# **KAI-11002 Evaluation Timing Specification**

### **Altera Code Version Description**

The Altera code described in this document is intended for use in the AD984X Timing Board. The code is written specifically for use with the following system configuration:

### Table 1. SYSTEM CONFIGURATION



# **ON Semiconductor®**

#### www.onsemi.com

# **EVAL BOARD USER'S MANUAL**

| Evaluation Board Kit:      | PN                                  |
|----------------------------|-------------------------------------|
| Timing Generator Board     | Board Model 3E8180 (AD9845 30 MHz)  |
| KAI-11002 CCD Imager Board | Board Model 3E8187                  |
| Framegrabber Board         | National Instruments model PCI-1424 |

# **ALTERA CODE FEATURES / FUNCTIONS**

The Altera Programmable Logic Device (PLD) has three major functions:

#### **Timing Generator**

The PLD serves as a state machine based timing generator whose outputs interface to the KAI–11002, the AD9845 Analog Front End (AFE), and the PCI–1424 Framegrabber. The behavior of these output signals is dependent upon the current state of the state machine. External digital inputs, as well as jumpers on the board can be used to set the conditions of certain state transitions (See Table 2). In this manner, the board may be run in any of the following operating modes:

- Single Capture Mode Operation (Trigger, Electronic shutter, Integrate, Fast Dump Vertical CCD's, Diode Transfer, CCD Readout)
- Continuous Free-running Mode Operation (Diode Transfer, CCD Readout, Diode Transfer, CCD Readout)
- Single Output or Dual Output Mode Operation

- 2 x 2 Binning Mode Operation
- Fifteen different Integration Mode Options (Sub-frame Integration Times utilizing Electronic Shuttering as well as Multi-frame Integration Times)
- Four different Optical Black Clamp (AD9845 CLPOB) Modes

### **Delay Line Initialization**

Upon power up, or when the BOARD\_RESET button is depressed, the PLD programs the 10 silicon delay IC's on the Timing Generator Board to their default delay settings via a 3 wire serial interface. See Table 10 for details.

### **AFE Register Initialization**

Upon power up, or when the BOARD\_RESET button is depressed, the PLD programs the registers of the two AFE chips on the Timing Generator Board to their default settings via a 3 wire serial interface. See Table 11 for details.

1

# ALTERA CODE I/O

# Table 2. INPUTS

| Symbol         | Description                                                                         |
|----------------|-------------------------------------------------------------------------------------|
| POWER_ON_DELAY | The rising edge of this signal clears and re-initializes the PLD                    |
| SYSTEM_CLK     | 60 MHz clock, 2X the desired pixel clock rate                                       |
| INTEGRATE_CLK  | Single capture mode integration timing control clock                                |
| JMP0           | Output mode select (High = Dual / Low = Single)                                     |
| JMP1           | Operating mode select (High = Single Capture / Low = Free Running)                  |
| JMP2           | Binning select control line (High = 2x2 binning / Low = no binning )                |
| JMP3           | Not used                                                                            |
| DIO0           | External trigger in Single Capture operating mode                                   |
| DIO[51]        | Integration time select lines in Single Capture operating mode                      |
| DIO[86]        | Electronic shutter mode control lines (See Table 14)                                |
| DIO[119]       | Free Running Multi frame integration mode control lines (See Table 12 and Table 13) |
| DIO[1312]      | AD9845 CLPOB MODE control lines (See Table 9)                                       |
| DIO[1914]      | (Not used for KAI-11002 operation)                                                  |

### Table 3. OUTPUTS

| Symbol    | Description                                                |
|-----------|------------------------------------------------------------|
| V1_CLK    | KAI-11002 CCD V1 Clock                                     |
| V2_CLK    | KAI-11002 CCD V2 Clock                                     |
| H1_CLK    | KAI-11002 CCD H1BL, H1SL, H1SR, H1L Left, H1L Right Clocks |
| H1BR_CLK  | KAI-11002 CCD H1BR Clock                                   |
| H2_CLK    | KAI-11002 CCD H2BL, H2SL, H2SR, Clocks                     |
| H2BR_CLK  | KAI-11002 CCD H2BR Clock                                   |
| R_CLK     | KAI-11002 CCD Reset Clock                                  |
| FDG       | KAI-11002 Fast Dump Gate                                   |
| V3RD      | KAI-11002 V2 Third Level Control Signal                    |
| V_SHUTTER | Electronic Shutter Control Signal                          |
| SHP       | AD9845 Sample CCD Reset Level                              |
| SHD       | AD9845 Sample CCD Data Level                               |
| DATACLK   | AD9845 A/D Convert Clock                                   |
| PBLK      | AD9845 Pixel Blanking                                      |
| CLPOB     | AD9845 Black Level Clamp                                   |
| CLPDM     | AD9845 Dc Restore Input Clamp                              |
| VD        | AD9845 Optional Vertical Drive Sync                        |
| HD        | AD9845 Optional Horizontal Drive Sync                      |
| PIX       | PCI-1424 Frame Grabber Pixel Rate Synchronization          |
| FRAME     | PCI-1424 Frame Grabber Frame Rate Synchronization          |
| LINE      | PCI-1424 Frame Grabber Line Rate Synchronization           |
| CH1_SLOAD | Serial Load Enable, Ch1 AD9845 AFE                         |
| CH2_SLOAD | Serial Load Enable, Ch2 AD9845 AFE                         |
| SLOAD     | Serial Load Enable, Delay Line IC's                        |

# Table 3. OUTPUTS

| Symbol     | Description                                                  |  |
|------------|--------------------------------------------------------------|--|
| SCLOCK     | Serial Clock (AD9845, Delay Line IC's)                       |  |
| SDATA      | Serial Data (AD9845, Delay Line IC's)                        |  |
| SERIAL_ENA | Tri-State Control Of PLD/External Enable Of Serial Interface |  |
| INTEGRATE  | High During CCD Integration Time                             |  |

# **KAI-11002 TIMING CONDITIONS**

# Table 4. SYSTEM TIMING CONDITIONS

| Description              | Description Symbol Time |          | Notes                    |  |
|--------------------------|-------------------------|----------|--------------------------|--|
| System Clock Period      | Tsys                    | 16.67 ns | 60 MHz system clock      |  |
| Unit integration time    | Uint                    | 1 ms     |                          |  |
| Power stable delay       | Tpwr                    | 30 ms    | Typical                  |  |
| Default Serial Load Time | Tsload                  | 112.5 μs | Typical                  |  |
| Integration Time         | Tint                    |          | Operating mode dependent |  |

# Table 5. CCD TIMING CONDITIONS

| Description                   | Symbol  | Time         | Pixel Counts | Notes                                 |
|-------------------------------|---------|--------------|--------------|---------------------------------------|
| H1, H2, RESET period          | Tpix    | 33.33 ns     | 1            | 30 MHz clocking of H1, H2, RESET      |
| Photodiode Transfer setup     | T3P     | 25 μs        | 750          |                                       |
| Photodiode Transfer Time      | TV3rd   | 12 μs        | 360          |                                       |
| Photodiode Readout delay      | T3D     | 25 μs        | 750          |                                       |
| Diode Transfer delay          | Tdd     | <b>50</b> μs | 1500         |                                       |
| VCCD Delay                    | Tvd     | 0.13 μs      | 4            |                                       |
| VCCD Transfer Time            | TVCCD   | 10 μs        | 300          |                                       |
| HCCD Delay                    | Thd     | 10 μs        | 300          |                                       |
| Vertical Transfer period      | Vperiod | 20.13 μs     | 604          | Vperiod = Tvd + TVCCD + Thd           |
| Shutter Pulse Time            | Ts      | 5 μs         | 150          |                                       |
| Shutter Pulse Delay           | Tsd     | 2 μs         | 60           |                                       |
| Single Output Pixels per line | PIX_X1  |              | 4200         | 4080 CCD pixels plus 120 overclock    |
| Dual Output Pixels per line   | PIX_X2  |              | 2144         | 2040 CCD pixels plus 104 overclock    |
| Lines per frame               | PIX_Y   |              | 2736         | 2720 CCD lines plus 16 overclock      |
| RESET clock pulse width       | Tr      | 5 ns         |              | Tr is set by hardware on imager board |
| Fast Dump Flush Time          | Tflush  | 50 ms        |              |                                       |
| Fast Dump Flush Period        | Tvflush | 17.06 μs     | 512          | 50% duty cycle vertical clocks        |

# Table 6. AFE TIMING CONDITIONS

| Description            | Symbol    | Time    | Pixel Counts | Notes                                   |
|------------------------|-----------|---------|--------------|-----------------------------------------|
| SHP,SHD,DATACLK period | Tpix      | 33.3 ns | 1            | 30 MHz clocking of SHP,SHD,DATACLK      |
| SHP pulse width        | Tshp      | 7.5 ns  |              | Tshp is set by hardware on timing board |
| SHD pulse width        | Tshd      | 7.5 ns  |              | Tshd is set by hardware on timing board |
| CLPOB1 line start      | CLPOB1_ls |         | 2            | Line counter, CLPOB modes 1,2 only      |

| Table 6. AFE TIMING CONDITIONS |            |      |              |                                          |  |  |
|--------------------------------|------------|------|--------------|------------------------------------------|--|--|
| Description                    | Symbol     | Time | Pixel Counts | Notes                                    |  |  |
| CLPOB1 line end                | CLPOB1_le  |      | 10           | Line counter, CLPOB modes 1,2 only       |  |  |
| CLPOB1 start pixel 1 output    | CLPOB1_ps1 |      | 100          | Horizontal counter, CLPOB modes 1,2 only |  |  |
| CLPOB1 end pixel 1 output      | CLPOB1_pe1 |      | 4000         | Horizontal counter, CLPOB modes 1,2 only |  |  |
| CLPOB2 start pixel 1 output    | CLPOB2_ps1 |      | 4161         | Horizontal counter, CLPOB modes 0,2 only |  |  |
| CLPOB2 end pixel 1 output      | CLPOB2_pe1 |      | 4190         | Horizontal counter, CLPOB modes 0,2 only |  |  |
| CLPDM start pixel 1 output     | CLPDM_ps1  |      | 4131         | Horizontal counter                       |  |  |
| CLPDM end pixel 1 output       | CLPDM_pe1  |      | 4156         | Horizontal counter                       |  |  |
| CLPOB1 start pixel 2 output    | CLPOB1_ps2 |      | 100          | Horizontal counter, CLPOB modes 1,2 only |  |  |
| CLPOB1 end pixel 2 output      | CLPOB1_pe2 |      | 1800         | Horizontal counter, CLPOB modes 1,2 only |  |  |
| CLPOB2 start pixel 2 output    | CLPOB2_ps2 |      | 2105         | Horizontal counter, CLPOB modes 0,2 only |  |  |
| CLPOB2 end pixel 2 output      | CLPOB2_pe2 |      | 2134         | Horizontal counter, CLPOB modes 0,2 only |  |  |
| CLPDM start pixel 2 output     | CLPDM_ps2  |      | 2075         | Horizontal counter                       |  |  |
| CLPDM end pixel 2 output       | CLPDM_pe2  |      | 2100         | Horizontal counter                       |  |  |
| PBLK start pixel               | PBLK_ps    |      | 1            | Vertical transfer counter                |  |  |
| PBLK end pixel                 | PBLK_pe    |      | 580          | Vertical transfer counter                |  |  |

### Table 6. AFE TIMING CONDITIONS

#### Table 7. PCI-1424 TIMING CONDITIONS

| Description | Symbol | Time    | Pixel Counts | Notes                              |
|-------------|--------|---------|--------------|------------------------------------|
| PIX period  | Tpix   | 33.3 ns | 1            | 30 MHz clocking of PIX sync signal |

### **MODES OF OPERATION**

The following modes of operation are available to the user.

#### **Output Modes**

The output mode is selected by setting the JMP0, JMP1 and JMP2 inputs to the appropriate level.

### Table 8. OUTPUT MODE JUMPER SETTINGS

| JMP2 (Binning) | JMP1 (OPMODE) | JMP0 (Output) | Output Mode                                                      |  |
|----------------|---------------|---------------|------------------------------------------------------------------|--|
| LOW            | LOW           | LOW           | Dual Output, Free-Running, No Binning (2144 x 2736 x 2 Out)      |  |
| LOW            | LOW           | HIGH          | Single Output, Free-Running, No Binning (4200 x 2736 x 1 Out)    |  |
| LOW            | HIGH          | LOW           | Dual Output, Single Capture, No Binning (2144 x 2736 x 2 Out)    |  |
| LOW            | HIGH          | HIGH          | Single Output, Single Capture, No Binning (4200 x 2736 x 1 Out)  |  |
| HIGH           | LOW           | LOW           | Dual Output, Free-Running, 2x2 Binning (1072 x 1368 x 2 Out)     |  |
| HIGH           | LOW           | HIGH          | Single Output, Free-Running, 2x2 Binning (2100 x 1368 x 1 Out)   |  |
| HIGH           | HIGH          | LOW           | Dual Output, Single Capture, 2x2 Binning (1072 x 1368 x 2 Out)   |  |
| HIGH           | HIGH          | HIGH          | Single Output, Single Capture, 2x2 Binning (2100 x 1368 x 1 Out) |  |

### Single Output Mode

The KAI–11002 device features a split horizontal register and two output amplifiers. Setting the JMP0 jumper to the high position causes all of the CCD pixels to be clocked out the CCD's left output amplifier. See KAI–11002 device specification (References) for details.

#### **Dual Output Mode**

The KAI–11002 device features a split horizontal register and two output amplifiers. Setting the JMP0 jumper to the low position causes each half of the horizontal register to be clocked out in opposite directions, increasing the frame rate by approximately 2. See KAI–11002 device specification for details (References).

### Binning Mode (2x2)

Utilizing the JMP2 input, the timing can be set to accumulate 2 lines of charge in the horizontal register before clocking the charge down the horizontal register; 2 registers of charge are then accumulated in the output structure floating diffusion before clocking the charge out of the device. In this way, the total charge of a 2x2 pixel area is summed into one measurement.

### Free-Running Mode

In free-running operating mode charge is transferred from the photodiodes and then read out of the device in a continuous manner. See Figure 2.

#### Single Capture Mode

In single capture operating mode an external trigger is required to initiate the capture sequence. Upon the rising edge of the DIO0 control line the electronic shutter is activated. Then charge is allowed to accumulate in the photodiodes for a period of time set by the integration time control lines D[5..1]. In the last 50 ms of integration time residual charge is fast dumped from the vertical CCDs, and then the charge is transferred from the photodiodes and read out of the device. See Figure 3.

### **Multi-Frame Integration Modes**

In free-running operating mode, integration times of more than a frame time can be achieved by varying the time between transfer of charge from the photodiodes. In Multi-frame Integration Mode, the Integration time can be set from 1X to 8X the frame time via the DIO interface (See Table 12 and Table 13).

### **Electronic Shutter Modes**

Integration times less than one frame time can be achieved by electronic shuttering of the device. In Electronic Shutter Mode, the integration time can be set from 1X to 1/8X frame time via the DIO interface (See Electronic Shutter State).

### **Black Clamp Modes**

One of the features of the AD9845 AFE chip is an optical black clamp. The black clamp (CLPOB) is asserted during the CCD's dark pixels and is used to remove residual offsets in the signal chain, and to track low frequency variations in the CCD's black level. Several options for operating this black clamp are provided and are controlled by the digital inputs D[13..12]. The default CLPOB mode is 0.

| CLPOB Mode DIO[1312] | Black Clamp Operation                                          | Notes        |
|----------------------|----------------------------------------------------------------|--------------|
| 0                    | Several dark pixels at the end of each line                    | Default Mode |
| 1                    | Several dark lines at the beginning of each frame              |              |
| 2                    | Several dark lines per frame, and several dark pixels per line |              |
| 3                    | Off, no black clamp, CLPOB always held high                    |              |

#### Table 9. BLACK CLAMP MODES

# PIXEL RATE CLOCKS GENERATION

The pixel rate clocks are derived from the system clock. They operate at 1/2 the frequency of the system clock. The PIXEL\_CLK signal is generated from the rising edge of the system clock. The DELAYED\_PIX\_CLK signal is generated from the falling edge of the system clock. By utilizing both edges of the system clock, 4 start positions for the pixel rate clocks are achieved.

- 1. The PIXEL\_CLK signal
- 2. The DELAYED\_PIX\_CLK signal occurs 25% later than the PIXEL\_CLK signal
- 3. The inverse of the PIXEL\_CLK signal occurs 50% later than the PIXEL\_CLK signal
- 4. The inverse of the DELAYED\_PIX\_CLK signal occurs 75% later than the PIXEL\_CLK signal

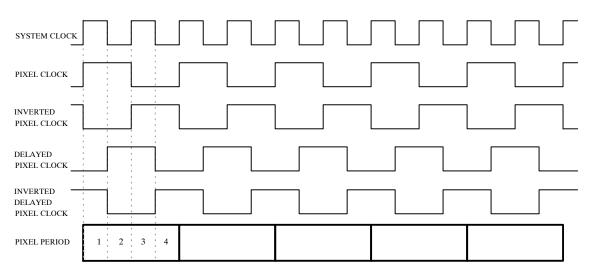



Figure 1. Pixel Clock Generation Timing

One of these four signals is chosen to be the input signal source for a particular pixel rate signal, and then the position

of the signal is optimized using a DS1020 programmable delay line IC.

# TIMING GENERATOR STATE MACHINE DESCRIPTION

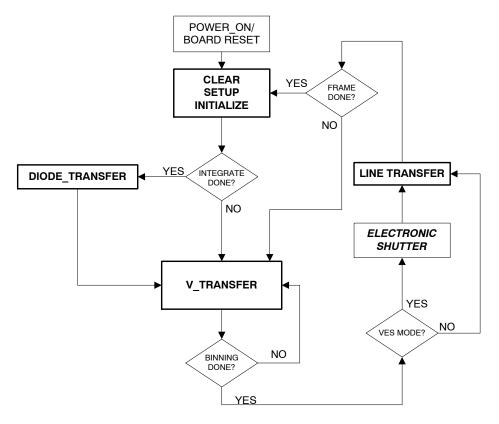



Figure 2. Timing Generator State Machine (Free-Running Mode)

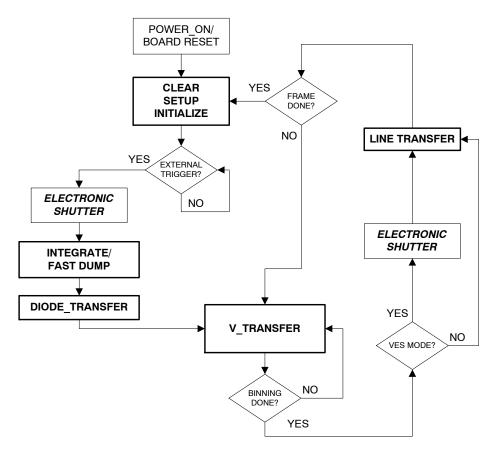



Figure 3. Timing Generator State Machine (Single Capture Mode)

#### Power-On / Board Reset Initialize State

When the board is powered up or the Board Reset button is pressed, the Altera PLD is internally reset. When this occurs, state machines in the PLD will first serially load the initial default values into the ten delay line IC's on the board, and then serially load the initial default values into the AFE registers. Upon completion of the serial load of the AFE, the board will be ready to proceed according to the output mode selected.

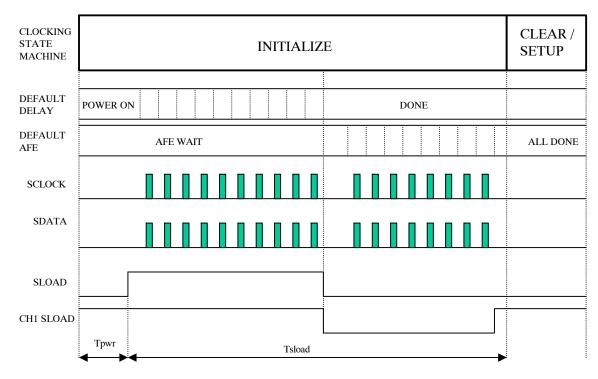



Figure 4. Power–On Initialization Timing

#### **Delay Register Initialization**

The Programmable Silicon Delay Lines allow the Horizontal Clocks, Reset Clock, Clamp, Sample, and Data Clock signals to be adjusted within the sub-pixel timing. On power-up or board reset, the delay lines are programmed with values stored in the Altera device. These values are chosen to conform to the timing requirements of the CCD image sensor and to achieve optimum device performance (See the KAI-11002 device specification for details). The delay values shown in Table 10 are typical values, and may vary on an individual Evaluation Board set.

For programming purposes, the silicon delay lines are cascaded, i.e., the serial output pin of device 1 is tied to the

serial input pin of device 2 and so on. Therefore, when making an adjustment to one or more delay lines, all the delay lines must be reprogrammed. The total number of serial bits must be eight times the number of units daisy-chained and each group of 8 bits must be sent in MSB-to-LSB order (See References). The total delay on each output signal is calculated as:

Delay = 10.0 + 0.25 \* [Delay Code] (ns)

Refer to the Dallas Semiconductor DS1020 Programmable Silicon Delay Line Specification Sheet (References) for details.

| Delay IC<br>Programming Order | Delay IC Output Signal | Delay IC Input Signal Source | Delay Code<br>(Typical) | Delay (ns)<br>(Typical) |
|-------------------------------|------------------------|------------------------------|-------------------------|-------------------------|
| 1                             | AD9845 DATACLK         | PIXEL CLK                    | 32                      | 18.0                    |
| 2                             | CH2 AD9845 SHP         | PIXEL CLK                    | 24                      | 16.0                    |
| 3                             | CH1 AD9845 SHP         | PIXEL CLK                    | 24                      | 16.0                    |
| 4                             | CH2 AD9845 SHD         | INVERTED PIXEL CLK           | 20                      | 15.0                    |
| 5                             | CH1 AD9845 SHD         | INVERTED PIXEL CLK           | 20                      | 15.0                    |
| 6                             | H1 CLOCK               | INVERTED PIXEL CLK           | 0                       | 10.0                    |
| 7                             | H1BR CLOCK             | INVERTED PIXEL CLK           | 0                       | 10.0                    |
| 8                             | H2 CLOCK               | PIXEL CLK                    | 0                       | 10.0                    |
| 9                             | H2BR CLOCK             | PIXEL CLK                    | 0                       | 10.0                    |
| 10                            | RESET CLOCK            | INVERTED PIXEL CLK           | 0                       | 12.0                    |

#### Table 10. DEFAULT DELAY IC PROGRAMMING

On power up or board-reset, the AFE registers are programmed to the default levels shown in Table 11. See the AD9845 specifications sheet (References) for details.

### Table 11. DEFAULT AD9845 AFE REGISTER PROGRAMMING

| Register | Description | Value | Notes                                                                       |
|----------|-------------|-------|-----------------------------------------------------------------------------|
| 0        | Operation   | 128   |                                                                             |
| 1        | VGA Gain    | 206   | Corresponds to a VGA stage gain of 5.23 dB                                  |
| 2        | Clamp       | 96    | The output of the AD9845 will be clamped to code 96 during the CLPOB period |
| 3        | Control     | 10    | PXGA gain registers enabled                                                 |
| 4        | PXGA gain0  | 43    | Corresponds to a CDS stage gain of 0 dB                                     |
| 5        | PXGA gain1  | 43    | Corresponds to a CDS stage gain of 0 dB                                     |
| 6        | PXGA gain2  | 43    | Corresponds to a CDS stage gain of 0 dB                                     |
| 7        | PXGA gain3  | 43    | Corresponds to a CDS stage gain of 0 dB                                     |

### Clear / Setup State

The timing generator state machine is free running. It cycles through the states depending on the jumper settings and DIO inputs, and then returns back to the clear state to begin the next frame. At the beginning of each frame, the internal PLD counters are reset.

### **DIODE TRANSFER State**

During the DIODE\_TRANSFER state, the V2\_CLK is brought to the high level and charge is transported from the photodiodes to the Vertical CCD's.

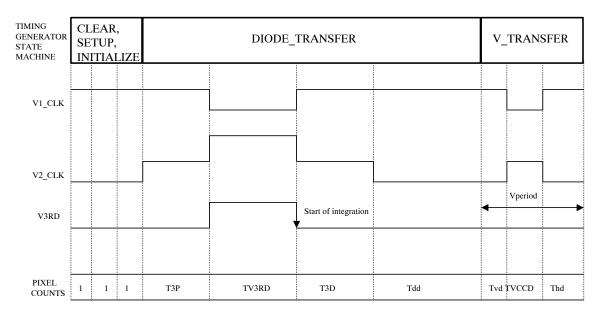



Figure 5. Diode Transfer Timing

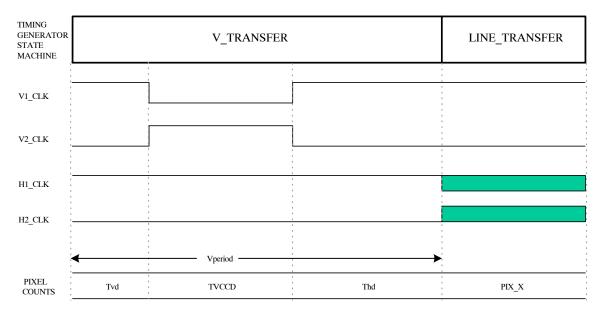
In free-running operating mode, the integration time can be adjusted to multiple frame times by prolonging the time between photodiode charge transfer using the input control lines D[11..9]. The effective integration time is the time between the transfer of charge from the photodiodes. The default Integration Mode is INT\_MODE = 0, a single frame between photodiode transfer.

