire
device through the DAP to perform programming and
debugging operations.

Serial Wire Debug (SWD) Interface
AXM0F243 MCU’s Cortex−M0+ supports programming

and debugging through the SWD interface. The SWD
protocol is a packet−based serial transaction protocol. At the
pin level, it uses a single bidirectional data signal (SWDIO)
and a unidirectional clock signal (SWDCK). The host
programmer always drives the clock line, whereas either the

host or the target drives the data line. A complete data
transfer (one SWD packet) requires 46 clocks and consists
of three phases:
• Host Packet Request Phase – The host issues a request to

the AXM0F243 MCU target.
• Target Acknowledge Response Phase – The AXM0F243

MCU target sends an acknowledgement to the host.
• Data Transfer Phase – The host or target writes data to the

bus, depending on the direction of the transfer.
When control of the SWDIO line passes from the host to

the target, or vice versa, there is a turnaround period (Trn)
where neither device drives the line and it floats in a
high−impedance (Hi−Z) state. This period is either one−half
or one and a half clock cycles, depending on the transition.

Figure 97 shows the timing diagrams of read and write
SWD packets.

http://www.onsemi.com/

AND9836

www.onsemi.com
157

S
ta

rt
 (

1)

A
P

nD
P

R
nW

 (
0)

A[2:3]

P
ar

ity

S
to

p
(0

)

P
ar

k
(1

)

Tr
n

(H
i−

Z
)

1

w
da

ta
[0

]

P
ar

ity

ACK[0:2]

00

w
da

ta
[1

]

w
da

ta
[3

1]

...

...

...

T
rn

 (
H

i−
Z

)

Target ACK Phase

SWD Write Packet

S
ta

rt
 (

1)

A
P

nD
P

R
nW

 (
1)

A[2:3]
P

ar
ity

S
to

p
(0

)

P
ar

k
(1

)

Tr
n

(H
i−

Z
)

1

rd
at

a[
0]

P
ar

ity

ACK[0:2]

00

rd
at

a[
1]

rd
at

a[
31

]

...

...

...

T
rn

 (
H

i−
Z

)

SWD Read Packet

SWDCK

SWDIO

SWDCK

SWDIO

Host Packet Request Phase Host Data Transfer Phase

Target ACK and Data Transfer PhasesHost Packet Request Phase

Figure 97. SWD Write and Read Packet Timing Diagrams

The sequence to transmit SWD read and write packets are
as follows:

1. Host Packet Request Phase: SWDIO driven by the
host
a. The start bit initiates a transfer; it is always logic
1.
b. The “AP not DP” (APnDP) bit determines
whether the transfer is an AP access – 1b1 or a DP
access – 1b0.
c. The “Read not Write” bit (RnW) controls which
direction the data transfer is in. 1b1 represents a
‘read from’ the target, or 1b0 for a ‘write to’ the
target.
d. The Address bits (A[3:2]) are register select bits
for AP or DP, depending on the APnDP bit value.
See Table 110 and Table 111 for definitions.
NOTE: Address bits are transmitted with the LSB
first.
e. The parity bit contains the parity of APnDP,
RnW, and ADDR bits. It is an even parity bit; this
means, when XORed with the other bits, the result
will be 0.
If the parity bit is not correct, the header is ignored
by AXM0F243 MCU; there is no ACK response
(ACK = 3b111). The programming operation
should be aborted and retried again by following a
device reset.
f. The stop bit is always logic 0.
g. The park bit is always logic 1.

2. Target Acknowledge Response Phase: SWDIO
driven by the target

a. The ACK[2:0] bits represent the target to host
response, indicating failure or success, among
other results. See Table 96 for definitions.
NOTE: ACK bits are transmitted with the LSB

first.
3. Data Transfer Phase: SWDIO driven by either

target or host depending on direction
a. The data for read or write is written to the bus,
LSB first.
b. The data parity bit indicates the parity of the
data read or written. It is an even parity; this
means when XORed with the data bits, the result
will be 0.
If the parity bit indicates a data error, corrective
action should be taken. For a read packet, if the
host detects a parity error, it must abort the
programming operation and restart. For a write
packet, if the target detects a parity error, it
generates a FAULT ACK response in the next
packet.

According to the SWD protocol, the host can generate any
number of SWDCK clock cycles between two packets with
SWDIO low. It is recommended to generate three or more
dummy clock cycles between two SWD packets if the clock
is not free−running or to make the clock free−running in
IDLE mode.

The SWD interface can be reset by clocking the SWDCK
line for 50 or more cycles with SWDIO high. To return to the
idle state, clock the SWDIO low once.

http://www.onsemi.com/

AND9836

www.onsemi.com
158

SWD Timing Details
The SWDIO line is written to and read at different times

depending on the direction of communication. The host
drives the SWDIO line during the Host Packet Request
Phase and, if the host is writing data to the target, during the
Data Transfer phase as well. When the host is driving the
SWDIO line, each new bit is written by the host on falling
SWDCK edges, and read by the target on rising SWDCK
edges. The target drives the SWDIO line during the Target
Acknowledge Response Phase and, if the target is reading
out data, during the Data Transfer Phase as well. When the
target is driving the SWDIO line, each new bit is written by
the target on rising SWDCK edges, and read by the host on
falling SWDCK edges.

Table 108 and Figure 97 illustrate the timing of SWDIO
bit writes and reads.

Table 108. SWDIO BIT WRITE AND READ TIMING

SWD Packet Phase

SWDIO Edge

Falling Rising

Host Packet Request Host Write Target Read

Host Data Transfer

Target Ack Response Host Read Target Write

Target Data Transfer

ACK Details
The acknowledge (ACK) bit−field is used to

communicate the status of the previous transfer. OK ACK
means that previous packet was successful. A WAIT
response requires a data phase. For a FAULT status, the
programming operation should be aborted immediately.
Table 109 shows the ACK bit−field decoding details.

Table 109. SWD TRANSFER ACK RESPONSE
DECODING

Response ACK[2:0]

OK 3b001

WAIT 3b010

FAULT 3b100

NO ACK 3b111

Details on WAIT and FAULT response behaviors are as
follows:
• For a WAIT response, if the transaction is a read, the host

should ignore the data read in the data phase. The target
does not drive the line and the host must not check the
parity bit as well.

• For a WAIT response, if the transaction is a write, the data
phase is ignored by the AXM0F243 MCU. But, the host
must still send the data to be written to complete the

packet. The parity bit corresponding to the data should
also be sent by the host.

• For a WAIT response, it means that the AXM0F243 MCU
is processing the previous transaction. The host can try for
a maximum of four continuous WAIT responses to see if
an OK response is received. If it fails, then the
programming operation should be aborted and retried
again.

• For a FAULT response, the programming operation
should be aborted and retried again by doing a device
reset.

Turnaround (Trn) Period Details
There is a turnaround period between the packet request

and the ACK phases, as well as between the ACK and the
data phases for host write transfers, as shown in Figure 97.
According to the SWD protocol, the Trn period is used by
both the host and target to change the drive modes on their
respective SWDIO lines. During the first Trn period after the
packet request, the target starts driving the ACK data on the
SWDIO line on the rising edge of SWDCK. This action
ensures that the host can read the ACK data on the next
falling edge. Thus, the first Trn period lasts only one−half
cycle. The second Trn period of the SWD packet is one and
a half cycles. Neither the host nor the AXM0F243 MCU
should drive the SWDIO line during the Trn period.

Cortex−M0+ Debug and Access Port (DAP)
The Cortex−M0+ program and debug interface includes

a Debug Port (DP) and an Access Port (AP), which combine
to form the DAP. The debug port implements the state
machine for the SWD interface protocol that enables
communication with the host device. It also includes
registers for the configuration of access port, DAP
identification code, and so on. The access port contains
registers that enable the external device to access the
Cortex−M0+ DAP−AHB interface. Typically, the DP
registers are used for a one time configuration or for error
detection purposes, and the AP registers are used to perform
the programming and debugging operations. Complete
architecture details of the DAP is available in the ARM
Debug Interface v5 Architecture Specification.

Debug Port (DP) Registers
Table 110 shows the Cortex−M0+ DP registers used for

programming and debugging, along with the corresponding
SWD address bit selections. The APnDP bit is always zero
for DP register accesses. Two address bits (A[3:2]) are used
for selecting among the different DP registers. Note that for
the same address bits, different DP registers can be accessed
depending on whether it is a read or a write operation. See
the ARM Debug Interface v5 Architecture Specification for
details on all of the DP registers.

http://www.onsemi.com/
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0031a/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0031a/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0031a/index.html

AND9836

www.onsemi.com
159

Table 110. MAIN DEBUG PORT (DP) REGISTERS

Register APnDP
Address

A[3:2] RnW Full Name Register Functionality

ABORT 0 (DP) 2b00 0 (W) AP Abort Register This register is used to force a DAP abort and to clear the
error and sticky flag conditions.

IDCODE 0 (DP) 2b00 1 (R) Identification Code
Register

This register holds the SWD ID of the Cortex−M0+ CPU,
which is 0x0BB11477.

CTRL/STAT 0 (DP) 2b01 X (R/W) Control and Status
Register

This register allows control of the DP and contains status
information about the DP.

SELECT 0 (DP) 2b10 0 (W) AP Select Register This register is used to select the current AP. There is only
one AP, which interfaces with the DAP AHB.

RDBUFF 0 (DP) 2b11 1 (R) Read Buffer Register This register holds the result of the last AP read operation.

Access Port (AP) Registers
Table 111 lists the main Cortex−M0+ AP registers that are

used for programming and debugging, along with the

corresponding SWD address bit selections. The APnDP bit
is always one for AP register accesses. Two address bits
(A[3:2]) are used for selecting the different AP registers.

Table 111. MAIN ACCESS PORT (AP) REGISTERS

Register APnDP
Address

A[3:2] RnW Full Name Register Functionality

CSW 1 (AP) 2b00 X (R/W) Control and Status
Word Register

(CSW)

This register configures and controls accesses through
the memory access port to a connected memory system
(which is the AXM0F243 MCU Memory map)

TAR 1 (AP) 2b01 X (R/W) Transfer Address
Register

This register is used to specify the 32−bit memory address
to be read from or written to

DRW 1 (AP) 2b11 X (R/W) Data Read and Write
Register

This register holds the 32−bit data read from or to be writ-
ten to the address specified in the TAR register

Programming the AXM0F243 MCU Device
AXM0F243 MCU is programmed using the following

sequence.
1. Acquire the SWD port in.
2. Enter the programming mode.
3. Execute the device programming routines such as

Silicon ID Check, Flash Programming, Flash
Verification, and Checksum Verification.

SWD Port Acquisition

 Primary and Secondary SWD Pin Pairs
The first step in device programming is to acquire the

SWD port in AXM0F243 MCU. Refer to the AXM0F243
datasheet for information on SWD pins.

If two SWD pin pairs are available in the device, the
SWD_CONFIG register in the supervisory flash region is
used to select between one of the two SWD pin pairs that can
be used for programming and debugging. Note that only one
of the SWD pin pairs can be used during any programming
or debugging session. The default selection for devices
coming from the factory is the primary SWD pin pair. To
select the secondary SWD pin pair, it is necessary to program
the device using the primary pair with the hex file that
enables the secondary pin pair configuration. Afterwards,
the secondary SWD pin pair may be used.

SWD Port Acquire Sequence

The first step in device programming is for the host to
acquire the target’s SWD port. The host first performs a
device reset by asserting the external reset (XRES) pin.
After removing the XRES signal, the host must send an
SWD connect sequence for the device within the acquire
window to connect to the SWD interface in the DAP. The
pseudo code for the sequence is given here.

Code 1. SWD Port Acquire Pseudo Code
ToggleXRES(); // Toggle XRES pin to reset
device

//Execute ARM’s connection sequence to
acquire SWD-port
do
{

SWD_LineReset(); //perform a line

reset(50+ SWDCK clocks with SWDIO high)

ack = Read_DAP (IDCODE, out ID);

//Read the IDCODE DP register

}while ((ack != OK) && time_elapsed < ms);
//retry connection until OK ACK or timeout

if (time_elapsed >= ms) return FAIL;
//check for acquire time out

if (ID != CM0P_ID) return FAIL; //confirm
SWD ID of Cortex-M0+ CPU. (0x0BC11477)

http://www.onsemi.com/
https://www.onsemi.com/pub/Collateral/AXM0F243-D.PDF
https://www.onsemi.com/pub/Collateral/AXM0F243-D.PDF

AND9836

www.onsemi.com
160

In this pseudo code, SWD_LineReset() is the standard
ARM command to reset the debug access port. It consists of
more than 49 SWDCK clock cycles with SWDIO high. The
transaction must be completed by sending at least one
SWDCK clock cycle with SWDIO asserted LOW. This
sequence synchronizes the programmer and the chip.
Read_DAP() refers to the read of the IDCODE register in the
debug port. The sequence of line reset and IDCODE read
should be repeated until an OK ACK is received for the
IDCODE read or a timeout (ms) occurs. The SWD port is
said to be in the acquired state if an OK ACK is received
within the time window and the IDCODE read matches with
that of the Cortex−M0+ DAP.

SWD Programming Mode Entry
After the SWD port is acquired, the host must enter the

device programming mode within a specific time window.
This is done by setting the TEST_MODE bit (bit 31) in the
test mode control register (MODE register). The debug port
should also be configured before entering the device
programming mode. The minimum required clock
frequency for the Port Acquire step and this step to succeed
is 1.5 MHz.

SWD Programming Routines Executions
When the device is in programming mode, the external

programmer can start sending the SWD packet sequence for
performing programming operations such as flash erase,
flash program, checksum verification, and so on. The
programming routines are explained in the Nonvolatile
Memory Programming chapter on page 162.

AXM0F243 MCU SWD Debug Interface
Cortex−M0+ DAP debugging features are classified into

two types: invasive debugging and noninvasive debugging.
Invasive debugging includes program halting and stepping,
breakpoints, and data watchpoints. Noninvasive debugging
includes instruction address profiling and device memory
access, which includes the flash memory, SRAM, and other
peripheral registers.

The DAP has three major debug subsystems:
• Debug Control and Configuration registers

• Breakpoint Unit (BPU) – provides breakpoint support

• Debug Watchpoint (DWT) – provides watchpoint
support. Trace is not supported in Cortex−M0+ Debug.
See the ARMv6−M Architecture Reference Manual for

complete details on the debug architecture.

Debug Control and Configuration Registers
The debug control and configuration registers are used to

execute firmware debugging. The registers and their key
functions are as follows. See the ARMv6−M Architecture
Reference Manual for complete bit level definitions of these
registers.
• Debug Halting Control and Status Register

(CM0P_DHCSR) – This register contains the control bits
to enable debug, halt the CPU, and perform a singlestep
operation. It also includes status bits for the debug state of
the processor.

• Debug Fault Status Register (CM0P_DFSR) – This
register describes the reason a debug event has occurred
and includes debug events, which are caused by a CPU
halt, breakpoint event, or watchpoint event.

• Debug Core Register Selector Register (CM0P_DCRSR)
– This register is used to select the general−purpose
register in the Cortex−M0+ CPU to which a read or write
operation must be performed by the external debugger.

• Debug Core Register Data Register (CM0P_DCRDR) –
This register is used to store the data to write to or read
from the register selected in the CM0P_DCRSR register.

• Debug Exception and Monitor Control Register
(CM0P_DEMCR) – This register contains the enable bits
for global debug watchpoint (DWT) block enable, reset
vector catch, and hard fault exception catch.

Breakpoint Unit (BPU)
The BPU provides breakpoint functionality on instruction

fetches. The Cortex−M0+ DAP in AXM0F243 MCU
supports up to four hardware breakpoints. Along with the
hardware breakpoints, any number of software breakpoints
can be created by using the BKPT instruction in the
Cortex−M0+. The BPU has two types of registers.
• The breakpoint control register (CM0P_BP_CTRL) is

used to enable the BPU and store the number of hardware
breakpoints supported by the debug system (four for CM0
DAP in the AXM0F243 MCU).

• Each hardware breakpoint has a Breakpoint Compare
Register (CM0P_BP_COMPx). It contains the enable bit
for the breakpoint, the compare address value, and the
match condition that will trigger a breakpoint debug
event. The typical use case is that when an instruction
fetch address matches the compare address of a
breakpoint, a breakpoint event is generated and the
processor is halted.

http://www.onsemi.com/
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html

AND9836

www.onsemi.com
161

Data Watchpoint (DWT)
The DWT provides watchpoint support on a data address

access or a program counter (PC) instruction address. The
DWT supports two watchpoints. It also provides external
program counter sampling using a PC sample register, which
can be used for noninvasive coarse profiling of the program
counter. The most important registers in the DWT are as
follows.
• The watchpoint compare (CM0P_DWT_COMPx)

registers store the compare values that are used by the
watchpoint comparator for the generation of watchpoint
events. Each watchpoint has an associated
DWT_COMPx register.

• The watchpoint mask (CM0P_DWT_MASKx) registers
store the ignore masks applied to the address range
matching in the associated watchpoints.

• The watchpoint function (CM0P_DWT_FUNCTIONx)
registers store the conditions that trigger the watchpoint
events. They may be program counter watchpoint event
or data address read/write access watchpoint events. A
status bit is also set when the associated watchpoint event
has occurred.

• The watchpoint comparator PC sample register
(CM0P_DWT_PCSR) stores the current value of the
program counter. This register is used for coarse,
noninvasive profiling of the program counter register.

Debugging the AXM0F243 MCU Device
The host debugs the target AXM0F243 MCU by

accessing the debug control and configuration registers,
registers in the BPU, and registers in the DWT. All registers
are accessed through the SWD interface; the SWD debug
port (SW−DP) in the Cortex−M0+ DAP converts the SWD

packets to appropriate register access through the
DAP−AHB interface.

The first step in debugging the target AXM0F243 MCU
is to acquire the SWD port. The acquire sequence consists
of an SWD line reset sequence and read of the DAP SWDID
through the SWD interface. The SWD port is acquired when
the correct CM0 DAP SWDID is read from the target device.
For the debug transactions to occur on the SWD interface,
the corresponding pins should not be used for any other
purpose. See the I/O System chapter on page 19 to
understand how to configure the SWD port pins, allowing
them to be used only for SWD interface or for other
functions such as LCD and GPIO. If debugging is required,
the SWD port pins should not be used for other purposes. If
only programming support is needed, the SWD pins can be
used for other purposes.

When the SWD port is acquired, the external debugger
sets the C_DEBUGEN bit in the DHCSR register to enable
debugging. Then, the different debugging operations such as
stepping, halting, breakpoint configuration, and watchpoint
configuration are carried out by writing to the appropriate
registers in the debug system.

Debugging the target device is also affected by the overall
device protection setting, which is explained in the Device
Security chapter on page 56. Only the OPEN protected mode
supports device debugging. The external debugger and the
target device connection is not lost for a device transition
from Active mode to either Sleep or Deep−Sleep modes.
When the device enters the Active mode from either
Deep−Sleep or Sleep modes, the debugger can resume its
actions without initiating a connect sequence again.

Registers

Table 112. List of Registers

Register Name Description

CM0P_DHCSR Debug Halting Control and Status Register

CM0P_DFSR Debug Fault Status Register

CM0P_DCRSR Debug Core Register Selector Register

CM0P_DCRDR Debug Core Register Data Register

CM0P_DEMCR Debug Exception and Monitor Control Register

CM0P_BP_CTRL Breakpoint control register

CM0P_BP_COMPx Breakpoint Compare Register

CM0P_DWT_COMPx Watchpoint Compare Register

CM0P_DWT_MASKx Watchpoint Mask Register

CM0P_DWT_FUNCTIONx Watchpoint Function Register

CM0P_DWT_PCSR Watchpoint Comparator PC Sample Register

http://www.onsemi.com/

AND9836

www.onsemi.com
162

NONVOLATILE MEMORY PROGRAMMING
Nonvolatile memory programming refers to the

programming of flash memory in the AXM0F243 MCU
device. This chapter explains the different functions that are
part of device programming, such as erase, write, program,
and checksum calculation.

Features
• Supports programming through the debug and access port

(DAP) and Cortex−M0+ CPU
• Supports both blocking and non−blocking flash program

and erase operations from the Cortex−M0+ CPU

Functional Description
Flash programming operations are implemented as

system calls. System calls are executed out of SROM in the
privileged mode of operation. The user has no access to read
or modify the SROM code. The DAP or the CM0+ CPU
requests the system call by writing the function opcode and
parameters to the System Performance Controller Interface
(SPCIF) input registers, and then requesting the SROM to
execute the function. Based on the function opcode, the
System Performance Controller (SPC) executes the
corresponding system call from SROM and updates the
SPCIF status register. The DAP or the CPU should read this
status register for the pass/fail result of the function
execution. As part of function execution, the code in SROM
interacts with the SPCIF to do the actual flash programming
operations.

AXM0F243 MCU flash is programmed using a Program
Erase Program (PEP) sequence. The flash cells are all
programmed to a known state, erased, and then the selected
bits are programmed. This sequence increases the life of the
flash by balancing the stored charge. When writing to flash
the data is first copied to a page latch buffer. The flash write
functions are then used to transfer this data to flash.

External programmers program the flash memory in
AXM0F243 MCU using the SWD protocol by sending the
commands to the Debug and Access Port (DAP). Flash
memory can also be programmed by the CM0+ CPU by
accessing the relevant registers through the AHB interface.
This type of programming is typically used to update a
portion of the flash memory as part of a bootload operation,
or other application requirements, such as updating a lookup
table stored in the flash memory. All write operations to flash
memory, whether from the DAP or from the CPU, are done
through the SPCIF.

NOTE: It can take as much as 20 milliseconds to write
to flash. During this time, the device should not
be reset, or unexpected changes may be made to
portions of the flash. Reset sources (see the
Reset System chapter on page 54) include XRES
pin, software reset, and watchdog; make sure
that these are not inadvertently activated. In
addition, the low−voltage detect circuits should
be configured to generate an interrupt instead of
a reset.

NOTE: AXM0F243 MCU implements a User
Supervisory Flash (SFlash), which can be used
to store application−specific information. These
rows are not part of the hex file; their
programming is optional.

System Call Implementation
A system call consists of the following items:

• Opcode: A unique 8−bit opcode

• Parameters: Two 8−bit parameters are mandatory for all
system calls. These parameters are referred to as key1 and
key2, and are defined as follows:
key1 = 0xB6
key2 = 0xD3 + Opcode
The two keys are passed to ensure that the user system call
is not initiated by mistake. If the key1 and key2
parameters are not correct, the SROM does not execute
the function, and returns an error code. Apart from these
two parameters, additional parameters may be required
depending on the specific function being called.

• Return Values: Some system calls also return a value on
completion of their execution, such as the silicon ID or a
checksum.

• Completion Status: Each system call returns a 32−bit
status that the CPU or DAP can read to verify success or
determine the reason for failure.

Blocking and Non−Blocking System Calls
System call functions can be categorized as blocking or

non−blocking based on the nature of their execution.
Blocking system calls are those where the CPU cannot
execute any other task in parallel other than the execution of
the system call. When a blocking system call is called from
a process, the CPU jumps to the code corresponding in
SROM. When the execution is complete, the original thread
execution resumes. Non−blocking system calls allow the
CPU to execute some other code in parallel and
communicate the completion of interim system call tasks to
the CPU through an interrupt.

http://www.onsemi.com/

AND9836

www.onsemi.com
163

Non−blocking system calls are only used when the CPU
initiates the system call. The DAP will only use system calls
during the programming mode and the CPU is halted during
this process.

The three non−blocking system calls are Non−Blocking
Write Row, Non−Blocking Program Row, and Resume
Non−Blocking, respectively. All other system calls are
blocking.

Because the CPU cannot execute code from flash while
doing an erase or program operation on the flash, the
non−blocking system calls can only be called from a code
executing out of SRAM. If the non−blocking functions are
called from flash memory, the result is undefined and may
return a bus error and trigger a hard fault when the flash fetch
operation is being done.

The System Performance Controller (SPC) is the block
that generates the properly sequenced high−voltage pulses
required for erase and program operations of the flash
memory. When a non−blocking function is called from
SRAM, the SPC timer triggers its interrupt when each of the
sub−operations in a write or program operation is complete.
Call the Resume Non−Blocking function from the SPC
interrupt service routine (ISR) to ensure that the subsequent
steps in the system call are completed. Because the CPU can
execute code only from the SRAM when a non−blocking
write or program operation is being done, the SPC ISR
should also be located in the SRAM. The SPC interrupt is
triggered once in the case of a non−blocking program
function or thrice in a non−blocking write operation. The
Resume Non−Blocking function call done in the SPC ISR is
called once in a non−blocking program operation and thrice
in a non−blocking write operation.

The pseudo code for using a non−blocking write system
call and executing user code out of SRAM is given later in
this chapter.

Performing a System Call
The steps to initiate a system call are as follows:

1. Set up the function parameters: The two possible
methods for preparing the function parameters
(key1, key2, additional parameters) are:
a. Write the function parameters to the
CPUSS_SYSARG register: This method is used
for functions that retrieve their parameters from
the CPUSS_SYSARG register. The 32−bit
CPUSS_SYSARG register must be written with
the parameters in the sequence specified in the
respective system call table.
b. Write the function parameters to SRAM: This
method is used for functions that retrieve their
parameters from SRAM. The parameters should
first be written in the specified sequence to
consecutive SRAM locations. Then, the starting
address of the SRAM, which is the address of the

first parameter, should be written to the
CPUSS_SYSARG register. This starting address
should always be a word−aligned (32−bit) address.
The system call uses this address to fetch the
parameters.

2. Specify the system call using its opcode and
initiating the system call: The 8−bit opcode should
be written to the SYSCALL_COMMAND bits
([15:0]) in the CPUSS_SYSREQ register. The
opcode is placed in the lower eight bits [7:0] and
0x00 be written to the upper eight bits [15:8]. To
initiate the system call, set the SYSCALL_REQ
bit (31) in the CPUSS_SYSREG register. Setting
this bit triggers a non−maskable interrupt that
jumps the CPU to the SROM code referenced by
the opcode parameter.

3. Wait for the system call to finish executing: When
the system call begins execution, it sets the
PRIVILEGED bit in the CPUSS_SYSREQ
register. This bit can be set only by the system call,
not by the CPU or DAP. The DAP should poll the
PRIVILEGED and SYSCALL_REQ bits in the
CPUSS_SYSREG register continuously to check
whether the system call is completed. Both these
bits are cleared on completion of the system call.
The maximum execution time is one second. If
these two bits are not cleared after one second, the
operation should be considered a failure and
aborted without executing the following steps.
Note that unlike the DAP, the CPU application
code cannot poll these bits during system call
execution. This is because the CPU executes code
out of the SROM during the system call. The
application code can check only the final function
pass/fail status after the execution returns from
SROM.

4. Check the completion status: After the
PRIVILEGED and SYSCALL_REQ bits are
cleared to indicate completion of the system call,
the CPUSS_SYSARG register should be read to
check for the status of the system call. If the 32−bit
value read from the CPUSS_SYSARG register is
0xAXXXXXXX (where ‘X’ denotes don’t care
hex values), the system call was successfully
executed. For a failed system call, the status code
is 0xF00000YY where YY indicates the reason for
failure. See Table 16 for the complete list of status
codes and their description.

5. Retrieve the return values: For system calls that
return values such as silicon ID and checksum, the
CPU or DAP should read the CPUSS_SYSREG
and CPUSS_SYSARG registers to fetch the values
returned.

http://www.onsemi.com/

AND9836

www.onsemi.com
164

System Calls
Table 16 lists all the system calls supported in AXM0F243

MCU along with the function description and availability in
device protection modes. See the Device Security chapter on
page 113 for more information on the device protection

settings. Note that some system calls cannot be called by the
CPU as given in the table. Detailed information on each of
the system calls follows the table.

Table 113. LIST OF SYSTEM CALLS

System Call Description

DAP Access CPU
Acces

sOpen Protected Kill

Silicon ID Returns the device Silicon ID, Family ID, and Revision ID � � − �

Load Flash Bytes Loads data to the page latch buffer to be programmed later into the flash
row, in 1 byte granularity, for a row size of 128 bytes

� − − �

Write Row Erases and then programs a row of flash with data in the page latch buffer � − − �

Program Row Programs a row of flash with data in the page latch buffer � − − �

Erase All Erases all user code in the flash array; the flash row−level protection data
in the supervisory flash area

� − − −

Checksum Calculates the checksum over the entire flash memory (user and
supervisory area) or checksums a single row of flash

� � − �

Write Protection This programs both flash row−level protection settings and chip−level
protection settings into the supervisory flash (row 0)

� � − −

Non−Blocking
Write Row

Erases and then programs a row of flash with data in the page latch buffer.
During program/erase pulses, the user may execute code from SRAM.
This function is meant only for CPU access

− − − �

Non−Blocking
Program Row

Programs a row of flash with data in the page latch buffer. During
program/erase pulses, the user may execute code from SRAM.
This function is meant only for CPU access

− − − �

Resume
Non−Blocking

Resumes a non−blocking write row or non−blocking program row.
This function is meant only for CPU access

− − − �

Silicon ID
This function returns a 12−bit family ID, 16−bit silicon

ID, and an 8−bit revision ID, and the current device
protection mode. These values are returned to the

CPUSS_SYSARG and CPUSS_SYSREQ registers.
Parameters are passed through the CPUSS_SYSARG and
CPUSS_SYSREQ registers.

Table 114. PARAMETERS

Address Value to be Written Description

CPUSS_SYSARG Register

Bits [7:0] 0xB6 Key1

Bits [15:8] 0xD3 Key2

Bits [31:16] 0x0000 Not used

CPUSS_SYSREQ Register

Bits [15:0] 0x0000 Silicon ID opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

http://www.onsemi.com/

AND9836

www.onsemi.com
165

Table 115. RETURN

Address Return Value Description

CPUSS_SYSARG Register

Bits [7:0] Silicon ID Lo

Bits [15:8] Silicon ID Hi

Bits [19:16] Minor Revision Id

Bits [23:20] Major Revision Id

Bits [27:24] 0xXX Not used (don’t care)

Bits [31:28] 0xA Success status code

CPUSS_SYSREQ Register

Bits [11:0] Family ID Family ID

Bits [15:12] Chip Protection See the Device Security chapter on page 56

Bits [31:16] 0xXXXX Not used

Configure Clock
This function initializes the clock necessary for flash

programming and erasing operations. This API is used to
ensure that the charge pump clock (clk_pump) and the HF
clock (clk_hf) are set to IMO at 48 MHz prior to calling the
flash write and flash erase APIs. The flash write and erase
APIs will exit without acting on the flash and return the
“Invalid Pump Clock Frequency” status if the IMO is the
source of the charge pump clock and is not 48 MHz.

