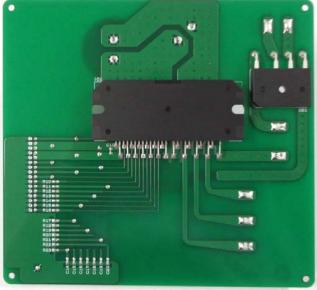
STK5MFU3C1A-E Evaluation Board User's Manual

ON Semiconductor®

www.onsemi.com


EVAL BOARD USER'S MANUAL

Introduction

STK5MFU3C1AGEVB includes the basic external components needed for the operation of STK5MFU3C1A-E (SIP28 78x31.1 / 2in1 PFC and Inverter / 1shunt) and enables to evaluate this model.

ONPN of EVAL Board	ONPN of IPM	lo
STK5MFU3C1AGEVB	STK5MFU3C1A-E	30 A

Top View

Bottom View

Figure 1. Evaluation Board Photos

CIRCUIT DIAGRAM

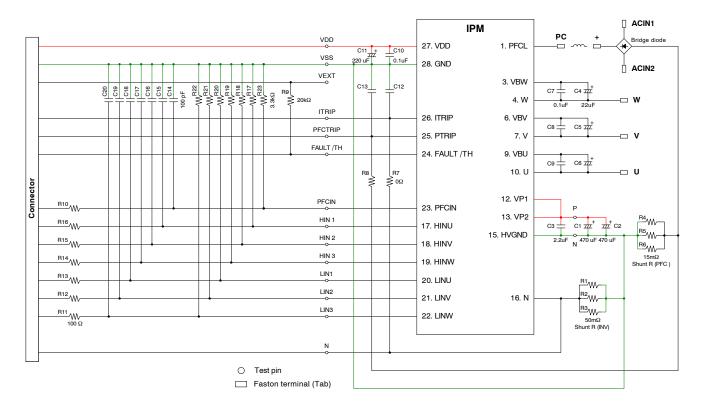


Figure 2. Evaluation Board Schematic

PIN DESCRIPTION

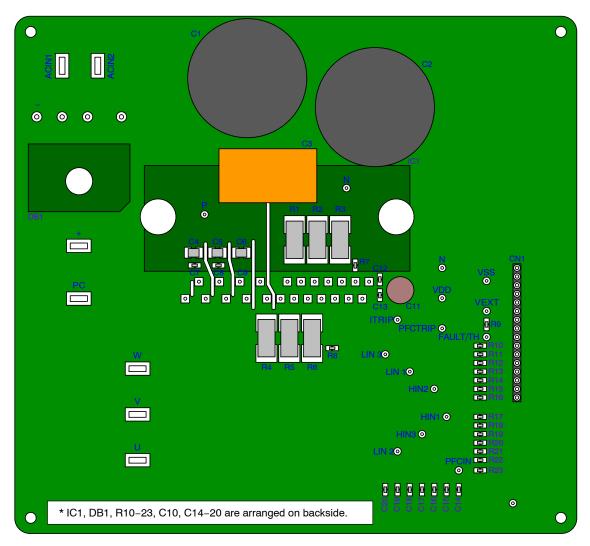


Figure 3. Transparent View from Top Side

U, V, W : 3 phase inverter output

VDD: Control power supply

VSS: Signal GND

PC: Rectified AC Voltage input

HINX, LINX, PFCIN: Control signal input
ITRIP: Over-current protection for Inverter
PFCTRIP: Over-current protection for PFC

VEXT: FAULT/TH pull-up

Apply the logic I/O voltage

FAULT/TH: Fault output, Thermistor

ACIN1, ACIN2: Bridge diode AC voltage input

+, -: Bridge diode output

R1-6 : Shunt resistor, 3 parallel connection

R7 (, C12): RC filter for ITRIP

R8 (, C13): RC filter for PFCTRIP

R8 (, C13) : RC filter for PFC1RIP

R10-16, C14-20: Low pass filter for signal input

Prevention malfunction by noise

R17-23 : Pull-down to VSS for signal input

Prevention malfunction by external wiring

C4-6: Boot strap capacitor

Blue: Arranged on top side **Purple**: Arranged on back side

* C10 is arranged on back position of C12 and C13.