In Single Output Mode, multiple frame integration time is equal to:

 $(T3P + TV3rd + T3D + Tdd) + [(Vperiod + (PIX_X1 * Tpix)) * PIX_Y] * (INT_MODE + 1)$ 

| INT_MODE DIO[119] | Integration Time (Frames) | Integration Time (ms) | Frame Rate (Fps) | Notes   |
|-------------------|---------------------------|-----------------------|------------------|---------|
| 0                 | 1                         | 438.19                | 2.28             | Default |
| 1                 | 2                         | 876.27                | 1.14             |         |
| 2                 | 3                         | 1314.36               | 0.76             |         |
| 3                 | 4                         | 1752.44               | 0.57             |         |
| 4                 | 5                         | 2190.52               | 0.46             |         |
| 5                 | 6                         | 2628.6                | 0.38             |         |
| 6                 | 7                         | 3066.68               | 0.33             |         |
| 7                 | 8                         | 3504.76               | 0.29             |         |

In Dual Output Mode, multiple frame integration time is equal to:

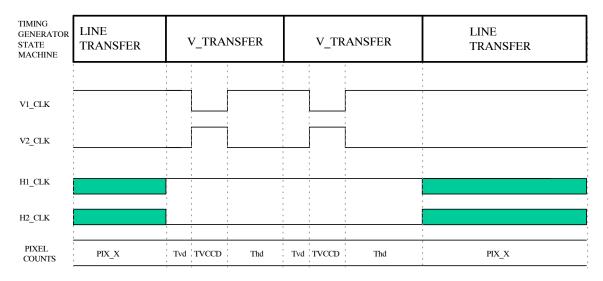

(T3P + TV3rd + T3D + Tdd) + [(Vperiod + PIX\_X2 \* Tpix) \* PIX\_Y] \* (INT\_MODE + 1)

| INT_MODE DIO[119] | Integration Time (Frames) | Integration Time (ms) | Frame Rate (Fps) | Notes   |
|-------------------|---------------------------|-----------------------|------------------|---------|
| 0                 | 1                         | 250.7                 | 3.99             | Default |
| 1                 | 2                         | 501.3                 | 1.99             |         |
| 2                 | 3                         | 751.89                | 1.33             |         |
| 3                 | 4                         | 1002.48               | 1.00             |         |
| 4                 | 5                         | 1253.08               | 0.80             |         |
| 5                 | 6                         | 1503.67               | 0.67             |         |
| 6                 | 7                         | 1754.26               | 0.57             |         |
| 7                 | 8                         | 2004.85               | 0.50             |         |

# V\_TRANSFER State

During the V\_TRANSFER state, each line (row) of charge is transported towards the horizontal CCD register using the Vertical clocks. A vertical transfer counter in the

PLD is used to determine when the vertical clocks are forced high and low and when the vertical transfer time and horizontal delay time (Thd) are completed.






#### **Binning Mode Option**

When operating in 2x2 binning mode, two lines of charge are transferred into the CCD Horizontal Register A and

allowed to accumulate before being clocked towards the output (Figure 7).





### **Electronic Shutter State**

The integration time can be adjusted to be smaller than one frame time by electronic shuttering of the device. Using the input control lines D[8..6], the line on which the electronic shutter will occur can be selected. The effective integration time is then the time between when the electronic shutter

occurred and the next transfer of charge from the photodiodes. The default Electronic Shutter Mode is 0, no electronic shutter.

In Single Output mode, Electronic Shutter Mode integration time is equal to:

Tsd + {[(PIX\_X1 \* Tpix) + Vperiod] \* (PIX\_Y - VES\_LINE)} - Vperiod + T3P + TV3rd

| VES MODE DIO[86] | VES_LINE # | Integration Time (Frames) | Integration Time (ms) | Notes   |  |
|------------------|------------|---------------------------|-----------------------|---------|--|
| 0                |            | 1                         | 438.19                | Default |  |
| 1                | 342        | 0.875                     | 383.34                |         |  |
| 2                | 684        | 0.75                      | 328.58                |         |  |
| 3                | 1026       | 0.625                     | 273.82                |         |  |
| 4                | 1368       | 0.5                       | 219.06                |         |  |
| 5                | 1710       | 0.375                     | 164.3                 |         |  |
| 6                | 2052       | 0.25                      | 109.54                |         |  |
| 7                | 2394       | 0.125                     | 54.78                 |         |  |

# Table 14. SINGLE OUTPUT ELECTRONIC SHUTTER INTEGRATION TIMES

In Dual Output mode, Electronic Shutter Mode integration time is equal to:

Tsd + {[(PIX\_X2 \* Tpix) + Vperiod] \* (PIX\_Y - VES\_LINE)} - Vperiod + T3P + TV3rd

# Table 15. DUAL OUTPUT ELECTRONIC SHUTTER INTEGRATION TIMES

| VES MODE DIO[86] | VES_LINE # | Integration Time (Frames) | Integration Time (ms) | Notes   |
|------------------|------------|---------------------------|-----------------------|---------|
| 0                |            | 1                         | 250.7                 | Default |
| 1                | 342        | 0.875                     | 219.29                |         |
| 2                | 684        | 0.75                      | 187.96                |         |
| 3                | 1026       | 0.625                     | 156.64                |         |
| 4                | 1368       | 0.5                       | 125.31                |         |
| 5                | 1710       | 0.375                     | 93.99                 |         |
| 6                | 2052       | 0.25                      | 62.67                 |         |
| 7                | 2394       | 0.125                     | 31.34                 |         |

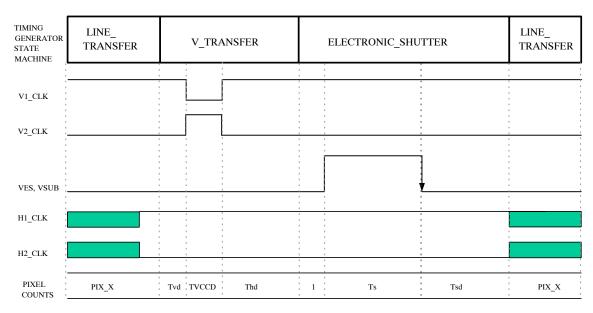



Figure 8. Electronic Shutter Timing

# LINE\_TRANSFER State

During the LINE\_TRANSFER state, charge is transported to the CCD output structure pixel by pixel. A line transfer counter in the PLD is used to keep track of how many pixels have been transported, and to synchronize the AD9845 timing signals and the PCI-1424 timing signals with the appropriate pixels (dark pixels for black clamping, for example).

At the end of each line transfer, the Line counter is incremented. If all of the lines have been clocked out of the CCD, the state machine goes to the CLEAR / SETUP state; if not, the state machine goes to the V\_TRANSFER state to transfer another line of charge into the horizontal register.

In Single Output Mode, the H1BR and H2BR clocks are identical to the H1 and H2 clocks, respectively. In Dual

Output Mode, the H1BR and H2BR clocks are switched to become identical with H2 and H1, respectively. In this way, the right half of the Horizontal register is clocked in the opposite direction, to the VOUTR output of the CCD. See KAI–11002 Device Performance Specifications (References) for details.

In 2x2 Binning Mode, two registers of charge, each containing two pixels, are summed in the CCD's floating diffusion before being clocked out of the device. The 2x2 Binning Mode can be selected using output control jumpers (See Table 8). When using Binning Mode, the pixel rate delays may have to be re-adjusted and re-synchronized to achieve optimal performance.

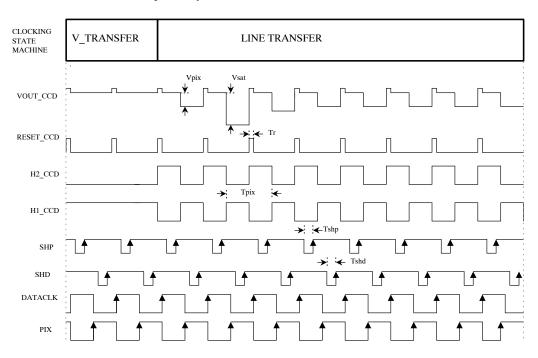



Figure 9. Horizontal Timing – Line Transfer

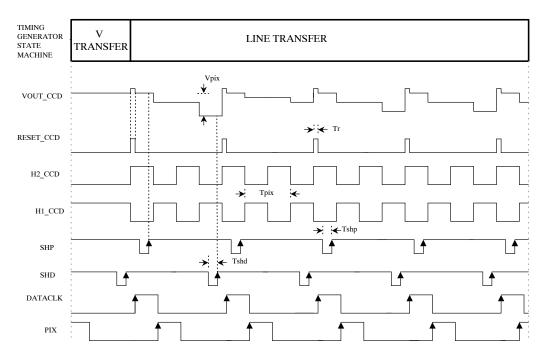
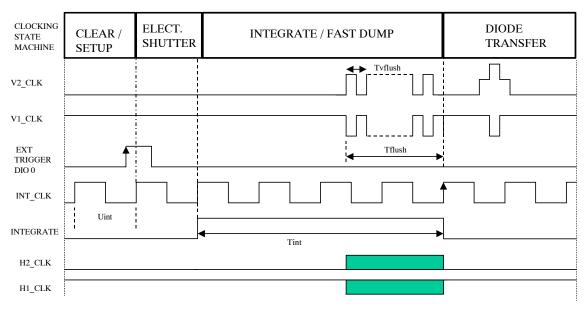
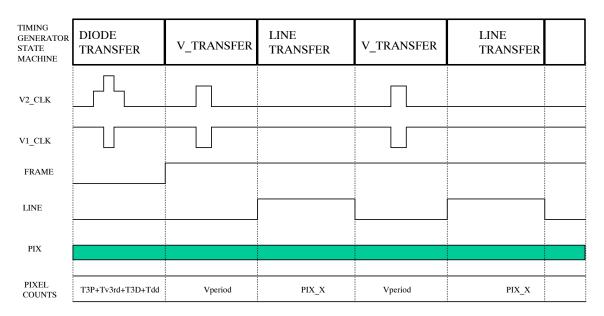




Figure 10. Horizontal Timing – 2x2 Binning Mode Line Transfer

# Single Capture Operating Mode with External Trigger


The timing for the Single Capture operating mode sequence of states is shown in Figure 11:





| INT_MODE DIO[51] | Integration Time (ms) | Notes   | INT_MODE DIO[51] | Integration Time (ms) | Notes |
|------------------|-----------------------|---------|------------------|-----------------------|-------|
| 0                | 50                    | Default | 16               | 250                   |       |
| 1                | 60                    |         | 17               | 300                   |       |
| 2                | 70                    |         | 18               | 350                   |       |
| 3                | 80                    |         | 19               | 400                   |       |
| 4                | 90                    |         | 20               | 450                   |       |
| 5                | 100                   |         | 21               | 500                   |       |
| 6                | 110                   |         | 22               | 550                   |       |
| 7                | 120                   |         | 23               | 600                   |       |
| 8                | 130                   |         | 24               | 650                   |       |
| 9                | 140                   |         | 25               | 700                   |       |
| 10               | 150                   |         | 26               | 750                   |       |
| 11               | 160                   |         | 27               | 800                   |       |
| 12               | 170                   |         | 28               | 850                   |       |
| 13               | 180                   |         | 29               | 900                   |       |
| 14               | 190                   |         | 30               | 950                   |       |
| 15               | 200                   |         | 31               | 1000                  |       |

# Table 16. SINGLE CAPTURE INTEGRATION TIME OPTIONS





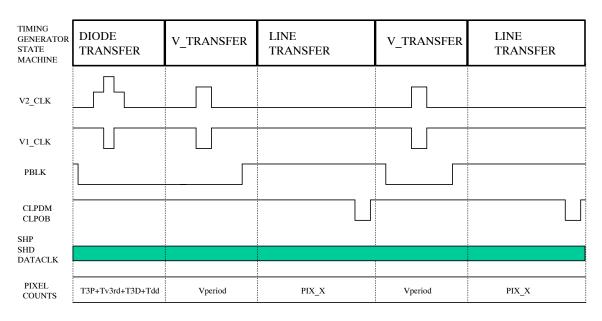



Figure 13. AD9845 Timing

# Warnings and Advisories

When programming the Timing Board, the Imager Board must be disconnected from the Timing Board before power is applied. If the Imager Board is connected to the Timing Board during the reprogramming of the Altera PLD, damage to the Imager Board will occur.

Purchasers of an Evaluation Board Kit may, at their discretion, make changes to the Timing Generator Board firmware. ON Semiconductor can only support firmware developed by, and supplied by, ON Semiconductor. Changes to the firmware are at the risk of the customer.

# **Ordering Information**

Please address all inquiries and purchase orders to:

Truesense Imaging, Inc. 1964 Lake Avenue Rochester, New York 14615 Phone: (585) 784–5500 E-mail: info@truesenseimaging.com

ON Semiconductor reserves the right to change any information contained herein without notice. All information furnished by ON Semiconductor is believed to be accurate.

# References

- KAI-11002 Device Specification
- KAI–11002 Imager Board User Manual
- KAI-11002 Imager Board Schematic
- AD984X Timing Generator Board User Manual
- AD984X Timing Generator Board Schematic
- Analog Devices AD9845 Product Data Sheet (28 and 30 MHz operation)

onsemi, ONSEMi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="http://www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. Onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

The evaluation board/kit (research and development board/kit) (hereinafter the "board") is not a finished product and is not available for sale to consumers. The board is only intended for research, development, development, development, and evaluation purposes and will only be used in laboratory/development areas by persons with an engineering/technical training and familiar with the risks associated with handling electrical/mechanical components, systems and subsystems. This person assumes full responsibility/liability for proper and safe handling. Any other use, resale or redistribution for any other purpose is strictly prohibited.

THE BOARD IS PROVIDED BY ONSEMI TO YOU "AS IS" AND WITHOUT ANY REPRESENTATIONS OR WARRANTIES WHATSOEVER. WITHOUT LIMITING THE FOREGOING, ONSEMI (AND ITS LICENSORS/SUPPLIERS) HEREBY DISCLAIMS ANY AND ALL REPRESENTATIONS AND WARRANTIES IN RELATION TO THE BOARD, ANY MODIFICATIONS, OR THIS AGREEMENT, WHETHER EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING WITHOUT LIMITATION ANY AND ALL REPRESENTATIONS AND WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, NON-INFRINGEMENT, AND THOSE ARISING FROM A COURSE OF DEALING, TRADE USAGE, TRADE CUSTOM OR TRADE PRACTICE.

onsemi reserves the right to make changes without further notice to any board.

You are responsible for determining whether the board will be suitable for your intended use or application or will achieve your intended results. Prior to using or distributing any systems that have been evaluated, designed or tested using the board, you agree to test and validate your design to confirm the functionality for your application. Any technical, applications or design information or advice, quality characterization, reliability data or other services provided by **onsemi** shall not constitute any representation or warranty by **onsemi**, and no additional obligations or liabilities shall arise from **onsemi** having provided such information or services.

onsemi products including the boards are not designed, intended, or authorized for use in life support systems, or any FDA Class 3 medical devices or medical devices with a similar or equivalent classification in a foreign jurisdiction, or any devices intended for implantation in the human body. You agree to indemnify, defend and hold harmless onsemi, its directors, officers, employees, representatives, agents, subsidiaries, affiliates, distributors, and assigns, against any and all liabilities, losses, costs, damages, judgments, and expenses, arising out of any claim, demand, investigation, lawsuit, regulatory action or cause of action arising out of or associated with any unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of any products and/or the board.

This evaluation board/kit does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or UL, and may not meet the technical requirements of these or other related directives.

FCC WARNING – This evaluation board/kit is intended for use for engineering development, demonstration, or evaluation purposes only and is not considered by **onsemi** to be a finished end product fit for general consumer use. It may generate, use, or radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment may cause interference with radio communications, in which case the user shall be responsible, at its expense, to take whatever measures may be required to correct this interference.

onsemi does not convey any license under its patent rights nor the rights of others.

LIMITATIONS OF LIABILITY: **onsemi** shall not be liable for any special, consequential, incidental, indirect or punitive damages, including, but not limited to the costs of requalification, delay, loss of profits or goodwill, arising out of or in connection with the board, even if **onsemi** is advised of the possibility of such damages. In no event shall **onsemi**'s aggregate liability from any obligation arising out of or in connection with the board, under any theory of liability, exceed the purchase price paid for the board, if any.

The board is provided to you subject to the license and other terms per **onsemi**'s standard terms and conditions of sale. For more information and documentation, please visit www.onsemi.com.

#### ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS: Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales