ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

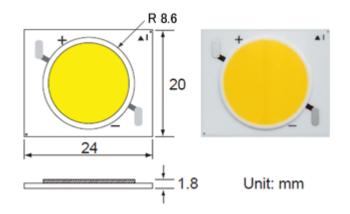
DN05031/D

Design Note – DN05031/D

25 watt Offline Hi-Power Factor LED Driver

ON Semiconductor

Device	Application	Input Voltage	Output Power	Topology	I/O Isolation
NCL30000	LED Driver	90 – 305 V ac	25 watts	Flyback	Yes
	Ou	tput Current			
		ple	413 mA pk	-pk	
	No	ninal Voltage	36 volts		
	Ма	x Voltage	44 volts		
	Ту	oical Power Factor	0.997		
	Ту	oical THDi	5.6%		
	Ту	bical Efficiency	88.0%		
	Inr	ush Limiting / Fuse	1 Amp fus	se	
	Ор	erating Temp. Range	-40 to 70	2°	


Circuit Description

Recently, new generations of high power chip-on-board LED products have entered the markets that integrate a large number of LED on a single substrate. These devices have high lumen output and can be optimized for either high efficacy or high CRI with a wide range of color temperatures so they can be used in indoor applications like retail downlighting as well as outdoor applications like wall washers for example.

The focus of this design note is the development of an offline, high power factor corrected single stage driver which can support extended wide AC mains from 90-305 V ac. This addresses standard global AC line voltages as well as the 277 V ac commercial input required for the United States.

High power factor and low harmonic content are typically required for commercial lighting. In the US, LED luminaires that meet Energy star requirements need to have a PF \ge 0.9 and globally EN61000-3-2 Class C lighting requirements define lower thresholds for harmonic currents when the input power is > 25 W.

One example of this class of LEDs is the Sharp Mega ZENIGATA family. For this design, the 25 watt version was selected which consists of an array of 168 LEDs which comprises 14 strings of 12 LEDs in series. Since this appears as a single LED assembly, a single channel constant current driver is required.

The Sharp GW5D series (image above) is rated at typically 2300-2600 lumens at 25 °C case temperature when driven at 700 mA and the forward voltage range is 34-40 V dc under those conditions.

Shown below are the design guidelines for this driver:

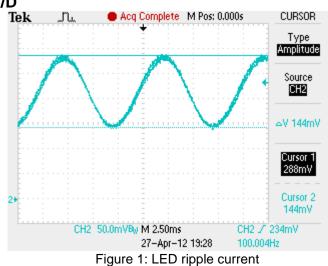
- Input range: 90 305 V ac
- Output current: 700 mA
- Output voltage: 36 volts typical
- Efficiency: >87%
- Power Factor: >0.95
- Isolated Output
- Open/Short Circuit protection

The <u>NCL30000LED3GEVB</u> demonstration board was used as the development platform. This demo board was selected as it provides wide input voltage range covering 100 to 277 volt applications with applicable tolerance. The low profile design provides a compact solution. The high efficiency of this converter minimizes thermal issues. With a few modifications, this demo board will provide the increased power and exceed the performance objectives.

Note that the original transformer for this demo board was designed to accommodate 4-15 series LEDs at up to 18 watts of output power. By targeting a specific number of LEDs, the power available from the same size core can be increased. Transformer construction details are provided at the end of this document.

The open load protection threshold of the original board was reduced due to lower output voltage for this LED module. D12 was changed to 43 V.

Power switch maximum on-time capacitor C9 controls the minimum ac line input voltage. The redesigned transformer requires a shorter maximum on-time at this power level. C9 was changed to 390 pF.


High power factor single stage converters generally have no energy storage in the primary side circuit. As such, storage is required on the secondary side and typically in the form of capacitance in parallel with the LED load. Ripple current is nearly sinusoidal at twice the applied ac input frequency. The ripple amplitude is inversely proportional to the total capacitance, that is, increasing the filter capacitance will reduce ripple current.

Maximum forward current for this LED is 1050 mA. Subtracting the target output current of 700 mA nets a difference of 350 mA. Ripple current must therefore be limited to 350 mA peak or 700 mA peak-to-peak to stay within the manufacturers rating.

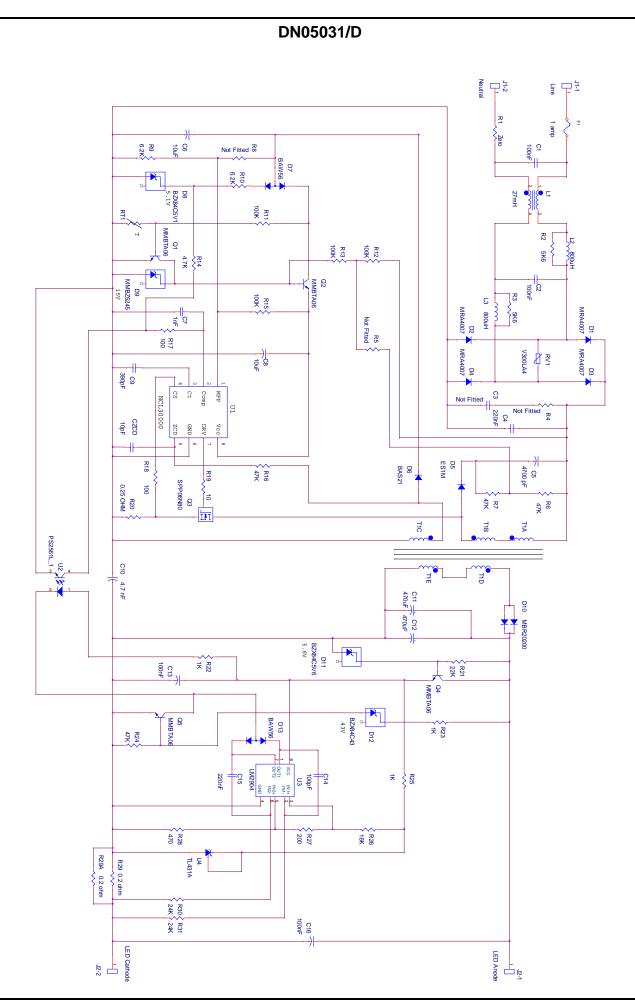
Two 470 μ F capacitors were used in order to maintain the low profile design. Testing shows this capacitance results in ripple current of up to 480 mA peak-to-peak with 100 V ac 60 Hz input as shown in Figure 1. The zero reference is indicated on the first horizontal gradicule.

The output current sense resistor R29 was reduced from 0.2 ohms to 0.1 ohms to provide the required 700 mA average output current. Two resistors were connected in parallel for thermal spreading.

Converter startup time is controlled by the bias capacitor C8 and the startup resistors. For this application, the startup resistors R12 and R13 were increased in value to reduce dissipation. This increases the converter startup time somewhat.

The power switching FET was changed to a higher current device to support the increased output power level. Current sense resistor R20 was reduced in value due to higher primary current. In addition, the output rectifier was changed to a Schottky type to reduce power loss and increase efficiency.

Increased power level means the input filter must support more switching current. The filter capacitors were increased to minimize ripple voltage and maintain compliance with conducted EMI limits. Capacitors C1 and C2 were increased to 100 nF and C4 was increased to 220 nF.


High power factor is maintained by operating in critical conduction mode (CrM). In the case of the NCL30000, this is accomplished with a constant on-time architecture. Details of operation can be found in Application Note <u>AND8451</u>. Moreover, line harmonics in compliance with JIS/EN61000-3-2 Class C are easily met, as shown in Figure 2.

Power factor and Total Harmonic Distortion of input current are shown in Figure 3. PF exceeds the target value and for operation below 140 V ac is above 0.99.

Efficiency over the input line range is shown in Figure 4. For the range of 115 to 230 V ac, efficiency is well above target being greater than 88%. Note that the LED current remains virtually unchanged over the entire input voltage range.

A scan of conducted emissions shows greater than 6 dB of margin for the CISPR 22 Class B limits. See Figure 5.

A bill of materials is provided in Figure 6. The highlighted components have been changed from the standard demo board. Details on power transformer construction are provided at the end of this document.

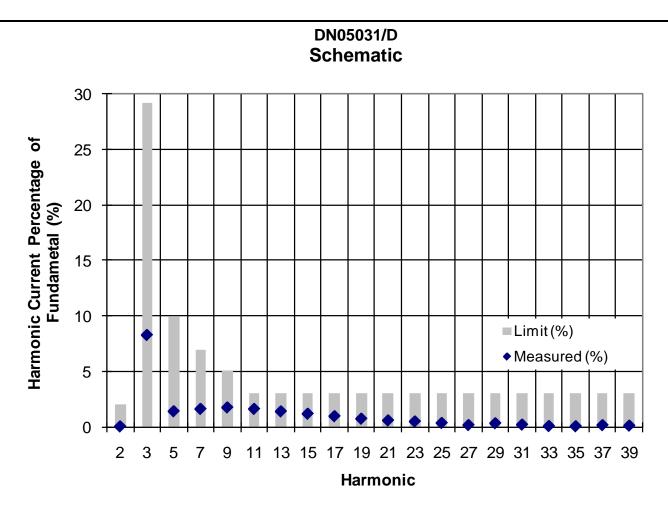


Figure 2: EN61000-3-2 Class C Input Current Harmonic Test (Vin=230 Vac, 50 Hz, Iout =704 mA @36.1V)

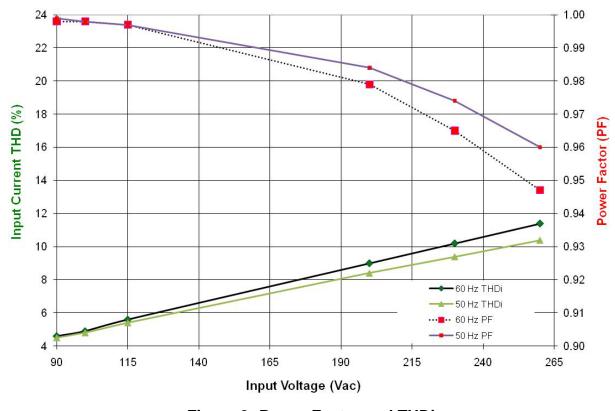
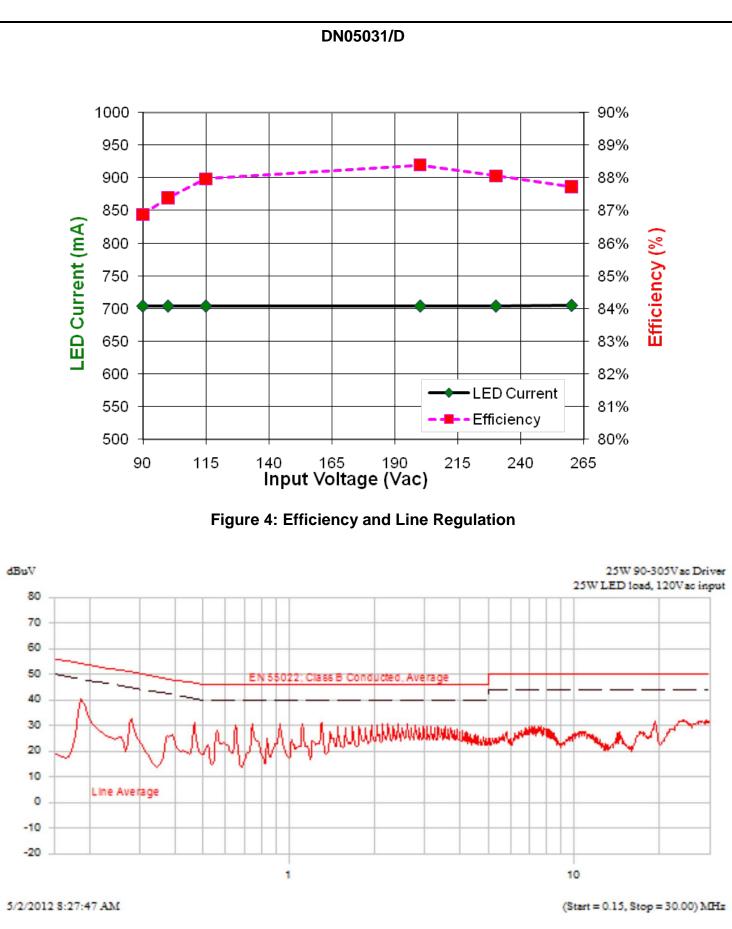
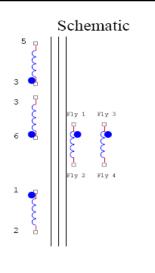



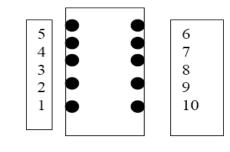
Figure 3: Power Factor and THDi

	DN05031/D							
Designator	Value	Description	Footprint	Manufacturer	Part Number			
C1, C2	100nF	300 VAC X1 Polyester Film	Box	Panasonic	ECQ-U3A104MG			
C3		Not Fitted						
C4	220nF	250/275VAC Polyester Film	Box	Panasonic	ECQ-U2A224ML			
C5	4700 pF	Ceramic 2000V Y5U	Radial Disc	AVX	5SS472SBHCA			
C6 C8	10uF	50V Electrolytic, 5mm dia	Radial	Panasonic	EEU-EB1H100S			
C7	1nF	50V Ceramic X7R	0603 SMD	Panasonic	ECJ-1VB1H102K			
C9	390pF	50V Ceramic C0G,NPO	0603 SMD	Murata	GRM1885C1H391JA01D			
CZCD	10pF	50V Ceramic C0G,NPO	0603 SMD	Murata	GRM1885C1H1000JA01			
C10	4.7 nF	250VAC Y5U X1Y1 (LS=10mm)	Radial	Panasonic	CD16-E2GA472MYNS			
C11 C12	470uF	63V Aluminum Electrolytic Y5U	Radial	Panasonic	ECA-1JHG471			
C13	100nF	25V Ceramic X7R	0603 SMD	Panasonic	ECJ-1VB1E104K			
C14	100pF	50V Ceramic COG,NPO	0603 SMD	Panasonic	ECJ-1VC1H101J			
C15	220nF	25V Ceramic X7R	1206 SMD	Panasonic	ECJ-3VB1E224K			
C16	100nF	100V Ceramic X7R	1206 SMD	Panasonic	ECJ-3YB2A104K			
D1 D2 D3 D4	MRA4007	Rectifier,1000V,1A	SMA	ON Semiconductor	MRA4007T3			
D5	ES1M	Fast Rectifier 1A 1000V	SMA	Micro Commercial	ES1M			
D6	BAS21	250V,200mA	SOT23	ON Semiconductor	BAS21LT1G			
D7 D13	BAW56	70V,200MA	SOT23	ON Semiconductor	BAW56LT1G			
D8	BZX84C5V1	5.1V ZENER	SOT23	ON Semiconductor	BZX84C5V1LT1G			
D8 D9	MMBZ5245	15V ZENER	SOT23	ON Semiconductor	MMBZ5245BLT1			
D10	MBR20200	Schottky, 200V 20A	TO-220	ON Semiconductor	MBR20200CTG			
D10	BZX84C5V6	5.6V ZENER	SOT23	ON Semiconductor	BZX84C5V6LT1G			
D12	BZX84C43	43V ZENER	SOT23	ON Semiconductor	BZX84C43LT1G			
F1	DZA04043	Slow Blow 1A TE5 Series	Axial	Littelfuse	3691100044			
г і J1, J2	-							
L1	- 27mH	Screw Connector (0.2" Pitch)	Through Hole	Weidmuller	<u>1716020000</u>			
	27mH 800uH	Common Mode Choke Shielded radial inductor	Through Hole	Wurth Midcom	<u>7446620027</u> RL-8054-3-821KR38-S			
L2,L3	000un		Through Hole	Renco	<u>RL-0054-3-02 IKR30-3</u>			
			SOT23					
Q1 Q2 Q4 Q5	MMBTA06	NPN, 80V, 500mA		ON Semiconductor	MMBTA06LT1G			
Q3	SPP06N80	N-Channel 800V,6A, 0.9R	TO-220	Infineon	SPD06N80C3			
R1	0 ohm	Wire Jumper	-					
R2,R3	5K6	1/10W	0603 SMD	Panasonic	ERJ-3GEYJ562V			
R4 R5	1-14	Not Fitted						
R6 R7	47K	1/4W	1206 SMD	Panasonic	ERJ-8GEYJ473V			
R11 R15	100K	1/10W	0603 SMD	Panasonic	ERJ-3EKF1003V			
R12 R13	100K	1/4W	1206 SMD	Panasonic	ERJ-8GEYJ104V			
R9 R10	6K2	1/10W	0603 SMD	Panasonic	ERJ-3EKF6201V			
R14	4K7	1/10W	0603 SMD	Panasonic	<u>ERJ-3EKF4701V</u>			
R16 R24	47K	1/10W	0603 SMD	Panasonic	ERJ-3EKF4702V			
R17 R18	100	1/10W	0603 SMD	Panasonic	ERJ-3EKF1000V			
R19	10	1/10W	0603 SMD	Panasonic	ERJ-3EKF10R0V			
R20	0.25	1/4W	1206 SMD	Yageo	PT1206FR-070R25L			
R21	22K	1/4W	1206 SMD	Panasonic	ERJ-8GEYJ223V			
R22 R23 R25	1K	1/10W	0603 SMD	Panasonic	ERJ-3EKF1001V			
R26	16K	1/10W	0603 SMD	Panasonic	ERJ-3EKF1602V			
R27	200	1/10W	0603 SMD	Panasonic	ERJ-3EKF2000V			
R28	470	1/10W	0603 SMD	Panasonic	ERJ-3EKF4700V			
R29	0.2	1/4W	1206 SMD	Rohm Semi	MCR18EZHFLR200			
R29A	0.2	1/4W	1206 SMD	Rohm Semi	MCR18EZHFLR200			
R30 R31	24K	1/10W	0603 SMD	Panasonic	ERJ-3EKF2402V			
RT1	PRF21BC	PTC 470 OHM 85C	0603 SMD	Murata	PRF18BE471QB1RB			
RV1	V300LA4P	300V 25 Joule (LS= 7mm)	Radial	Littelfuse	V300LA4P			
U1	NCL30000	Single Stage PFC LED Driver	SOIC8	ON Semiconductor	NCL30000DR2G			
U2	PS2561L_1	80V, 50mA	SMT4	NEC Electronics	PS2561L-1			
U3	LM2904	Dual Op Amp	SOIC8	ON Semiconductor	LM2904DR2G			
U3 U4	TL431A	Programmable Reference	SOIC8	ON Semiconductor	TL431ACDG			
04 T1	XFMR	Transformer, EFD25, 25 watt	EFD25	Custom				
				CUSICIII				

DN05031/D


MAGNETICS DESIGN DATA SHEET

Project / Customer: NCL30000 Part Description: 25 Watt 37 Volt LED Driver; Full range Schematic ID: T1 Inductance: 750 uH Bobbin Type: 10 pin horizontal CSH-EFD25-1S-10P Core Type: EFD25/13/9-3C90 Core Gap: Gap for 750 uH, ~0.016 inches


8May12

Wind	Winding Number / Type Turns / Material / Gauge / Insulation Data					e / Insulation Data
Step	Winding	Start	Finish	Turns	Material	Notes
1	¹ / ₂ Primary	6	3	32	#26	Wind in one layer
2	Insulate			2	Mylar Tape	
3	Secondary	Fly1	Fly2	12	#26 TEX-E	Wind bifilar with two
		Fly3	Fly4		Triple insulated	strands of wire. Fly leads exit top of bobbin over pins 6-10
4	Insulate			2	Mylar Tape	
5	¹ / ₂ Primary	3	5	32	#26	Wind in one layer
6	Insulate			1	Mylar Tape	
7	Pri Bias	1	2	6	#30	Spread evenly in one layer
8	Insulate			3	Mylar Tape	
9	Assemble				Gap	Final core wrap
10	Shield				Copper	Add shield over core
11	Terminate				Bus wire	Ground shield to Pin 2
12	Insulate				Mylar Tape	Insulate shield

Hipot: 3KV from primary to secondary for 1 minute.

Bobbin Pinout - Bottom View

© 2012 ON Semiconductor.

Disclaimer: ON Semiconductor is providing this design note "AS IS" and does not assume any liability arising from its use; nor does ON Semiconductor convey any license to its or any third party's intellectual property rights. This document is provided only to assist customers in evaluation of the referenced circuit implementation and the recipient assumes all liability and risk associated with its use, including, but not limited to, compliance with all regulatory standards. ON Semiconductor may change any of its products at any time, without notice.

Design note created by Jim Young, e-mail: james.young@onsemi.com