Load Flash Bytes
This function loads the page latch buffer with data to be

programmed into a row of flash. The load size can range

from 1−byte to the maximum number of bytes in a flash row,
which is 128 bytes. Data is loaded into the page latch buffer
starting at the location specified by the “Byte Addr” input
parameter. Data loaded into the page latch buffer remains
until a program operation is performed, which clears the
page latch contents. The parameters for this function,
including the data to be loaded into the page latch, are
written to the SRAM; the starting address of the SRAM data
is written to the CPUSS_SYSARG register. Note that the
starting parameter address should be a word−aligned
address.

http://www.onsemi.com/

AND9836

www.onsemi.com
166

Table 116. PARAMETERS

Address Value to be Written Description

 SRAM Address − 32’hYY (32−bit wide, word−aligned SRAM address)

Bits [7:0] 0xB6 Key1

Bits [15:8] 0xD7 Key2

Bits [23:16] Byte Addr Start address of page latch buffer to write data
0x00 – Byte 0 of latch buffer
0x7F – Byte 127 of latch buffer

Bits [31:24] Flash Macro Select 0x00 – Flash Macro 0
0x01 – Flash Macro 1
(Refer to the Cortex−M0+ CPU chapter on page 7 for the
number of flash macros in the device)

 SRAM Address − 32’hYY + 0x04

Bits [7:0] Load Size Number of bytes to be written to the page latch buffer.
0x00 – 1 byte
0x7F – 128 bytes

Bits [15:8] 0xXX Don’t care parameter

Bits [23:16] 0xXX Don’t care parameter

Bits [31:24] 0xXX Don’t care parameter

 SRAM Address − From (32’hYY + 0x08) to (32’hYY + 0x08 + Load Size)

Byte 0 Data Byte [0] First data byte to be loaded

. . .

. . .

Byte (Load size –1) Data Byte [Load size –1] Last data byte to be loaded

 CPUSS_SYSARG Register

Bits [31:0] 32’hYY 32−bit word−aligned address of the SRAM that stores the first
function parameter (key1)

 CPUSS_SYSREQ Register

Bits [15:0] 0x0004 Load Flash Bytes opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Table 117. RETURN

Address Return Value Description

CPUSS_SYSARG Register

Bits [31:28] 0xA Success status code

Bits [27:0] 0xXXXXXXX Not used (don’t care)

Write Row
This function erases and then programs the addressed row

of flash with the data in the page latch buffer. If all data in
the page latch buffer is 0, then the program is skipped. The
parameters for this function are stored in SRAM. The start
address of the stored parameters is written to the
CPUSS_SYSARG register. This function clears the page
latch buffer contents after the row is programmed.

Usage Requirements: Call the Configure Clock API
before calling this function. The Configure Clock API
ensures that the charge pump clock (clk_pump) and the HF
clock (clk_hf) are set to IMO at 48 MHz. Call the Load Flash
Bytes function before calling this function. This function
can do a write operation only if the corresponding flash row
is not write protected.

Refer to the CLK_IMO_CONFIG register in the
AND9835 AXM0F243 MCU Registers for more
information.

http://www.onsemi.com/
https://www.onsemi.com/pub/Collateral/AND9835-D.PDF

AND9836

www.onsemi.com
167

Table 118. PARAMETERS

Address Value to be Written Description

SRAM Address: 32’hYY (32−bit wide, word−aligned SRAM Address)

Bits [7:0] 0xB6 Key1

Bits [15:8] 0xD8 Key2

Bits [31:16] Row ID Row number to write
0x0000 – Row 0

CPUSS_SYSARG Register

Bits [31:0] 32’hYY 32−bit word−aligned address of the SRAM that stores the first
function parameter (key1)

CPUSS_SYSREQ Register

Bits [15:0] 0x0005 Write Row opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Table 119. RETURN

Address Return Value Description

CPUSS_SYSARG Register

Bits [31:28] 0xA Success status code

Bits [27:0] 0xXXXXXXX Not used (don’t care)

Program Row
This function programs the addressed row of the flash

with data in the page latch buffer. If all data in the page latch
buffer is 0, then the program is skipped. The row must be in
an erased state before calling this function. It clears the page
latch buffer contents after the row is programmed.

Usage Requirements: Call the Configure Clock API
before calling this function. The Configure Clock API

ensures that the charge pump clock (clk_pump) and the HF
clock (clk_hf) are set to IMO at 48 MHz. Call the Load Flash
Bytes function before calling this function. The row must be
in an erased state before calling this function. This function
can do a program operation only if the corresponding flash
row is not write−protected.

Table 120. PARAMETERS

Address Value to be Written Description

SRAM Address: 32’hYY (32−bit wide, word−aligned SRAM Address)

Bits [7:0] 0xB6 Key1

Bits [15:8] 0xD9 Key2

Bits [31:16] Row ID Row number to program
0x0000 – Row 0

CPUSS_SYSARG Register

Bits [31:0] 32’hYY 32−bit word−aligned address of the SRAM that stores the first
function parameter (key1)

CPUSS_SYSREQ Register

Bits [15:0] 0x0006 Program Row opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Table 121. RETURN

Address Return Value Description

CPUSS_SYSARG Register

Bits [31:28] 0xA Success status code

Bits [27:0] 0xXXXXXXX Not used (don’t care)

http://www.onsemi.com/

AND9836

www.onsemi.com
168

Erase All
This function erases all the user code in the flash main

arrays and the row−level protection data in supervisory flash
row 0 of each flash macro.

Usage Requirements: Call the Configure Clock API
before calling this function. The Configure Clock API
ensures that the charge pump clock (clk_pump) and the HF
clock (clk_hf) are set to IMO at 48 MHz. This API can be

called only from the DAP in the programming mode and
only if the chip protection mode is OPEN. If the chip
protection mode is PROTECTED, then the Write Protection
API must be used by the DAP to change the protection
settings to OPEN. Changing the protection setting from
PROTECTED to OPEN automatically does an erase all
operation.

Table 122. PARAMETERS

Address Value to be Written Description

SRAM Address: 32’hYY (32−bit wide, word−aligned SRAM Address)

Bits [7:0] 0xB6 Key1

Bits [15:8] 0xDD Key2

Bits [31:16] 0xXXXX Don’t care

CPUSS_SYSARG Register

Bits [31:0] 32’hYY 32−bit word−aligned address of the SRAM that stores the first
function parameter (key1)

CPUSS_SYSREQ Register

Bits [15:0] 0x000A Erase All opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Table 123. RETURN

Address Return Value Description

CPUSS_SYSARG Register

Bits [31:28] 0xA Success status code

Bits [27:0] 0xXXXXXXX Not used (don’t care)

Checksum
This function reads either the whole flash memory or a

row of flash and returns the 24−bit sum of each byte read in
that flash region. When performing a checksum on the
whole flash, the user code and supervisory flash regions are

included. When performing a checksum only on one row of
flash, the flash row number is passed as a parameter. Bytes
2 and 3 of the parameters select whether the checksum is
performed on the whole flash memory or a row of user code
flash.

Table 124. PARAMETERS

Address Value to be Written Description

CPUSS_SYSARG Register

Bits [7:0] 0xB6 Key1

Bits [15:8] 0xDE Key2

Bits [31:16] Row ID Selects the flash row number on which the checksum operation is done
Row number – 16 bit flash row number
or
0x8000 – Checksum is performed on entire flash memory

CPUSS_SYSREQ Register

Bits [15:0] 0x000B Checksum opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

http://www.onsemi.com/

AND9836

www.onsemi.com
169

Table 125. RETURN

Address Return Value Description

CPUSS_SYSARG Register

Bits [31:28] 0xA Success status code

Bits [27:24] 0xX Not used (don’t care)

Bits [23:0] Checksum 24−bit checksum value of the selected flash region

Write Protection
This function programs both the flash row−level

protection settings and the device protection settings in the
supervisory flash row. The flash row−level protection
settings are programmed separately for each flash macro in
the device. Each row has a single protection bit. The total
number of protection bytes is the number of flash rows
divided by eight. The chip−level protection settings (1−byte)
are stored in flash macro zero in the last byte location in row
zero of the supervisory flash. The size of the supervisory
flash row is the same as the user code flash row size.

Usage Requirements: Call the Configure Clock API
before calling this function. The Configure Clock API
ensures that the charge pump clock (clk_pump) and the HF

clock (clk_hf) are set to IMO at 48 MHz. The Load Flash
Bytes function is used to load the flash protection bytes of
a flash macro into the page latch buffer corresponding to the
macro. The starting address parameter for the load function
should be zero. The flash macro number should be one that
needs to be programmed; the number of bytes to load is the
number of flash protection bytes in that macro.

Then, the Write Protection function is called, which
programs the flash protection bytes from the page latch to be
the corresponding flash macro s supervisory row. In flash
macro zero, which also stores the device protection settings,
the device level protection setting is passed as a parameter
in the CPUSS_SYSARG register.

Table 126. PARAMETERS

Address Value to be Written Description

CPUSS_SYSARG Register

Bits [7:0] 0xB6 Key1

Bits [15:8] 0xE0 Key2

Bits [23:16] Device Protection Byte Parameter applicable only for Flash Macro 0
0x01 – OPEN mode
0x02 – PROTECTED mode
0x04 – KILL mode

Bits [31:24] Flash Macro Select 0x00 – Flash Macro 0
0x01 – Flash Macro 1

CPUSS_SYSREQ Register

Bits [15:0] 0x000D Write Protection opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Table 127. RETURN

Address Return Value Description

CPUSS_SYSARG Register

Bits [31:28] 0xA Success status code

Bits [27:24] 0xX Not used (don’t care)

Bits [23:0] 0x000000

http://www.onsemi.com/

AND9836

www.onsemi.com
170

Non−Blocking Write Row
This function is used when a flash row needs to be written

by the CM0+ CPU in a non−blocking manner, so that the
CPU can execute code from SRAM while the write
operation is being done. The explanation of non−blocking
system calls is explained in Blocking and Non−Blocking
System Calls on page 162.

The non−blocking write row system call has three phases:
Pre−program, Erase, Program. Pre−program is the step in
which all of the bits in the flash row are written a ‘1’ in
preparation for an erase operation. The erase operation
clears all of the bits in the row, and the program operation
writes the new data to the row.

While each phase is being executed, the CPU can execute
code from SRAM. When the non−blocking write row
system call is initiated, the user cannot call any system call
function other than the Resume Non−Blocking function,
which is required for completion of the non−blocking write
operation. After the completion of each phase, the SPC

triggers its interrupt. In this interrupt, call the Resume
Non−Blocking system call.

NOTE: The device firmware must not attempt to put the
device to sleep during a non−blocking write row.
This action will reset the page latch buffer and
the flash will be written with all zeroes.

Usage Requirements: Call the Configure Clock API
before calling this function. The Configure Clock API
ensures that the charge pump clock (clk_pump) and the HF
clock (clk_hf) are set to IMO at 48 MHz. Call the Load Flash
Bytes function before calling this function to load the data
bytes that will be used for programming the row. In addition,
the non−blocking write row function can be called only from
the SRAM. This is because the CM0+ CPU cannot execute
code from flash while doing the flash erase program
operations. If this function is called from the flash memory,
the result is undefined, and may return a bus error and trigger
a hard fault when the flash fetch operation is being done.

Table 128. PARAMETERS

Address Value to be Written Description

SRAM Address 32’hYY (32−bit wide, word−aligned SRAM Address)

Bits [7:0] 0xB6 Key1

Bits [15:8] 0xDA Key2

Bits [31:16] Row ID Row number to write
0x0000 – Row 0

CPUSS_SYSARG Register

Bits [31:0] 32’hYY 32−bit word−aligned address of the SRAM that stores the first
function parameter (key1)

CPUSS_SYSREQ Register

Bits [15:0] 0x0007 Non−Blocking Write Row opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Table 129. RETURN

Address Return Value Description

CPUSS_SYSARG Register

Bits [31:28] 0xA Success status code

Bits [27:0] 0xXXXXXXX Not used (don’t care)

http://www.onsemi.com/

AND9836

www.onsemi.com
171

Non−Blocking Program Row
This function is used when a flash row needs to be

programmed by the CM0+ CPU in a non−blocking manner,
so that the CPU can execute code from the SRAM when the
program operation is being done. The explanation of
non−blocking system calls is explained in Blocking and
Non−Blocking System Calls on page 162. While the
program operation is being done, the CPU can execute code
from the SRAM. When the non−blocking program row
system call is called, the user cannot call any other system
call function other than the Resume Non−Blocking function,
which is required for the completion of the nonblocking
write operation.

Unlike the Non−Blocking Write Row system call, the
Program system call only has a single phase. Therefore, the

Resume Non−Blocking function only needs to be called
once from the SPC interrupt when using the Non−Blocking
Program Row system call.

Usage Requirements: Call the Configure Clock API
before calling this function. The Configure Clock API
ensures that the charge pump clock (clk_pump) and the HF
clock (clk_hf) are set to IMO at 48 MHz. Call the Load Flash
Bytes function before calling this function to load the data
bytes that will be used for programming the row. In addition,
the non−blocking program row function can be called only
from SRAM. This is because the CM0+ CPU cannot execute
code from flash while doing flash program operations. If this
function is called from flash memory, the result is undefined,
and may return a bus error and trigger a hard fault when the
flash fetch operation is being done.

Table 130. PARAMETERS

Address Value to be Written Description

SRAM Address 32’hYY (32−bit wide, word−aligned SRAM Address)

Bits [7:0] 0xB6 Key1

Bits [15:8] 0xDB Key2

Bits [31:16] Row ID Row number to write
0x0000 – Row 0

CPUSS_SYSARG Register

Bits [31:0] 32’hYY 32−bit word−aligned address of the SRAM that stores the first
function parameter (key1)

CPUSS_SYSREQ Register

Bits [15:0] 0x0008 Non−Blocking Program Row opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Table 131. RETURN

Address Return Value Description

CPUSS_SYSARG Register

Bits [31:28] 0xA Success status code

Bits [27:0] 0xXXXXXXX Not used (don’t care)

Resume Non−Blocking
This function completes the additional phases of erase and

program that were started using the non−blocking write row
and non−blocking program row system calls. This function
must be called thrice following a call to Non−Blocking
Write Row or once following a call to Non−Blocking

Program Row from the SPC ISR. No other system calls can
execute until all phases of the program or erase operation are
complete. More details on the procedure of using the
non−blocking functions are explained in Blocking and
Non−Blocking System Calls on page 162.

http://www.onsemi.com/

AND9836

www.onsemi.com
172

Table 132. PARAMETERS

Address Value to be Written Description

SRAM Address 32’hYY (32−bit wide, word−aligned SRAM Address)

Bits [7:0] 0xB6 Key1

Bits [15:8] 0xDC Key2

Bits [31:16] 0xXXXX Don’t care. Not used by SROM

CPUSS_SYSARG Register

Bits [31:0] 32’hYY 32−bit word−aligned address of the SRAM that stores the first
function parameter (key1)

CPUSS_SYSREQ Register

Bits [15:0] 0x0009 Resume Non−Blocking opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Table 133. RETURN

Address Return Value Description

CPUSS_SYSARG Register

Bits [31:28] 0xA Success status code

Bits [27:0] 0xXXXXXXX Not used (don’t care)

System Call Status
At the end of every system call, a status code is written

over the arguments in the CPUSS_SYSARG register. A
success status is 0xAXXXXXXX, where X indicates don’t

care values or return data in the case of the system calls that
return a value. A failure status is indicated by 0xF00000XX,
where XX is the failure code.

Table 134. SYSTEM CALL STATUS CODES

Status Code
(32−bit value in

CPUSS_SYSARG register) Description

AXXXXXXXh Success – The “X” denotes a don’t care value, which has a value of ‘0’ returned by the SROM, unless the
API returns parameters directly to the CPUSS_SYSARG register.

F0000001h Invalid Chip Protection Mode – This API is not available during the current chip protection mode.

F0000003h Invalid Page Latch Address – The address within the page latch buffer is either out of bounds or the size
provided is too large for the page address.

F0000004h Invalid Address – The row ID or byte address provided is outside of the available memory.

F0000005h Row Protected – The row ID provided is a protected row.

F0000007h Resume Completed – All non−blocking APIs have completed. The resume API cannot be called until the
next non−blocking API.

F0000008h Pending Resume – A non−blocking API was initiated and must be completed by calling the resume API,
before any other APIs may be called.

F0000009h System Call Still In Progress – A resume or non−blocking is still in progress. The SPC ISR must fire be-
fore attempting the next resume.

F000000Ah Checksum Zero Failed – The calculated checksum was not zero.

F000000Bh Invalid Opcode – The opcode is not a valid API opcode.

F000000Ch Key Opcode Mismatch – The opcode provided does not match key1 and key2.

F000000Eh Invalid Start Address – The start address is greater than the end address provided.

F0000012h Invalid Pump Clock Frequency − IMO must be set to 48 MHz and HF clock source to the IMO clock
source before flash write/erase operations.

http://www.onsemi.com/

AND9836

www.onsemi.com
173

Non−Blocking System Call Pseudo Code
This section contains pseudo code to demonstrate how to

set up a non−blocking system call and execute code out of
SRAM during the flash programming operations.

#define REG(addr) (*((volatile uint32 *) (addr)))
#define CM0_ISER_REG REG(0xE000E100)
#define CPUSS_CONFIG_REG REG(0x40100000)
#define CPUSS_SYSREQ_REG REG(0x40100004)
#define CPUSS_SYSARG_REG REG(0x40100008)

#define ROW_SIZE_ ()
#define ROW_SIZE (ROW_SIZE_)

/*Variable to keep track of how many times SPC ISR is triggered */
 ram int iStatusInt = 0x00;

 flash int main(void)
{

DoUserStuff();

/*CM0+ interrupt enable bit for spc interrupt enable */
CM0_ISER_REG |= 0x00000040;

/*Set CPUSS_CONFIG.VECS_IN_RAM because SPC ISR should be in SRAM */
CPUSS_CONFIG_REG |= 0x00000001;

/*Call non-blocking write row API */
NonBlockingWriteRow();

/*End Program */
while(1);

}
 sram void SpcIntHandler(void)
{

/* Write key1, key2 parameters to SRAM */
REG(0x20000000) = 0x0000DCB6;

/*Write the address of key1 to the CPUSS_SYSARG reg */
CPUSS_SYSARG_REG = 0x20000000;

/*Write the API opcode = 0x09 to the CPUSS_SYSREQ.COMMAND
* register and assert the sysreq bit
*/
CPUSS_SYSREQ_REG = 0x80000009;

/* Number of times the ISR has triggered */
iStatusInt ++;

}
 sram void NonBlockingWriteRow(void)
{

int iter;

/*Load the Flash page latch with data to write*/
* Write key1, key2, byte address, and macro sel parameters to SRAM
*/
REG(0x20000000) = 0x0000D7B6;

//Write load size param (128 bytes) to SRAM
REG(0x20000004) = 0x0000007F;

for(i = 0; i < ROW_SIZE/4; i += 1)
{

REG(0x20000008 + i*4) = 0xDADADADA;
}

/*Write the address of the key1 param to CPUSS_SYSARG reg*/

http://www.onsemi.com/

AND9836

www.onsemi.com
174

CPUSS_SYSARG_REG = 0x20000000;

/*Write the API opcode = 0x04 to CPUSS_SYSREQ.COMMAND
* register and assert the sysreq bit
*/
CPUSS_SYSREQ_REG = 0x80000004;

/*Perform Non-Blocking Write Row on Row 200 as an example.
* Write key1, key2, row id to SRAM row id = 0xC8 -> which is row 200
*/
REG(0x20000000) = 0x00C8DAB6;

/*Write the address of the key1 param to CPUSS_SYSARG reg */
CPUSS_SYSARG_REG = 0x20000000;

/*Write the API opcode = 0x07 to CPUSS_SYSREQ.COMMAND
* register and assert the sysreq bit
*/
CPUSS_SYSREQ_REG = 0x80000007;

/*Execute user code until iStatusInt equals 3 to signify
* 3 SPC interrupts have happened. This should be 1 in case
* of non-blocking program System Call
*/
while(iStatusInt != 0x03)
{

DoOtherUserStuff();
}

/* Get the success or failure status of System Call*/
syscall_status = CPUSS_SYSARG_REG;

}

In the code, the CM0+ exception table is configured to be
in SRAM by writing 0x01 to the CPUSS_CONFIG register.
The SRAM exception table should have the vector address
of the SPC interrupt as the address of the SpcIntHandler()
function, which is also defined to be in SRAM. See the
Interrupts chapter on page 11 for details on configuring the

CM0+ exception table to be in SRAM. The pseudo code for
a non−blocking program system call is also similar, except
that the function opcode and parameters will differ and the
iStatusInt variable should be polled for 1 instead of 3. This
is because the SPC ISR will be triggered only once for a
non−blocking program system call.

http://www.onsemi.com/

AND9836

www.onsemi.com
175

GLOSSARY

The Glossary section explains the terminology used in this
technical reference manual.

A

accumulator In a CPU, a register in which intermediate results are stored. Without an accumulator, it is
necessary to write the result of each calculation (addition, subtraction, shift, and so on.) to main
memory and read them back. Access to main memory is slower than access to the accumulator,
which usually has direct paths to and from the arithmetic and logic unit (ALU).

active high 1. A logic signal having its asserted state as the logic 1 state.
2. A logic signal having the logic 1 state as the higher voltage of the two states.

active low 1. A logic signal having its asserted state as the logic 0 state.
2. A logic signal having its logic 1 state as the lower voltage of the two states: inverted logic.

address The label or number identifying the memory location (RAM, ROM, or register) where a unit
of information is stored.

algorithm A procedure for solving a mathematical problem in a finite number of steps that frequently
involve repetition of an operation.

ambient temperature The temperature of the air in a designated area, particularly the area surrounding the
AXM0F243 MCU device.

analog See analog signals.

analog blocks The basic programmable opamp circuits. These are SC (switched capacitor) and CT
(continuous time) blocks. These blocks can be interconnected to provide ADCs, DACs,
multi−pole filters, gain stages, and much more.

analog output An output that is capable of driving any voltage between the supply rails, instead of just a logic
1 or logic 0.

analog signals A signal represented in a continuous form with respect to continuous times, as contrasted with
a digital signal represented in a discrete (discontinuous) form in a sequence of time.

analog−to−digital (ADC) A device that changes an analog signal to a digital signal of corresponding magnitude. Typically,
an ADC converts a voltage to a digital number. The digital−to−analog (DAC) converter
performs the reverse operation.

AND See Boolean Algebra.

API (Application
Programming Interface)

A series of software routines that comprise an interface between a computer application and
lower−level services and functions (for example, user modules and libraries). APIs serve as
building blocks for programmers that create software applications.

array An array, also known as a vector or list, is one of the simplest data structures in computer
programming. Arrays hold a fixed number of equally−sized data elements, generally of the
same data type. Individual elements are accessed by index using a consecutive range of integers,
as opposed to an associative array. Most high−level programming languages have arrays as a
built−in data type. Some arrays are multi−dimensional, meaning they are indexed by a fixed
number of integers; for example, by a group of two integers. One− and two−dimensional arrays
are the most common. Also, an array can be a group of capacitors or resistors connected in some
common form.

assembly A symbolic representation of the machine language of a specific processor. Assembly language
is converted to machine code by an assembler. Usually, each line of assembly code produces one
machine instruction, though the use of macros is common. Assembly languages are considered
low−level languages; where as C is considered a high−level language.

http://www.onsemi.com/

AND9836

www.onsemi.com
176

asynchronous A signal whose data is acknowledged or acted upon immediately, irrespective of any clock
signal.

attenuation The decrease in intensity of a signal as a result of absorption of energy and of scattering out of
the path to the detector, but not including the reduction due to geometric spreading. Attenuation
is usually expressed in dB.

B

bandgap reference A stable voltage reference design that matches the positive temperature coefficient of VT with
the negative temperature coefficient of VBE, to produce a zero temperature coefficient (ideally)
reference.

bandwidth 1. The frequency range of a message or information processing system measured in hertz.
2. The width of the spectral region over which an amplifier (or absorber) has substantial gain

(or loss); it is sometimes represented more specifically as, for example, full width at half
maximum.

bias 1. A systematic deviation of a value from a reference value.
2. The amount by which the average of a set of values departs from a reference value.
3. The electrical, mechanical, magnetic, or other force (field) applied to a device to establish

a reference level to operate the device.

bias current The constant low−level DC current that is used to produce a stable operation in amplifiers. This
current can sometimes be changed to alter the bandwidth of an amplifier.

binary The name for the base 2 numbering system. The most common numbering system is the base
10 numbering system. The base of a numbering system indicates the number of values that may
exist for a particular positioning within a number for that system. For example, in base 2, binary,
each position may have one of two values (0 or 1). In the base 10, decimal, numbering system,
each position may have one of ten values (0, 1, 2, 3, 4, 5, 6, 7, 8, and 9).

bit A single digit of a binary number. Therefore, a bit may only have a value of ‘0’ or ‘1’. A group
of 8 bits is called a byte.

bit rate (BR) The number of bits occurring per unit of time in a bit stream, usually expressed in bits per second
(bps).

block 1. A functional unit that performs a single function, such as an oscillator.
2. A functional unit that may be configured to perform one of several functions.

Boolean Algebra In mathematics and computer science, Boolean algebras or Boolean lattices, are algebraic
structures which “capture the essence” of the logical operations AND, OR and NOT as well as
the set theoretic operations union, intersection, and complement. Boolean algebra also defines
a set of theorems that describe how Boolean equations can be manipulated. For example, these
theorems are used to simplify Boolean equations, which will reduce the number of logic
elements needed to implement the equation.
The operators of Boolean algebra may be represented in various ways. Often they are simply
written as AND, OR, and NOT. In describing circuits, NAND (NOT AND), NOR (NOT OR),
XNOR (exclusive NOT OR), and XOR (exclusive OR) may also be used. Mathematicians often
use + (for example, A + B) for OR and � for AND (for example, A * B) (in some ways those
operations are analogous to addition and multiplication in other algebraic structures) and
represent NOT by a line drawn above the expression being negated (for example, ~A, A_, !A).

break−before−make The elements involved go through a disconnected state entering (“break”) before the new
connected state (“make”).

broadcast net A signal that is routed throughout the microcontroller and is accessible by many blocks or
systems.

http://www.onsemi.com/

AND9836

www.onsemi.com
177

buffer 1. A storage area for data that is used to compensate for a speed difference, when transferring
data from one device to another. Usually refers to an area reserved for I/O operations, into
which data is read, or from which data is written.

2. A portion of memory set aside to store data, often before it is sent to an external device or
as it is received from an external device.

3. An amplifier used to lower the output impedance of a system

bus 1. A named connection of nets. Bundling nets together in a bus makes it easier to route nets with
similar routing patterns.

2. A set of signals performing a common function and carrying similar data. Typically
represented using vector notation; for example, address [7:0].

3. One or more conductors that serve as a common connection for a group of related devices.

byte A digital storage unit consisting of 8 bits.

C

C A high−level programming language.

capacitance A measure of the ability of two adjacent conductors, separated by an insulator, to hold a charge
when a voltage differential is applied between them. Capacitance is measured in units of Farads.

capture To extract information automatically through the use of software or hardware, as opposed to
hand−entering of data into a computer file.

chaining Connecting two or more 8−bit digital blocks to form 16−, 24−, and even 32−bit functions.
Chaining allows certain signals such as Compare, Carry, Enable, Capture, and Gate to be
produced from one block to another.

checksum The checksum of a set of data is generated by adding the value of each data word to a sum. The
actual checksum can simply be the result sum or a value that must be added to the sum to
generate a pre−determined value.

clear To force a bit/register to a value of logic ‘0’.

Clock The device that generates a periodic signal with a fixed frequency and duty cycle. A clock is
sometimes used to synchronize different logic blocks.

clock generator A circuit that is used to generate a clock signal.

CMOS The logic gates constructed using MOS transistors connected in a complementary manner.
CMOS is an acronym for complementary metal−oxide semiconductor.

Comparator An electronic circuit that produces an output voltage or current whenever two input levels
simultaneously satisfy predetermined amplitude requirements.

compiler A program that translates a high−level language, such as C, into machine language.

configuration In a computer system, an arrangement of functional units according to their nature, number, and
chief characteristics. Configuration pertains to hardware, software, firmware, and
documentation. The configuration will affect system performance.

configuration space In AXM0F243 MCU devices, the register space accessed when the XIO bit, in the CPU_F
register, is set to ‘1’.

crowbar A type of over−voltage protection that rapidly places a low−resistance shunt (typically an SCR)
from the signal to one of the power supply rails, when the output voltage exceeds a
predetermined value.

CPUSS CPU subsystem

crystal oscillator An oscillator in which the frequency is controlled by a piezoelectric crystal. Typically a
piezoelectric crystal is less sensitive to ambient temperature than other circuit components.

http://www.onsemi.com/

AND9836

www.onsemi.com
178

cyclic redundancy check
(CRC)

A calculation used to detect errors in data communications, typically performed using a linear
feedback shift register. Similar calculations may be used for a variety of other purposes such
as data compression.

D

data bus A bi−directional set of signals used by a computer to convey information from a memory
location to the central processing unit and vice versa. More generally, a set of signals used to
convey data between digital functions.

data stream A sequence of digitally encoded signals used to represent information in transmission.

data transmission Sending data from one place to another by means of signals over a channel.

debugger A hardware and software system that allows the user to analyze the operation of the system
under development. A debugger usually allows the developer to step through the firmware one
step at a time, set break points, and analyze memory.

dead band A period of time when neither of two or more signals are in their active state or in transition.

decimal A base−10 numbering system, which uses the symbols 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9 (called digits)
together with the decimal point and the sign symbols + (plus) and − (minus) to represent
numbers.

default value Pertaining to the pre−defined initial, original, or specific setting, condition, value, or action a
system will assume, use, or take in the absence of instructions from the user.

device The device referred to in this manual is the AXM0F243 MCU device, unless otherwise
specified.

die An non−packaged integrated circuit (IC), normally cut from a wafer.

digital A signal or function, the amplitude of which is characterized by one of two discrete values: ‘0’
or ‘1’.

digital blocks The 8−bit logic blocks that can act as a counter, timer, serial receiver, serial transmitter, CRC
generator, pseudo−random number generator, or SPI.

digital logic A methodology for dealing with expressions containing two−state variables that describe the
behavior of a circuit or system.

digital−to−analog (DAC) A device that changes a digital signal to an analog signal of corresponding magnitude. The
analog−to−digital (ADC) converter performs the reverse operation.

direct access The capability to obtain data from a storage device, or to enter data into a storage device, in a
sequence independent of their relative positions by means of addresses that indicate the physical
location of the data.

duty cycle The relationship of a clock period high time to its low time, expressed as a percent.

E

External Reset (XRES_N) An active high signal that is driven into the AXM0F243 MCU device. It causes all operation
of the CPU and blocks to stop and return to a pre−defined state.

F

falling edge A transition from a logic 1 to a logic 0. Also known as a negative edge.

feedback The return of a portion of the output, or processed portion of the output, of a (usually active)
device to the input.

filter A device or process by which certain frequency components of a signal are attenuated.

http://www.onsemi.com/

AND9836

www.onsemi.com
179

firmware The software that is embedded in a hardware device and executed by the CPU. The software
may be executed by the end user, but it may not be modified.

flag Any of various types of indicators used for identification of a condition or event (for example,
a character that signals the termination of a transmission).

Flash An electrically programmable and erasable, volatile technology that provides users with the
programmability and data storage of EPROMs, plus in−system erasability. Nonvolatile means
that the data is retained when power is off.

Flash bank A group of flash ROM blocks where flash block numbers always begin with ‘0’ in an individual
flash bank. A flash bank also has its own block level protection information.

Flash block The smallest amount of flash ROM space that may be programmed at one time and the smallest
amount of flash space that may be protected. A flash block holds 64 bytes.

flip−flop A device having two stable states and two input terminals (or types of input signals) each of
which corresponds with one of the two states. The circuit remains in either state until it is made
to change to the other state by application of the corresponding signal.

frequency The number of cycles or events per unit of time, for a periodic function.

G

gain The ratio of output current, voltage, or power to input current, voltage, or power, respectively.
Gain is usually expressed in dB.

gate 1. A device having one output channel and one or more input channels, such that the output
channel state is completely determined by the input channel states, except during switching
transients.
2. One of many types of combinational logic elements having at least two inputs (for example,

AND, OR, NAND, and NOR (also see Boolean Algebra)).

ground 1. The electrical neutral line having the same potential as the surrounding earth.
2. The negative side of DC power supply.
3. The reference point for an electrical system.
4. The conducting paths between an electric circuit or equipment and the earth, or some

conducting body serving in place of the earth.

H

hardware A comprehensive term for all of the physical parts of a computer or embedded system, as
distinguished from the data it contains or operates on, and the software that provides
instructions for the hardware to accomplish tasks.

hardware reset A reset that is caused by a circuit, such as a POR, watchdog reset, or external reset. A hardware
reset restores the state of the device as it was when it was first powered up. Therefore, all
registers are set to the POR value as indicated in register tables throughout this document.

http://www.onsemi.com/

AND9836

www.onsemi.com
180

hexadecimal A base 16 numeral system (often abbreviated and called hex), usually written using the symbols
0 − 9 and A − F. It is a useful system in computers because there is an easy mapping from four
bits to a single hex digit. Thus, one can represent every byte as two consecutive hexadecimal
digits. Compare the binary, hex, and decimal representations:
bin = hex = dec
0000b = 0x0 = 0
0001b = 0x1 = 1
0010b = 0x2 = 2
1001b = 0x9 = 9
…

1010b = 0xA = 10
1011b = 0xB = 11
…

1111b = 0xF = 15
So the decimal numeral 79 whose binary representation is 0100 1111b can be written as 4Fh in
hexadecimal (0x4F).

high time The amount of time the signal has a value of ‘1’ in one period, for a periodic digital signal.

I

I2C A two−wire serial computer bus by Phillips Semiconductors (now NXP Semiconductors). I2C
is an Inter−Integrated Circuit. It is used to connect low−speed peripherals in an embedded
system. The original system was created in the early 1980s as a battery control interface, but
it was later used as a simple internal bus system for building control electronics. I2C uses only
two bidirectional pins, clock and data, both running at +5 V and pulled high with resistors. The
bus operates at 100 Kbps in standard mode and 400 Kbps in fast mode.

idle state A condition that exists whenever user messages are not being transmitted, but the service is
immediately available for use.

impedance 1. The resistance to the flow of current caused by resistive, capacitive, or inductive devices in
a circuit.

2. The total passive opposition offered to the flow of electric current. Note the impedance is
determined by the particular combination of resistance, inductive reactance, and capacitive
reactance in a given circuit.

input A point that accepts data, in a device, process, or channel.

input/output (I/O) A device that introduces data into or extracts data from a system.

instruction An expression that specifies one operation and identifies its operands, if any, in a programming
language such as C or assembly.

instruction mnemonics A set of acronyms that represent the opcodes for each of the assembly−language instructions,
for example, ADD, SUBB, MOV.

integrated circuit (IC) A device in which components such as resistors, capacitors, diodes, and transistors are formed
on the surface of a single piece of semiconductor.

interface The means by which two systems or devices are connected and interact with each other.

interrupt A suspension of a process, such as the execution of a computer program, caused by an event
external to that process, and performed in such a way that the process can be resumed.

interrupt service routine
(ISR)

A block of code that normal code execution is diverted to when the M8CP receives a hardware
interrupt. Many interrupt sources may each exist with its own priority and individual ISR code
block. Each ISR code block ends with the RETI instruction, returning the device to the point
in the program where it left normal program execution.

http://www.onsemi.com/

AND9836

www.onsemi.com
181

J

jitter 1. A misplacement of the timing of a transition from its ideal position. A typical form of
corruption that occurs on serial data streams.

2. The abrupt and unwanted variations of one or more signal characteristics, such as the interval
between successive pulses, the amplitude of successive cycles, or the frequency or phase of
successive cycles.

L

latency The time or delay that it takes for a signal to pass through a given circuit or network.

least significant bit (LSb) The binary digit, or bit, in a binary number that represents the least significant value (typically
the right−hand bit). The bit versus byte distinction is made by using a lower case “b” for bit in
LSb.

least significant byte (LSB) The byte in a multi−byte word that represents the least significant values (typically the
right−hand byte). The byte versus bit distinction is made by using an upper case “B” for byte
in LSB.

Linear Feedback Shift
Register (LFSR)

A shift register whose data input is generated as an XOR of two or more elements in the register
chain.

load The electrical demand of a process expressed as power (watts), current (amps), or resistance
(ohms).

logic function A mathematical function that performs a digital operation on digital data and returns a digital
value.

lookup table (LUT) A logic block that implements several logic functions. The logic function is selected by means
of select lines and is applied to the inputs of the block. For example: A 2 input LUT with 4 select
lines can be used to perform any one of 16 logic functions on the two inputs resulting in a single
logic output. The LUT is a combinational device; therefore, the input/output relationship is
continuous, that is, not sampled.

low time The amount of time the signal has a value of ‘0’ in one period, for a periodic digital signal.

low−voltage detect (LVD) A circuit that senses VDDD and provides an interrupt to the system when VDDD falls below a
selected threshold.

M

M8CP An 8−bit Harvard Architecture microprocessor. The microprocessor coordinates all activity
inside a system on chip device by interfacing to the flash, SRAM, and register space.

macro A programming language macro is an abstraction, whereby a certain textual pattern is replaced
according to a defined set of rules. The interpreter or compiler automatically replaces the macro
instance with the macro contents when an instance of the macro is encountered. Therefore, if
a macro is used five times and the macro definition required 10 bytes of code space, 50 bytes
of code space will be needed in total.

mask 1. To obscure, hide, or otherwise prevent information from being derived from a signal. It is
usually the result of interaction with another signal, such as noise, static, jamming, or other
forms of interference.

2. A pattern of bits that can be used to retain or suppress segments of another pattern of bits,
in computing and data processing systems.

master device A device that controls the timing for data exchanges between two devices. Or when devices are
cascaded in width, the master device is the one that controls the timing for data exchanges
between the cascaded devices and an external interface. The controlled device is called the slave
device.

http://www.onsemi.com/

AND9836

www.onsemi.com
182

microcontroller An integrated circuit device that is designed primarily for control systems and products. In
addition to a CPU, a microcontroller typically includes memory, timing circuits, and I/O
circuitry. The reason for this is to permit the realization of a controller with a minimal quantity
of devices, thus achieving maximal possible miniaturization. This in turn, will reduce the
volume and the cost of the controller. The microcontroller is normally not used for
general−purpose computation as is a microprocessor.

mnemonic A tool intended to assist the memory. Mnemonics rely on not only repetition to remember facts,
but also on creating associations between easy−to−remember constructs and lists of data. A two
to four character string representing a microprocessor instruction.

mode A distinct method of operation for software or hardware. For example, the Digital block may
be in either counter mode or timer mode.

modulation A range of techniques for encoding information on a carrier signal, typically a sine−wave signal.
A device that performs modulation is known as a modulator.

Modulator A device that imposes a signal on a carrier.

MOS An acronym for metal−oxide semiconductor.

most significant bit (MSb) The binary digit, or bit, in a binary number that represents the most significant value (typically
the left−hand bit). The bit versus byte distinction is made by using a lower case “b” for bit in
MSb.

most significant byte (MSB) The byte in a multi−byte word that represents the most significant values (typically the
left−hand byte). The byte versus bit distinction is made by using an upper case “B” for byte in
MSB.

multiplexer (mux) 1. A logic function that uses a binary value, or address, to select between a number of inputs
and conveys the data from the selected input to the output.

2. A technique which allows different input (or output) signals to use the same lines at different
times, controlled by an external signal. Multiplexing is used to save on wiring and I/O ports.

N

NAND See Boolean Algebra.

negative edge A transition from a logic 1 to a logic 0. Also known as a falling edge.

net The routing between devices.

nibble A group of four bits, which is one−half of a byte.

noise 1. A disturbance that affects a signal and that may distort the information carried by the signal.
2. The random variations of one or more characteristics of any entity such as voltage, current,

or data.

NOR See Boolean Algebra.

NOT See Boolean Algebra.

O

OR See Boolean Algebra.

oscillator A circuit that may be crystal controlled and is used to generate a clock frequency.

output The electrical signal or signals which are produced by an analog or digital block.

http://www.onsemi.com/

AND9836

www.onsemi.com
183

P

parallel The means of communication in which digital data is sent multiple bits at a time, with each
simultaneous bit being sent over a separate line.

parameter Characteristics for a given block that have either been characterized or may be defined by the
designer.

parameter block A location in memory where parameters for the SSC instruction are placed prior to execution.

parity A technique for testing transmitting data. Typically, a binary digit is added to the data to make
the sum of all the digits of the binary data either always even (even parity) or always odd (odd
parity).

path 1. The logical sequence of instructions executed by a computer.
2. The flow of an electrical signal through a circuit.

pending interrupts An interrupt that is triggered but not serviced, either because the processor is busy servicing
another interrupt or global interrupts are disabled.

phase The relationship between two signals, usually the same frequency, that determines the delay
between them. This delay between signals is either measured by time or angle (degrees).

pin A terminal on a hardware component. Also called lead.

pinouts The pin number assignment: the relation between the logical inputs and outputs of the device
and their physical counterparts in the printed circuit board (PCB) package. Pinouts will involve
pin numbers as a link between schematic and PCB design (both being computer generated files)
and may also involve pin names.

port A group of pins, usually eight.

positive edge A transition from a logic 0 to a logic 1. Also known as a rising edge.

posted interrupts An interrupt that is detected by the hardware but may or may not be enabled by its mask bit.
Posted interrupts that are not masked become pending interrupts.

Power On Reset (POR) A circuit that forces the device to reset when the voltage is below a pre−set level. This is one
type of hardware reset.

program counter The instruction pointer (also called the program counter) is a register in a computer processor
that indicates where in memory the CPU is executing instructions. Depending on the details of
the particular machine, it holds either the address of the instruction being executed, or the
address of the next instruction to be executed.

protocol A set of rules. Particularly the rules that govern networked communications.

pulse A rapid change in some characteristic of a signal (for example, phase or frequency), from a
baseline value to a higher or lower value, followed by a rapid return to the baseline value.

pulse width modulator
(PWM)

An output in the form of duty cycle which varies as a function of the applied measure.

R

RAM An acronym for random access memory. A data−storage device from which data can be read
out and new data can be written in.

register A storage device with a specific capacity, such as a bit or byte.

reset A means of bringing a system back to a know state. See hardware reset and software reset.

resistance The resistance to the flow of electric current measured in ohms for a conductor.

revision ID A unique identifier of the AXM0F243 MCU device.

http://www.onsemi.com/

AND9836

www.onsemi.com
184

ripple divider An asynchronous ripple counter constructed of flip−flops. The clock is fed to the first stage of
the counter. An n−bit binary counter consisting of n flip−flops that can count in binary from 0
to 2n − 1.

rising edge See positive edge.

ROM An acronym for read only memory. A data−storage device from which data can be read out, but
new data cannot be written in.

routine A block of code, called by another block of code, that may have some general or frequent use.

routing Physically connecting objects in a design according to design rules set in the reference library.

runt pulses In digital circuits, narrow pulses that, due to non−zero rise and fall times of the signal, do not
reach a valid high or low level. For example, a runt pulse may occur when switching between
asynchronous clocks or as the result of a race condition in which a signal takes two separate
paths through a circuit. These race conditions may have different delays and are then
recombined to form a glitch or when the output of a flip−flop becomes metastable.

S

sampling The process of converting an analog signal into a series of digital values or reversed.

schematic A diagram, drawing, or sketch that details the elements of a system, such as the elements of an
electrical circuit or the elements of a logic diagram for a computer.

seed value An initial value loaded into a linear feedback shift register or random number generator.

serial 1. Pertaining to a process in which all events occur one after the other.
2. Pertaining to the sequential or consecutive occurrence of two or more related activities in

a single device or channel.

set To force a bit/register to a value of logic 1.

settling time The time it takes for an output signal or value to stabilize after the input has changed from one
value to another.

shift The movement of each bit in a word one position to either the left or right. For example, if the
hex value 0x24 is shifted one place to the left, it becomes 0x48. If the hex value 0x24 is shifted
one place to the right, it becomes 0x12.

shift register A memory storage device that sequentially shifts a word either left or right to output a stream
of serial data.

sign bit The most significant binary digit, or bit, of a signed binary number. If set to a logic 1, this bit
represents a negative quantity.

signal A detectable transmitted energy that can be used to carry information. As applied to electronics,
any transmitted electrical impulse.

silicon ID A unique identifier of the AXM0F243 MCU silicon.

skew The difference in arrival time of bits transmitted at the same time, in parallel transmission.

slave device A device that allows another device to control the timing for data exchanges between two
devices. Or when devices are cascaded in width, the slave device is the one that allows another
device to control the timing of data exchanges between the cascaded devices and an external
interface. The controlling device is called the master device.

software A set of computer programs, procedures, and associated documentation about the operation of
a data processing system (for example, compilers, library routines, manuals, and circuit
diagrams). Software is often written first as source code, and then converted to a binary format
that is specific to the device on which the code will be executed.

http://www.onsemi.com/

AND9836

www.onsemi.com
185

software reset A partial reset executed by software to bring part of the system back to a known state. A software
reset will restore the M8CP to a know state but not AXM0F243 MCU blocks, systems,
peripherals, or registers. For a software reset, the CPU registers (CPU_A, CPU_F, CPU_PC,
CPU_SP, and CPU_X) are set to 0x00. Therefore, code execution will begin at flash address
0x0000.

SRAM An acronym for static random access memory. A memory device allowing users to store and
retrieve data at a high rate of speed. The term static is used because, when a value is loaded into
an SRAM cell, it will remain unchanged until it is explicitly altered or until power is removed
from the device.

SROM An acronym for supervisory read only memory. The SROM holds code that is used to boot the
device, calibrate circuitry, and perform flash operations. The functions of the SROM may be
accessed in normal user code, operating from flash.

stack A stack is a data structure that works on the principle of Last In First Out (LIFO). This means
that the last item put on the stack is the first item that can be taken off.

stack pointer A stack may be represented in a computer’s inside blocks of memory cells, with the bottom at
a fixed location and a variable stack pointer to the current top cell.

state machine The actual implementation (in hardware or software) of a function that can be considered to
consist of a set of states through which it sequences.

sticky A bit in a register that maintains its value past the time of the event that caused its transition,
has passed.

stop bit A signal following a character or block that prepares the receiving device to receive the next
character or block.

switching The controlling or routing of signals in circuits to execute logical or arithmetic operations, or
to transmit data between specific points in a network.

switch phasing The clock that controls a given switch, PHI1 or PHI2, in respect to the switch capacitor (SC)
blocks. The AXM0F243 MCU SC blocks have two groups of switches. One group of these
switches is normally closed during PHI1 and open during PHI2. The other group is open during
PHI1 and closed during PHI2. These switches can be controlled in the normal operation, or in
reverse mode if the PHI1 and PHI2 clocks are reversed.

synchronous 1. A signal whose data is not acknowledged or acted upon until the next active edge of a clock
signal.

2. A system whose operation is synchronized by a clock signal.

T

tap The connection between two blocks of a device created by connecting several
blocks/components in a series, such as a shift register or resistive voltage divider.

terminal count The state at which a counter is counted down to zero.

threshold The minimum value of a signal that can be detected by the system or sensor under consideration.

Thumb−2 The Thumb−2 instruction set is a highly efficient and powerful instruction set that delivers
significant benefits in terms of ease of use, code size, and performance. The Thumb−2
instruction set is a superset of the previous 16−bit Thumb instruction set, with additional 16−bit
instructions alongside 32−bit instructions.

transistors The transistor is a solid−state semiconductor device used for amplification and switching, and
has three terminals: a small current or voltage applied to one terminal controls the current
through the other two. It is the key component in all modern electronics. In digital circuits,
transistors are used as very fast electrical switches, and arrangements of transistors can function
as logic gates, RAM−type memory, and other devices. In analog circuits, transistors are
essentially used as amplifiers.

http://www.onsemi.com/

AND9836

www.onsemi.com
186

tristate A function whose output can adopt three states: 0, 1, and Z (high impedance). The function does
not drive any value in the Z state and, in many respects, may be considered to be disconnected
from the rest of the circuit, allowing another output to drive the same net.

U

UART A UART or universal asynchronous receiver−transmitter translates between parallel bits of data
and serial bits.

user The person using the AXM0F243 MCU device and reading this manual.

user modules Pre−build, pre−tested hardware/firmware peripheral functions that take care of managing and
configuring the lower level Analog and Digital AXM0F243 MCU Blocks. User Modules also
provide high level API (Application Programming Interface) for the peripheral function.

user space The bank 0 space of the register map. The registers in this bank are more likely to be modified
during normal program execution and not just during initialization. Registers in bank 1 are most
likely to be modified only during the initialization phase of the program.

V

VDDD A name for a power net meaning “voltage drain.” The most positive power supply signal.
Usually 5 or 3.3 volts.

volatile Not guaranteed to stay the same value or level when not in scope.

VSS A name for a power net meaning “voltage source.” The most negative power supply signal.

W

watchdog timer A timer that must be serviced periodically. If it is not serviced, the CPU will reset after a
specified period of time.

waveform The representation of a signal as a plot of amplitude versus time.

X

XOR See Boolean Algebra.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent
coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This
literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada

Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910

AND9836/D

ON Semiconductor is licensed by the Philips Corporation to carry the I2C bus protocol.
Arm and Cortex are registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
Portions Copyright 2018 Cypress Semiconductor Corporation, used with permission, all other Cypress Semiconductor Corporation rights reserved.

LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local
Sales Representative

◊

http://www.onsemi.com/
www.onsemi.com/site/pdf/Patent-Marking.pdf

