Voltage Regulator - 1% Precision Very Low Dropout, Enable

1 A

The NCP706B/AB are a Very Low Dropout Regulators family which provides up to 1 A of load current and maintains excellent output voltage accuracy of 1% including line, load and temperature variations. The operating input voltage range from 2.4 V up to 5.5 V makes this device suitable for Li–ion battery powered products as well as post–regulation applications. The product is available in 3.0 V fixed output voltage option. NCP706B/AB are fully protected against overheating and output short circuit and includes latched OCP protection which automatically latches–off the device in the case of a short circuit event and the NCP706AB has internal active discharge circuit.

Very small 8-pin XDFN8 1.6 x 1.2, 04P package makes the device especially suitable for space constrained portable applications such as tablets and smartphones. Parts feature active output discharge function.

Features

- Operating Input Voltage Range: 2.4 V to 5.5 V
- Fixed Output Voltage Option: 3.0 V
 Other Output Voltage Options Available on Request.
- Low Quiescent Current of Typ. 200 μA
- Very Low Dropout: 155 mV at I_{OUT} = 1 A
- ±1% Accuracy Over Load/Line/Temperature
- High PSRR: 58 dB at 1 kHz
- Internal Soft-Start to Limit the Inrush Current
- Thermal Shutdown and Current Limit Protections
- Stable with a 2.2 μF Ceramic Output Capacitor
- Active Output Discharge (NCP706AB)
- Available in XDFN8 1.6 x 1.2, 04P 8-pin Package
- Latched Overcurrent Protection
- These are Pb-Free Devices

Typical Applications

- Tablets, Smartphones,
- Wireless Handsets, Portable Media Players
- Portable Medical Equipment
- Other Battery Powered Applications

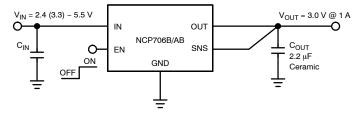


Figure 1. Typical Application Schematic

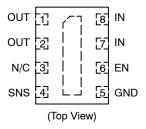
ON Semiconductor®

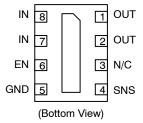
www.onsemi.com

CASE 711AS

MARKING DIAGRAM

XXM•


XX = Specific Device Code


M = Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

PIN CONNECTION

ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 9 of this data sheet.

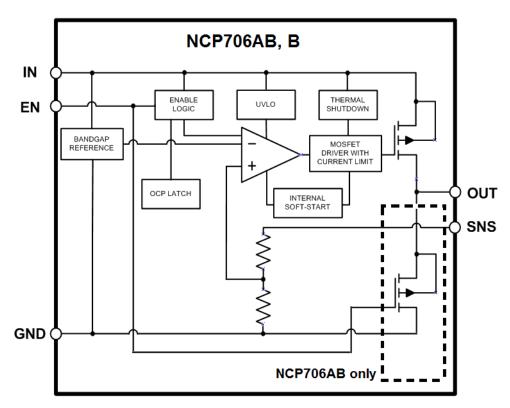


Figure 2. Simplified Internal Schematic Block Diagram

PIN FUNCTION DESCRIPTION

Pin No. XDFN8	Pin Name	Description			
1	OUT	Regulated output voltage. A minimum 2.2 μF ceramic capacitor is needed from this pin to ground to			
2	OUT	assure stability.			
3	N/C	Not connected. This pin can be tied to ground to improve thermal dissipation.			
4	SNS	Remote sense connection. This pin should be connected to the output voltage rail.			
5	GND	Power supply ground.			
6	EN	Enable pin. Driving EN over 0.9 V turns on the regulator. Driving EN below 0.4 V puts the regulator into shutdown mode. In case of the NCP706B/AB pulling the EN low resets the OCP latch state.			
7	IN	Input pin. A small capacitor is needed from this pin to ground to assure stability.			
8	IN				
_	Exposed Pad	This pad enhances thermal performance and is electrically connected to GND. It is recommended that the exposed pad is connected to the ground plane on the board or otherwise left open.			

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Input Voltage (Note 1)	V _{IN}	–0.3 V to 6 V	V
Output Voltage	V _{OUT}	-0.3 V to VIN + 0.3 V	V
Enable Input	V _{EN}	-0.3 V to VIN + 0.3 V	V
Output Short Circuit Duration	t _{SC}	Indefinite	s
Maximum Junction Temperature	$T_{J(MAX)}$	150	°C
Storage Temperature	T _{STG}	-55 to 150	°C
ESD Capability, Human Body Model (Note 2)	ESD _{HBM}	2000	V
ESD Capability, Machine Model (Note 2)	ESD _{MM}	200	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.

2. This device series incorporates ESD protection and is tested by the following methods:
ESD Human Body Model tested per EIA/JESD22-A114

- - ESD Machine Model tested per EIA/JESD22–A115
 Latch-up Current Maximum Rating tested per JEDEC standard: JESD78

THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal Characteristics, XDFN8 1.6x1.2, 04P Thermal Resistance, Junction-to-Air	$R_{ heta JA}$	160	°C/W

ELECTRICAL CHARACTERISTICS - VOLTAGE VERSION 3.0 V

 $-40^{\circ}C \leq T_{J} \leq 125^{\circ}C; \ V_{IN} = V_{OUT(NOM)} + 0.3 \ V \ or \ 3.3 \ V, \ whichever \ is \ greater; \ I_{OUT} = 10 \ mA, \ C_{IN} = C_{OUT} = 2.2 \ \mu F, \ V_{EN} = 0.9 \ V, \ unless \ otherwise \ noted. \ Typical values are at \ T_{J} = +25^{\circ}C. \ (Note 3)$

Parameter	Test Conditions			Min	Тур	Max	Unit
Operating Input Voltage		V _{IN}	2.4		5.5	V	
Undervoltage lock-out	V _{IN} rising, I _{OUT} = 0	UVLO	1.2	1.6	1.9	V	
Output Voltage Accuracy	$V_{OUT} + 0.3 \text{ V} \le V_{IN} \le 4.5 \text{ V}, I_{OU}$	_T = 0 – 1 A	V _{OUT}	2.97	3.0	3.03	V
Line Regulation	$V_{OUT} + 0.3 \text{ V} \le V_{IN} \le 4.5 \text{ V}, I_{OU}$	T = 10 mA	Reg _{LINE}		2		mV
Load Regulation	$I_{OUT} = 0$ mA to 1 A, $V_{IN} = 3.3$ V		Reg _{LOAD}		2		mV
Load Transient	I_{OUT} = 10 mA to 1 A in 10 μs, V C_{OUT} = 10 μF	_{IN} = 3.5 V	Tran _{LOAD}		±120		mV
Dropout voltage (Note 4)	I _{OUT} = 1 A, V _{OUT(nom)} = 3.0 V		V_{DO}		155	230	mV
Output Current Limit	V _{OUT} = 90% V _{OUT(nom)}		I _{CL}	1.1			Α
Quiescent current	I _{OUT} = 0 mA	IQ		170	230	μΑ	
Ground current	I _{OUT} = 1 A	I _{GND}		200		μΑ	
Shutdown current	$V_{EN} = 0 \text{ V}, V_{IN} = 2.0 \text{ to } 5.5 \text{ V}$			0.1	1	μΑ	
EN Pin High Threshold EN Pin Low Threshold	V _{EN} Voltage increasing V _{EN} Voltage decreasing	V _{EN_HI} V _{EN_LO}	0.9		0.4	V	
EN Pin Input Current	V _{EN} = 5.5 V	I _{EN}		300	700	nA	
Overcurrent Protection Blanking Time (Note 5)	V _{OUT} = V _{OUT(nom)} down to V _{OL} (Output Shorted to GND)	t _{BLANK}		10		ms	
Turn-on Time	C_{OUT} = 2.2 μ F, from assertion EN pin to 98% $V_{out(nom)}$		t _{ON}		150		μS
Power Supply Rejection Ratio	, 001	f = 100 Hz f = 1 kHz f = 10 kHz	PSRR		65 58 52		dB
Output Noise Voltage	$V_{OUT} = 3.0 \text{ V}, V_{IN} = 4.0 \text{ V}, I_{OUT}$ f = 100 Hz to 100 kHz	V _{NOISE}		300		μV _{rms}	
Thermal Shutdown Temperature	Temperature increasing from T	T _{SD}		160		°C	
Thermal Shutdown Hysteresis	Temperature falling from T _{SD}	T _{SDH}		20		°C	
Active Output Discharge (NCP706AB only)	$V_{EN} \le 0.4 \text{ V}, V_{IN} = 4.5 \text{ V}$	R _{DIS}		60		Ω	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Performance guaranteed over the indicated operating temperature range by design and/or characterization production tested at T_J = T_A = 25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.
 Characterized when V_{OUT} falls 90 mV below the regulated voltage at V_{IN} = 3.3 V, I_{OUT} = 10 mA.
 For more information see APPLICATIONS INFORMATION section on page 8.

TYPICAL CHARACTERISTICS

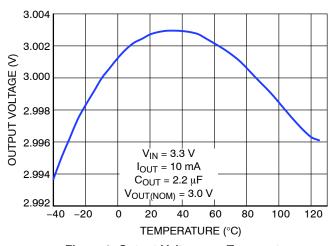


Figure 3. Output Voltage vs. Temperature

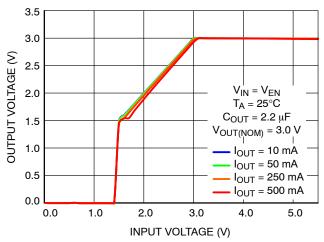


Figure 4. Output Voltage vs. Input Voltage

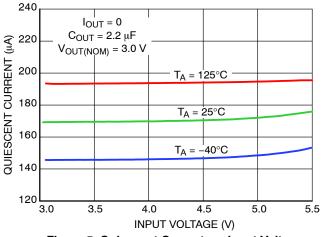


Figure 5. Quiescent Current vs. Input Voltage

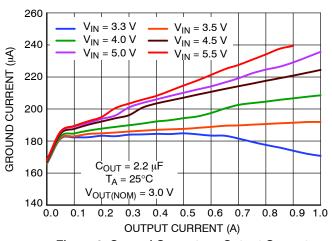


Figure 6. Ground Current vs. Output Current

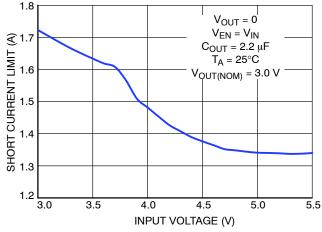


Figure 7. Short Current Limitation vs. Input Voltage

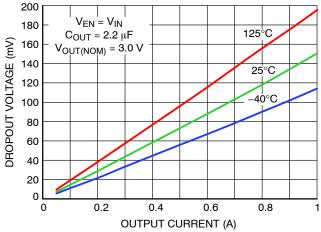


Figure 8. Dropout Voltage vs. Output Current

TYPICAL CHARACTERISTICS

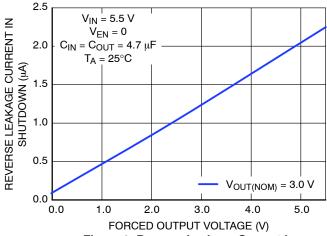


Figure 9. Reverse Leakage Current in Shutdown

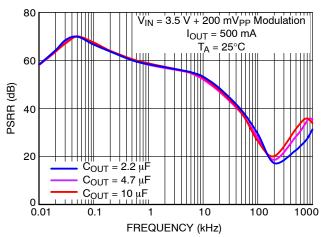


Figure 10. PSRR vs. Frequency & Output Capacitor

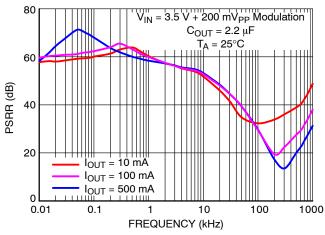


Figure 11. PSRR vs. Frequency & Output Current

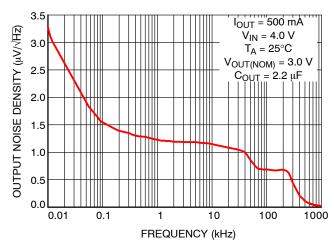


Figure 12. Output Noise Density vs. Frequency

TYPICAL CHARACTERISTICS

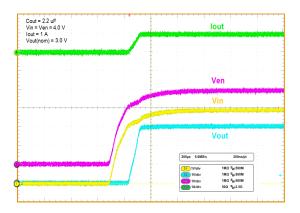


Figure 13. Turn-on by Coupled Input and Enable Pins

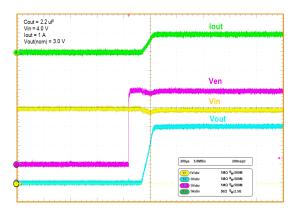


Figure 14. Turn-on by Enable Signal

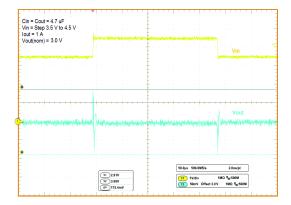


Figure 15. Line Transient Response

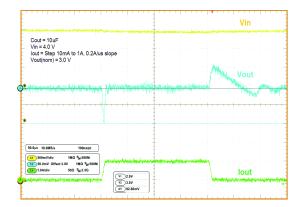


Figure 16. Load Transient Response

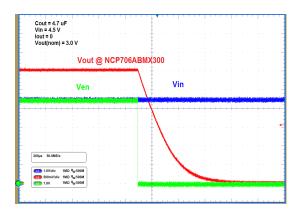


Figure 17. Turn-off by Enable Signal

APPLICATIONS INFORMATION

Input Decoupling (Cin)

A 2.2 μ F capacitor either ceramic or tantalum is recommended and should be connected as close as possible to the pins of NCP706B device. Higher values and lower ESR will improve the overall line transient response.

Output Decoupling (Cout)

The minimum decoupling value for NCP706BMX300TAG and NCP706ABMX300TAG devices is 2.2 μ F. The regulator accepts ceramic chip capacitors MLCC. If a tantalum capacitor is used, and its ESR is large, the loop oscillation may result. Larger values improve noise rejection and PSRR.

Enable Operation

The enable pin EN will turn on or off the regulator. These limits of threshold are covered in the electrical specification section of this data sheet. If the enable is not used then the pin should be connected to $V_{\rm IN}$.

Hints

Please be sure the V_{in} and GND lines are sufficiently wide. If their impedance is high, noise pickup or unstable operation may result.

Set external components, especially the output capacitor, as close as possible to the circuit.

The sense pin SNS trace is recommended to be kept as far from noisy power traces as possible and as close to load as possible.

Thermal

As power across the NCP706B/AB increases, it might become necessary to provide some thermal relief. The maximum power dissipation supported by the device is dependent upon board design and layout. Mounting pad configuration on the PCB, the board material, and also the

ambient temperature affect the rate of temperature rise for the part. This is stating that when the NCP706B/AB has good thermal conductivity through the PCB, the junction temperature will be relatively low with high power dissipation.

The power dissipation across the device can be roughly represented by the equation:

$$P_{D} = (V_{IN} - V_{OUT}) * I_{OUT} [W]$$
 (eq. 1)

The maximum power dissipation depends on the thermal resistance of the case and circuit board, the temperature differential between the junction and ambient, PCB orientation and the rate of air flow.

The maximum allowable power dissipation can be calculated using the following equation:

$$P_{MAX} = (T_J - T_A)/\theta_{JA} [W]$$
 (eq. 2)

Where $(T_J - T_A)$ is the temperature differential between the junction and the surrounding environment and θ_{JA} is the thermal resistance from the junction to the ambient.

Connecting the exposed pad and non connected pin 3 to a large ground pad or plane helps to conduct away heat and improves thermal relief.

Overcurrent Latch Operation

The NCP706B/AB is equipped with latched overcurrent protection feature which will automatically disable the LDO in case of permanent output short circuit.

Initally during the OCP condition the current flowing from the input to the output of the LDO is typically 1.65 A. This current cause the die to heat—up and eventually when the temperature rises up to the thermal shutdown threshold the LDO becomes disabled. To resume the operation of the device it is necessary to toggle the EN to 'OFF' state and than back to 'ON' state again.

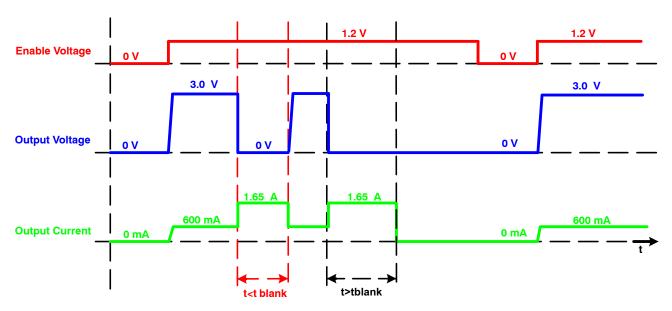
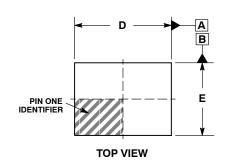
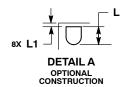


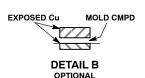
Figure 18. Overcurrent Latch Operation

ORDERING INFORMATION

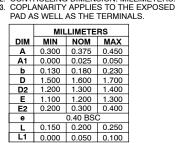
Device	Nominal Ooutput Voltage	Marking	Active Discharge	Package	Shipping [†]
NCP706BMX300TAG	3.0 V	L3	No	XDFN8	3000 / Tape & Reel
NCP706ABMX300TAG	3.0 V	CA	Yes	(Pb-Free)	3000 / Tape & Neel

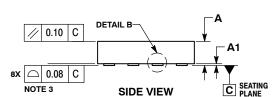

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.





XDFN8 1.6x1.2, 0.4PCASE 711AS ISSUE D

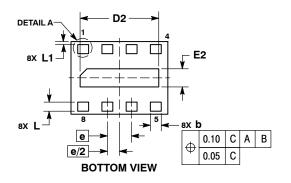

DATE 08 DEC 2015



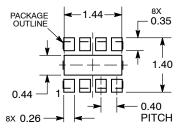
CONSTRUCTION

NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.

GENERIC MARKING DIAGRAM*


XX = Specific Device Code

M = Date Code


= Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " •", may or may not be present.

RECOMMENDED MOUNTING FOOTPRINT*

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, <u>SOLDERRM/D</u>.

DOCUMENT NUMBER:	98AON87768E	Electronic versions are uncontrolled except when accessed directly from the Printed versions are uncontrolled except when stamped "CONTROLLED CO			
DESCRIPTION:	XDFN8, 1.6X1.2, 0.4P		PAGE 1 OF 1		

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales