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Application Schematic
The NCP1060 lends itself well to building non-isolated buck converters. The feedback is made by reconstructing 
the output voltage Vout during the off-time period. This voltage is then internally compared to perform regulation.
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Small-Signal Model
Before attempting to stabilize any converter, we need its control-to-output transfer function H(s). However, in our 
case, we do not directly observe Vout but an image of it, adding a second transfer function.
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The second transfer function C(s) is cascaded with that of the plant to form the dynamic response we need. From 

Public Information2/2/20183

The second transfer function C(s) is cascaded with that of the plant to form the dynamic response we need. From 
this response and based on the requirement (crossover frequency and phase margin), we can deduce a 
compensation strategy.



The Power Plant Dynamic Response
The plant control-to-output transfer function is that of a CCM-operated current-mode buck converter:
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In NCP1060, with have:

300 mΩiR  8.4 mA µsaS  14 mA µsaS 1060/60 kHz 1060/100 kHz
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R. B. Ridley, A new Continuous-Time Model for CM Control, IEEE Transactions of Power Electronics, Vol. 6, April 1991

300 mΩiR 
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Operating Conditions – Power Stage Alone
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Output Voltage Image

The circuit does not regulate Vout directly but an image obtained during the freewheeling operation.  The rectifying 
diode is affected by a dynamic resistance rd. The whole thing is then loaded by the Vcc capacitor and the IC 
consumption.consumption.

To feedback To Vcc
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circuitry to a 1st-order 
circuit for analysis.
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Extracting the Diode Dynamic Resistance

You have to know the rectifying diode dynamic resistance to calculate C(s):

1N4148
1N4148:
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10 µF  C fThe 1N4937 resistance is difficult to determine 
at low Id. It is assumed to be 1 Ω and lumped
into an 11-Ω term considering 10 Ω for Rlim.
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The Control-to-Output Transfer Function

The final transfer function is the cascading of the plant expression with the extra filter going to the feedback pin:
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Select a 1-kHz crossover frequency and extract data from the plots:
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 1kHz 96finalH    cpf

Choose a phase margin goal, PM=70° for instance



Determine how to Position Poles and Zeroes

The k factor method works well for current-controlled power converters:
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Resistive divider network
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D. Venable, The k Factor: a New Mathematical Tool for Stability Analysis and Synthesis, Proceedings of Powercon 10, 1983



Type 2 Transfer Function with an OTA
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C. Basso, Designing Control Loops for Linear and Switching Power Supplies, Artech House 2012



Dynamic Response of the Type-2 Compensator

The phase response is boosted between the zero and the pole. The peak occurs at the 
selected crossover frequency.
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Plot the loop gain
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Plot the Compensated Loop Gain

The loop gain is obtained by cascading the plant transfer function with the compensator transfer function
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Simulate with SIMPLIS®
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Check Plant and Loop Gains
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Conclusion

 The compensation of the NCP1060 in a CCM-operated buck converter is 
done via a few steps

1. Determine the control-to-output transfer function (with Mathcad® or 
SIMPLIS®)

2. Extract the magnitude and phase at the selected crossover frequency2. Extract the magnitude and phase at the selected crossover frequency
3. Build a type-2 compensator with the built-in OTA
4. Check the complete loop gain T(s) at different operating conditions
5. Sweep all parasitics (ESRs, capacitor etc.) and check there is always a 

sufficiently-high phase margin
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