OPERATION PROCEDURE

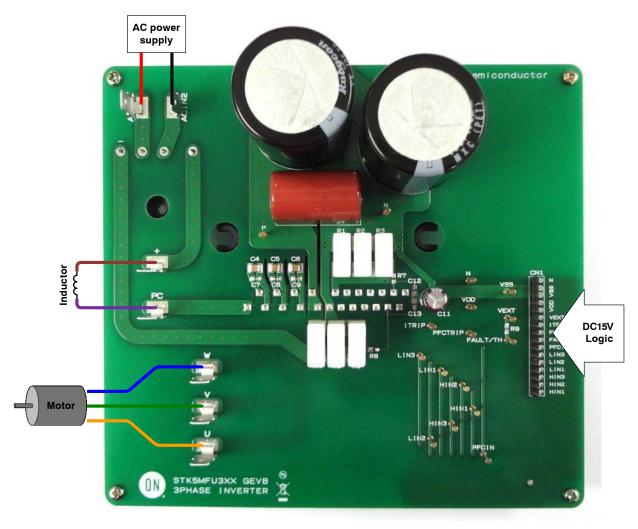
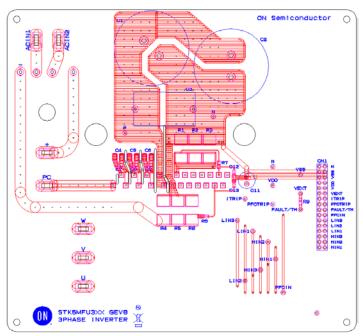



Figure 4. Connection Example

- Step 1. Connect IPM, the three power supplies, logic parts, inductor and the motor to the evaluation board, and confirm that each power supply is OFF at this time.
- Step 2. Apply DC15V to VDD and the logic I/O voltage to VEXT.
- Step 3. Perform a voltage setup according to specifications, and apply AC power supply between ACIN1 and ACIN2.
- Step 4. The IPM will start when signals are applied. The low-side inputs must be switched on first to charge up the bootstrap capacitors.
- NOTE: When turning off the power supply part and the logic part, please carry out in the reverse order to above steps.

LAYOUT

Top Side

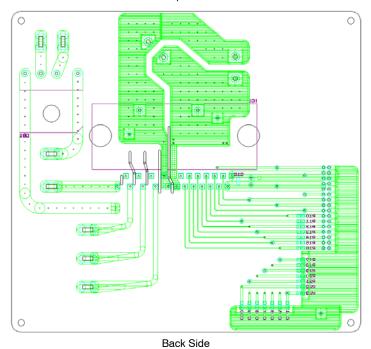


Figure 5. Evaluation Board Layout (Top View)

Length: 152 mm Side: 165 mm Thickness: 1.6 mm

Rigid double-sided substrate (Material: FR-4)

Both sides resist coating Copper foil thickness: $70 \ \mu m$

BILL OF MATERIALS

Table 1. BILL OF MATERIALS

Designator	Qty	Description	Value	Tolerance	Foot- print	Manufacturer	Manufacturer Part number	Substitution Allowed
R1 – R3	3	Metal plate resistor	50 mΩ / 5 W	±10%		KOA	BPR58C50LK	YES
R4 – R6	3	Metal plate resistor	15 mΩ / 5 W	±10%		KOA	BPR58C15LK	YES
R7, R8	2		0 Ω		SMD 1608	KOA	RK73Z1JTTD	YES
R9	1		20 kΩ / 0.1 W	±1%	SMD 1608	KOA	RK73H1JTTD2002F	YES
R10 – R16	7		100 Ω / 0.1W	±1%	SMD 1608	KOA	RK73H1JTTD1000F	YES
R17 – R23	7		3.3 kΩ / 0.1 W	±1%	SMD 1608	KOA	RK73H1JTTD3301F	YES
C1, C2	2	Aluminum electrolytic capacitor	470 μF / 450 V	±20%	Through -hole	Rubycon	450MXC470MEFCSN35X50	YES
СЗ	1	Film capacitor	2.2 μF / 630 V	±5%	Through -hole	PANASONIC	ECQE6225JT	YES
C4 – C6	3		22 μF / 25 V	±20%	SMD 3225	MURATA	GRM32ER71E226ME15L	YES
C7 – C10	4		0.1 μF / 50 V	±10%	SMD 1608	MURATA	GRM188B31H104K	YES
C11	1	Aluminum electrolytic capacitor	220 μF / 35 V	±20%	Through -hole	Nippon Chemi-Con	EKMG350ELL221MHB5D	YES
C12, C13	2		NC					
C14 – C20	7		100 pF / 50 V	±5%	SMD 1608	MURATA	GRM1882C1H101J	YES
DB1	1	Bridge diode	25 A / 800 V		Through -hole	Shindengen	D25XB80	YES
CN1	1	Connector	16 pin / 2.54 pitch		Through -hole	Hirose	A2-16PA-2.54DSA(71)	YES
VSS, VDD, VEXT, N, ITRIP, PFCTRIP, FAULT/TH, PFCIN, HIN1-3, LIN1-3, P, N	16	Test pin			Through -hole	Mac8	ST-1-3	YES
U, V, W, +, PC, ACIN1, ACIN2	7	Faston terminal (Tab)			Through -hole			YES
IC1	1	Boost PFC + 3 Phase Inverter IPM			Through -hole	ON Semiconductor	STK5MFU3C1A-E	NO

NOTE: All components are lead free.

HEAT SINK MOUNTING

Table 2. MOUNTING CONDITION

Item	Recommended Condition
Pitch	70.0 ± 0.1 mm (Please refer to Package Outline Diagram)
Screw	Diameter: M4 Bind machine screw, Truss machine screw, Pan machine screw
Washer	Plane washer The size is D = 9.0 mm, d = 4.3 mm and t = 0.8 mm JIS B 1256 (Figure 7.)
Heat Sink	Material: Aluminum or Copper Warpage (the surface that contacts IPM): –50 to 100 μm Screw holes must be countersunk. No contamination on the heat sink surface that contacts IPM.
Torque	Temporary tightening: 20 to 30% of final tightening on first screw Temporary tightening: 20 to 30% of final tightening on second screw Final tightening: 0.79 to 1.17 Nm on first screw Final tightening: 0.79 to 1.17 Nm on second screw
Grease	Silicone grease Thickness: 100 to 200 µm Uniformly apply silicone grease to whole back. Thermal foils are only recommended after careful evaluation. Thickness, stiffness and compressibility parameters have a strong influence on performance.

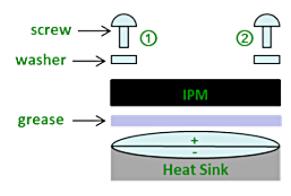


Figure 6. Mounting Composition

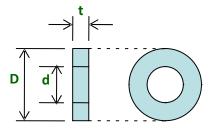


Figure 7. Size of Washer

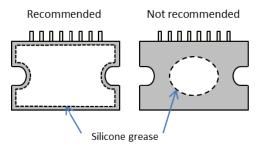


Figure 8. Uniform Application of Thermal Grease

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

The evaluation board/kit (research and development board/kit) (hereinafter the "board") is not a finished product and is not available for sale to consumers. The board is only intended for research, development, demonstration and evaluation purposes and will only be used in laboratory/development areas by persons with an engineering/technical training and familiar with the risks associated with handling electrical/mechanical components, systems and subsystems. This person assumes full responsibility/liability for proper and safe handling. Any other use, resale or redistribution for any other purpose is strictly prohibited.

THE BOARD IS PROVIDED BY ONSEMI TO YOU "AS IS" AND WITHOUT ANY REPRESENTATIONS OR WARRANTIES WHATSOEVER. WITHOUT LIMITING THE FOREGOING, ONSEMI (AND ITS LICENSORS/SUPPLIERS) HEREBY DISCLAIMS ANY AND ALL REPRESENTATIONS AND WARRANTIES IN RELATION TO THE BOARD, ANY MODIFICATIONS, OR THIS AGREEMENT, WHETHER EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING WITHOUT LIMITATION ANY AND ALL REPRESENTATIONS AND WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, NON-INFRINGEMENT, AND THOSE ARISING FROM A COURSE OF DEALING, TRADE USAGE, TRADE CUSTOM OR TRADE PRACTICE.

onsemi reserves the right to make changes without further notice to any board.

You are responsible for determining whether the board will be suitable for your intended use or application or will achieve your intended results. Prior to using or distributing any systems that have been evaluated, designed or tested using the board, you agree to test and validate your design to confirm the functionality for your application. Any technical, applications or design information or advice, quality characterization, reliability data or other services provided by **onsemi** shall not constitute any representation or warranty by **onsemi**, and no additional obligations or liabilities shall arise from **onsemi** having provided such information or services.

onsemi products including the boards are not designed, intended, or authorized for use in life support systems, or any FDA Class 3 medical devices or medical devices with a similar or equivalent classification in a foreign jurisdiction, or any devices intended for implantation in the human body. You agree to indemnify, defend and hold harmless onsemi, its directors, officers, employees, representatives, agents, subsidiaries, affiliates, distributors, and assigns, against any and all liabilities, losses, costs, damages, judgments, and expenses, arising out of any claim, demand, investigation, lawsuit, regulatory action or cause of action arising out of or associated with any unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of any products and/or the board.

This evaluation board/kit does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or UL, and may not meet the technical requirements of these or other related directives.

FCC WARNING – This evaluation board/kit is intended for use for engineering development, demonstration, or evaluation purposes only and is not considered by **onsemi** to be a finished end product fit for general consumer use. It may generate, use, or radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment may cause interference with radio communications, in which case the user shall be responsible, at its expense, to take whatever measures may be required to correct this interference.

onsemi does not convey any license under its patent rights nor the rights of others.

LIMITATIONS OF LIABILITY: **onsemi** shall not be liable for any special, consequential, incidental, indirect or punitive damages, including, but not limited to the costs of requalification, delay, loss of profits or goodwill, arising out of or in connection with the board, even if **onsemi** is advised of the possibility of such damages. In no event shall **onsemi**'s aggregate liability from any obligation arising out of or in connection with the board, under any theory of liability, exceed the purchase price paid for the board, if any.

The board is provided to you subject to the license and other terms per **onsemi**'s standard terms and conditions of sale. For more information and documentation, please visit www.onsemi.com.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales