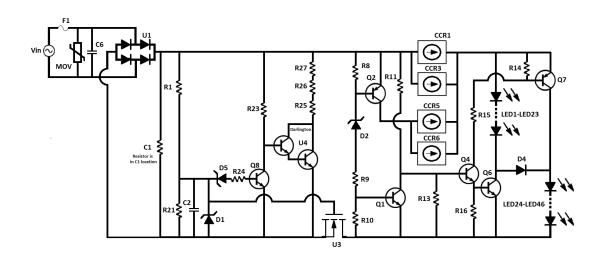
ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari


Design Note – DN05098/D

Constant Current Regulator LED Circuit Enhanced for TRIAC Dimmability

ON Semiconductor

Application	Input Voltage	Topology	Output Power	Input Power	Efficiency
LED Lighting, AC	110 to 130 Vac	Parallel-to- Series	9.0 W	11.7 W	77%

Key Features

- No electrolytic capacitors; all components are surface mount except for one capacitor (C6 film capacitor)
- 0.98 power factor and 17% THD
- Prevents dimming issues like flash-on and off-state leakage to the LEDs
- Total LED voltage needs to be 135 to 145 V for best efficiency

Circuit Performance Data

Specification	110 V _{AC}	120 V _{AC}	130 V _{AC}	
I _{RMS(out)} (mA)	72.8	85.4	92.0	
Power Factor	0.978	0.980	0.984	
THD _{Total} (I _{RMS} , %)	19.2	16.6	14.3	
Input Power (W)	9.68	11.7	13.3	
LED Power (W)	7.41	8.99	9.95	
Efficiency (%)	77	77	75	

DN05098/D

Circuit Operation and Description

This circuit is a sophisticated variation on the LED lighting circuits described in design notes DN05084 and DN05088. It runs on 120 VAC and uses several special design features to optimize the dimming performance. The LED voltages should be between 60 and 68 volts per string during operation.

While the circuits in DN05084 and DN05088 are also TRIAC dimmable, this circuit suppresses the "flash-on" phenomenon that is observed with some dimmers. The flash-on is a description for light appearing immediately after the dimmer is turned on, followed by a sub one second period of darkness, and then full brightness thereafter.

In order to reduce or eliminate the flash-on, the circuit does two things. Essentially the circuit initially provides a dummy load, then switches in the real LEDs after the dimmer has had time to begin normal operation. First, the circuit temporarily separates the LEDs from the supply voltage with a switching mechanism comprising 4 transistors and two diodes. U3, a high voltage NFET, is controlled by the R1 and R21 voltage divider and the C2 timing capacitor. When the input voltage has been high enough to charge C2, the MOSFET turns on.

The second thing the circuit does to suppress the dimming issues is draw current through a bleeder path. This causes allows the dimmer to start while U3 is keeping the LEDS off. Once C2 charges up and D5 and Q8 turn on on, then the temporary bleeding current through Q4 is stopped.

The actual LED driving portion of the circuit is set up in a similar manner to DN05084 and DN05088. The LEDs alternate between a parallel and series configuration depending on the instantaneous AC input voltage. This allows the circuit to achieve THD below 20% and power factor above 0.97. It also enables TRIAC dimming because the LEDs are running even at relatively low LED voltages.

Designator	Quantity	Description	Value	Tolerance	Footprint	Manufacturer	Manufacturer Part Number	Substitution Allowed	
R1,R14, R16, R24	5	Resistor SMD	100k, 1/8th W	5%	0805	Any	Any	Yes	
R8	1	Resistor SMD	402, 1/8th W	1%	0805	Any	Any	Yes	
R9	1	Resistor SMD	45.3k, 1/8th W	1%	0805	Any	Any	Yes	
R10	1	Resistor SMD	374, 1/8th W	1%	0805	Any	Any	Yes	
R11,R21,R23	3	Resistor SMD	510k, 1/8th W	5%	0805	Any	Any	Yes	
R13	1	Resistor SMD	10k, 1/8th W	5%	0805	Any	Any	Yes	
R15	1	Resistor SMD	51k, 1/8th W	5%	0805	Any	Any	Yes	
R25, R26,R27	3	Resistor SMD	1.2k, 1 W	5%	2512	Any	Any	Yes	
C1 (Resistor)	1	Resistor SMD	243k, 1/8th W	5%	0805	Any	Any	Yes	
C2	1	Capacitor SMD	10 µF, 50 V	10%	0805	Any	Any	Yes	
C6	1	X2 Film Capacitor	220 nF, 275 VAC	10%	Through Hole	Wurth Electronics Inc	890324023028	Yes	
U1	1	Bridge Rectifier	600 V	N/A	TO-269AA	Vishay	MB6S-E3/80	Yes	
U3	1	N-Channel MOSFET	600V	N/A	DPAK	ON Semiconductor	NDD02N60ZT4G	No	
U4	1	NPN Darlington	350V 45W	N/A	DPAK	ON Semiconductor	NJD35N04G	No	
D1	1	Diode SMD	24V	5%	SOD-123	ON Semiconductor	MMSZ5252BT1G	No	
D2	1	Diode SMD	62 V	5%	SOD-123	ON Semiconductor	MMSZ5265BT1G	No	
D4	1	Diode SMD	250 V	N/A	SOD-23	ON Semiconductor	BAS21L	No	
D5	1	Diode SMD	18V	N/A	SOD-323	ON Semiconductor	MMSZ5248BT1G	No	
L1-L46	46	SMD LED	3V	N/A	SMD	Samsung	SPMWHT541MD5WAT 0S3	Yes	

Bill of Materials

DN05098/D									
Q1	1	NPN Bipolar Transistor SMD	N/A	N/A	SOT-23	ON Semiconductor	MMBT3904LT1G	No	
Q2	1	PNP Bipolar Transistor SMD	N/A	N/A	SOT-23	ON Semiconductor	MMBTA56LT1G	No	
Q4, Q8	1	NPN Bipolar Transistor SMD	N/A	N/A	SOT-23	ON Semiconductor	MMBTA42LT1G	No	
Q6	1	NPN Bipolar Transistor SMD	N/A	N/A	SOT-23	ON Semiconductor	NSS1C201LT1G	No	
Q7	1	PNP Bipolar Transistor SMD	N/A	N/A	SOT-23	ON Semiconductor	NSS1C200LT1G	No	
CCR1	1	Constant Current Regulator SMD	120V, 50mA	15%	SMB	ON Semiconductor	NSIC2050JB	No	
CCR3, CCR5, CCR6	3	Constant Current Regulator SMD	120V, 30mA	15%	SMB	ON Semiconductor	NSIC2030JB	No	
F1	1	Fuse SMD	1.5A, 250V	N/A	2-SMD	Littelfuse	044301.5DR	Yes	
MOV1	1	Varistor SMD	198V,	N/A	2-SMD	Littelfuse	V220CH8T	Yes	

© 2017 ON Semiconductor.

Disclaimer: ON Semiconductor is providing this design note "AS IS" and does not assume any liability arising from its use; nor does ON Semiconductor convey any license to its or any third party's intellectual property rights. This document is provided only to assist customers in evaluation of the referenced circuit implementation and the recipient assumes all liability and risk associated with its use, including, but not limited to, compliance with all regulatory standards. ON Semiconductor may change any of its products at any time, without notice.

Design note created by Andrew Niles and Dmitri Mihailov