
SANYO Semiconductor Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan

User Guide

IP Programmer for LPDSP32–V3

Release 10R1

September 2013

SANYO Semiconductor Co., Ltd.
An ON Semiconductor Company

Copyright © 2011-2013 by SANYO Semiconductor Co., Ltd.

Copyright © 2011-2013 by Target Compiler Technologies NV
All rights reserved.

Confidential and Proprietary

2

User Guide – IP Programmer for LPDSP32–V3
September 2013

Confidential and Proprietary
SANYO Semiconductor Co., Ltd.

Legal notes

IP Designer, IP Programmer, their composing computer programs, the associated documentation,
and any example design files provided to users of IP Designer and IP Programmer, are owned by
Target Compiler Technologies NV and/or IMEC VZW. This software, documentation, and design files
may only be used under the conditions specified in a license agreement authorizing such use. See
your license agreement for conditions of use and restrictions of liability.

Neither the whole nor any part of the information contained in this manual may be adapted or
reproduced in any material form except with the prior written permission of SANYO Semiconductor
Co., Ltd.

This manual includes material reproduced with permission from Target Compiler Technologies NV.

© 2011-2013, SANYO Semiconductor Co., Ltd., 1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-
0596, Japan
© 2011-2013, Target Compiler Technologies NV, Technologielaan 11-0002, B3001 Leuven, Belgium

Change log

Version Date Change

10R1 April, 2011 Initial version.

 May 4, 2011 Added wide_offset_add() pointer intrinsic

 Sep, 2011 Added optimization techniques

 Added porting examples

 Mar, 2012 Added exceptional cases

 Sep, 2013 Company logo is changed

3

User Guide – IP Programmer for LPDSP32–V3
September 2013

Confidential and Proprietary
SANYO Semiconductor Co., Ltd.

Table of Contents

1. INTRODUCTION ... 5

2. C APPLICATION LAYER .. 6

2.1 Overview ... 6

2.2 C Integer Types ... 6

2.3 C Floating-Point Types .. 8

2.4 Accumulator Type ... 8

2.5 Intrinsic Functions ... 9

2.5.1 Type Conversion Functions ... 9

2.5.2 Arithmetic Functions ... 11

2.5.2.1 Multiplication .. 11

2.5.2.2 Divide Step ... 12

2.5.2.3 Normalization ... 13

2.5.2.4 Maximum, Minimum, Absolute Value ... 13

2.5.2.5 Bit Set, Bit Reset, Bit Invert, Bit Test .. 14

2.5.3 Special Addressing Modes ... 14

2.5.3.1 Cyclic Addressing ... 14

2.5.3.2 Bit Reversal Addressing .. 15

2.5.3.3 Wide Pointer Offset .. 15

2.5.4 Controlling the Processor Mode .. 16

2.6 Storage Qualifiers ... 16

2.7 Mapping Variables to a Fixed Address .. 17

2.8 Alignment of Data Types .. 17

2.9 I/O interface .. 18

2.10 Interrupts ... 18

2.11 Inline Functions .. 19

2.12 C Library Support .. 20

2.13 C-Application Design Flow ... 20

2.14 Optimization Techniques .. 21

2.14.1 Optimization of Loops .. 25

APPENDIX A. LINKER CONFIGURATION FILE .. 31

APPENDIX B. INITIALIZATION CODE ... 32

APPENDIX C. EXAMPLES .. 34

C.1 Dual MAC Operation ... 34

C.2 Normalization .. 35

C.3 Bit Reverse Addressing ... 36

C.4 FIR filter .. 37

C.5 Complex FIR Filter .. 39

C.6 IIR Filter ... 41

C.7 All-pole IIR Lattice Filter .. 42

C.8 Matrix Multiplication .. 44

C.9 Auto Correlation .. 46

APPENDIX D. EXCEPTIONAL CASES ... 48

4

User Guide – IP Programmer for LPDSP32–V3
September 2013

Confidential and Proprietary
SANYO Semiconductor Co., Ltd.

D.1 Elongation failure (before version 10R1.12) .. 48

D.2 Induction Variable Analysis failure .. 49

BIBLIOGRAPHY ... 50

5

User Guide – IP Programmer for LPDSP32–V3
September 2013

Confidential and Proprietary
SANYO Semiconductor Co., Ltd.

1. Introduction

This is the end-user guide for the IP Programmer for LPDSP32 tool suite. The LPDSP32 processor is
developed and owned by Sanyo.

The tool suite consists of following tools.

 C compiler, (dis)assembler, and linker, which are started from the Chess development
environment CHESSDE.

 Two prebuilt instruction set simulators (lpdsp32 and lpdsp32_fast) are provided to simulate,

debug, or profile LPDSP32 programs.

 Also a debug client (lpdsp32_client) is provided, to connect a debugger to the hardware

board containing the LPDSP32. This is done via the Amontec JTAG Key cable.

All these tools are integrated into CHESSDE. On Windows, CHESSDE can be started via the Start
menu.

The overview manual [1] summarizes the different manuals included in the distribution. Most manuals
are generic manuals belonging to the retargetable IP Designer tool suite. Processor-specific
information is included in separate manuals like this one.

This LPDSP32-specific manual describes the C application layer (C data types and intrinsic functions).
It also describes the flow generally followed when any application is ported to LPDSP32, various tips
for optimization to make the best use of the processor and compiler resources and certain things the
programmer should be aware of when porting applications.

At the end a few examples are provided to show the usage of LPDSP32 intrinsic functions and to give
an idea as to how certain DSP functions can be ported to and optimized for LPDSP32.

6

User Guide – IP Programmer for LPDSP32–V3
September 2013

Confidential and Proprietary
SANYO Semiconductor Co., Ltd.

2. C Application Layer

2.1 Overview

This chapter describes the C application layer that the CHESS compiler supports for LPDSP32. It
consists of following information.

 The implementation of the C built-in types and operators on LPDSP32.

 The dedicated accumulator data type, called accum_t.

 The intrinsic C functions directly mapping to specific LPDSP32 instructions.

 I/O interface and interrupts.

 C application design flow.

 Optimization techniques for porting applications to LPDSP32.

Other information, like standard C compliance, C library support, CHESS-specific source code
annotations, mixing C and assembly, can be found in ([2] §Chapters 3, 4)

2.2 C Integer Types

All built-in C integer types and operators are supported. As LPDSP32 is a 32-bit processor, the basic

integer type int corresponds to a 32-bit word. The following table gives the width of all integer types.

Name Number of Bits
char 8

short 16

int 32

long 32

long long 64

Every type also has an unsigned variant having the same width as its signed counterpart.

All C built-in operators and conversions are supported on the integer types. Specifically, following

operators are supported on the types (unsigned) int and (unsigned) long long.

 The additive operators (+, -)

 The multiplicative operators (*, /, %)

 The shift operators (<<, >>)

 The relational operators (<, <=, >, >=, ==, !=)

 The bitwise logical operators (&, |, ^, ~)

 The logical operators (&&, ||)

 All derived operators like increment operator, unary minus, and assignment operators (+=, . . .)

 Type conversions between all integer types (only type conversions between different widths result
in actual LPDSP32 instructions).

Some Remarks:

 As the LPDSP32 smallest addressable memory word is 8-bit, it holds that:
sizeof(char) = 1

sizeof(short) = 2

sizeof(int) = 4

sizeof(long) = 4

sizeof(long long) = 8

 The C operators are either done on 32-bit (for the type (unsigned) int) or 64-bit precision (for

ffyfdy
ハイライト表示

ffyfdy
ハイライト表示

7

User Guide – IP Programmer for LPDSP32–V3
September 2013

Confidential and Proprietary
SANYO Semiconductor Co., Ltd.

the type (unsigned) long long). Both precisions are efficiently supported on LPDSP32. The

only difference is that only 4 data registers can hold 64-bit values, while 8 data registers can hold
values up to 32-bit. Also the 64-bit multiplication and division are somewhat more expensive.

 In case of narrowing integer type conversions, the excessive bits are discarded (i.e., wrapping or
modulo behavior).

 Left shifts (<<) and multiplication (*) always do wrapping (i.e., modulo behavior) in case the

mathematical result exceeds the 32-bit or 64-bit range. A signed right shift (>> on int and long

long) is injecting sign bits at the MSB side. The shift factor should be non-negative and smaller

than 32 or 64 for 32 and 64-bit shifts respectively.

 Additive operators on the signed integer types (int and long long) have no well-defined

behavior in case of overflow. Depending on the context, you can either obtain wrapping,

saturation, or use of the extended precision of the 72-bit data-path. Use the unsigned type

variant to force wrapping, or make use of the accum_t type to use the extended precision or

force saturation (§2.4, §2.5). The accum_t type result is passed through a rounding and

saturation unit to take care of the overflow.

Examples:

int a, b, c;

c = (unsigned)b + c; //32-bit modulo

c = rnd_saturate(to_accum(a) + to_accum(b)); //32-bit saturated

long long aa, bb, cc;

cc = (unsigned long long)aa + bb; //64-bit modulo

cc = saturate(llto_accum(aa) + llto_accum(bb)); //64-bit saturated

 Division (/) and modulo (%) operations are supported for all data types (both signed and

unsigned). An internal library uses the hardware division unit to compute the quotient and

remainder of the divisor and the dividend (§2.5.2.2). If a/b and a%b are needed together, they

are recognized as common sub-expressions when a and b are not changed in between.

 It is also possible to initialize int variables with fractional floating-point constants, using following

reinterpretation function:

Function Description

int as_int(double d);
d must be a constant in range [-1,1], interpreted as 32-bit

number with 31 fractional bits.

Example: int a = as_int(0.5); //same as a = 0x40000000

 bool data type of C-language is not supported on LPDSP32.

 After including <stdint.h>, you have access to following exact-width C types:

typedef signed char int8_t;

typedef signed short int16_t;

typedef signed int int32_t;

typedef signed long long int64_t;

typedef unsigned char uint8_t;

typedef unsigned short uint16_t;

typedef unsigned int uint32_t;

typedef unsigned long long uint64_t;

ffyfdy
ハイライト表示

ffyfdy
ハイライト表示

8

User Guide – IP Programmer for LPDSP32–V3
September 2013

Confidential and Proprietary
SANYO Semiconductor Co., Ltd.

2.3 C Floating-Point Types

Although LPDSP32 is a fixed-point processor, the CHESS compiler also supports the C built-in types

float (single precision) and double (double precision) on LPDSP32, by emulating them in software.

The type long double is not supported on LPDSP32.

All C built-in operators on the floating types are provided:

 arithmetic operators (+, -, *, /),

 the relational operators (<, <=, >, >=, ==, !=),

 conversion between float/double and between the integer types (unsigned/signed

int/long/long long).

 Also some basic <math.h> functions are supported, listed in (§2.12).

The implementation is IEEE-754 conforming, and is based on the Softfloat package of John R.
Hauser.

But floating point arithmetic is not recommended for final use since floating point code significantly
increases the cycles required when compared to a fixed point implementation (like in any fixed point
processor emulating floating point operations).

2.4 Accumulator Type

To model the 72-bit accumulator registers in LPDSP32, the 72-bit accum_t data type has been

introduced. It consists of 8 overflow bits (extension word), 32-bit high word and 32-bit low word. This
type is used to do DSP accumulations, where we accumulate the sum of products of fractional

numbers (Q1.31 x Q1.31) using the intrinsic function, fract_mult(). The final accumulated value

can be rounded and saturated to obtain the output in Q1.31 format or only saturated to obtain the

output in Q1.63 format.

Note: In this document to represent fractional numbers we use the Q format(Qn.m), where n is the

number of bits before a notional binary point, and m is the number of bits that follow it. n specifies how

many bits represent an integer value, and m specifies how many bits represent subdivisions within

each integer value. We use the signed Q-format, so values are divided equally on either side of zero.

The data range for a signed n.m bit fractional number is (-2
(n-1)) to (1 - 2

((n-1)-m)
). Thus, the data

range for a 32 bit(Q1.31) fractional number is -1 to +0.99999999953433, including ‘0.0’, i.e.

0x80000000 to 0x7FFFFFFF, including 0x00000000.

On the accumulator type the same operators are provided as on the integer types (§2.2) with following
exceptions.

 No multiplicative operators (*, /, %) are provided. Instead, intrinsic multiply functions are provided
(§ 2.5.2).

 No type conversion operators with integer types are provided. Instead, intrinsic conversion
functions are provided (§ 2.5.1).

 No increment/decrement operators (++,––).

Some Remarks:

 For variables of type accum_t the shift factor can be negative which will result in a shift to

opposite direction. The compiler uses arithmetic shift instructions for right/left shift.

 When initializing an accum_t variable with a literal (32-bit variable), we must specify the same

using the intrinsic function to_accum(val). The 32-bit value is stored in bits 63 to 32 of the
accumulator, bits 31 to 0 are filled with zeros and the sign is extended. Similarly, for a 64-bit value,

we use llto_accum(val). The value is stored in bits 63 to 0 and the result is sign extended.

ffyfdy
ハイライト表示

ffyfdy
ハイライト表示

9

User Guide – IP Programmer for LPDSP32–V3
September 2013

Confidential and Proprietary
SANYO Semiconductor Co., Ltd.

Examples:
accum_t val0 = 0; //Compiler error

accum_t val1 = to_accum(0); //OK

accum_t val2 = to_accum(0x1276583F); //OK: 72-bit literal

 //val2 = 0x00-1276583F-00000000

accum_t val3 =

llto_accum(0x1276583F76EDF011);

//OK: 72-bit literal

//val3 = 0x00-1276583F-76EDF011

2.5 Intrinsic Functions

Intrinsic functions are dedicated functions, provided in the C compiler, to implement functionality that
is not available through operators of ANSI C. These functions have an efficient hardware
implementation on the LPDSP32. When the compiler encounters such a function, it recognizes it and
uses the matching LPDSP32 functionality to implement the C code.

2.5.1 Type Conversion Functions

The following type conversion functions are provided to effectively convert from one data type to
another.

Function Description

accum_t to_accum(int i);
puts i in high word, with sign extension in

extension word, and zero in low word

int rnd_saturate(accum_t a);

extracts high word of a after rounding and

saturation (dependent on round & saturate
mode bits)

int extract_high(accum_t a);
extracts high word of a (not affected by mode

bits)

int extract_low (accum_t a); extracts low word of a

int extract_ext (accum_t a);
extracts extension word of a (8-bits sign-

extended to 32-bits)

accum_t update_low(accum_t a, int i); overwrites low word of a with i

accum_t update_ext(accum_t a, int i);
overwrites extension word of a with 8 LSBs of
i

accum_t llto_accum(long long l);
puts 64-bit l in high::low word, with sign

extension in extension word

long long saturate(accum_t a);
extracts 64-bit high::low word after saturation
(dependent on S mode bit)

long long extract_long(accum_t a);
extract 64-bit high::low word (not affected by
mode bits)

int extract_high(long long l); extracts 32-bit high word of l

int extract_low(long long l); extracts 32-bit low word of l

long long deposit_high(int i); puts i in high word, zero in low word

long long update_low(

long long l, int i);
overwrites low word of l with i

unsigned long long llcompose(

int a, int b);

concatenates two 32-bit words to a 64-bit

word (a at LSB side, b at MSB side).

void lldecompose(

unsigned long long l, int& a, int& b);

splits 64-bit l in two numbers a (32 LSBs)

and b (32 MSBs).

The most natural type conversion functions on LPDSP32 are to_accum(), rnd_saturate() for

conversions between int and accum_t, and llto_accum(), saturate() for conversions between

long long and accum_t. The other functions are also mapped efficiently on LPDSP32.

10

User Guide – IP Programmer for LPDSP32–V3
September 2013

Confidential and Proprietary
SANYO Semiconductor Co., Ltd.

The (de)compose functions are useful for complex arithmetic, where a 64-bit (unsigned long

long) variable contains a real and imaginary part. The (de)composition is possible only on 64-bit

aligned memory accesses, so it only makes sense to apply these functions on 64-bit arrays. If the
memory is not aligned, the simulator breaks with an error but the hardware JTAG debugger currently
has no means to check the address for alignment, so the behavior is undefined.

Below are some example usages of the above functions.

Example 1: Initialization
accum_t acc = to_accum(0); //acc = 0x00-00000000-00000000

int i = 0x1347845D;

acc = to_accum(i); //acc = 0x00-1347845D-00000000

int i = 0x8378239D;

accum_t acc = to_accum(i); //acc = 0xFF-8378239D-00000000

long long j = 0x7459024A-09567FEA;

accum_t acc = llto_accum(j); //acc = 0x00-7459024A-09567FEA

Example 2: Fractional multiplication example with various ways of using the above functions.

int coef = 0xDE7F3456;

int img = 0x125690EF;

accum_t acc = fract_mult(coef, img); //acc = coef×img×2

 //acc = 0xFF-FB333AE3-CE2C7894

Case 1: int out1 = rnd_saturate(acc); //out1 = 0xFB333AE4

 //If round/saturate bits are set

Case 2: int out2 = extract_high(acc); //out2 = 0xFB333AE3

 //Extracts higher 32-bit of acc

Case 3: int out3 = extract_low(acc); //out3 = 0xCE2C7894

 //Extracts lower 32-bit of acc

Case 4: int out4 = extract_ext(acc); //out4 = 0xFFFFFFFF

 //Extracts the overflow bits

Case 5: accum_t acc = update_low(acc, img);

 //acc = 0xFF-FB333AE3-125690EF

 //Note that the lower bits are replaced by img

Case 6: accum_t acc = update_ext(acc, coef);

 //acc = 0x56-FB333AE3-CE2C7894

 //Note that the overflow bits are replaced by the coef

Case 7: Assume after ‘N’ MAC operations, we get, acc = 0xf2-93456212-A4B23612

Saturation enabled:
long long p = saturate(acc); //p = 0x80000000-00000000

Saturation disabled:
long long p = saturate(acc); //p = 0x93456212- A4B23612

Mode Independent:
long long p = extract_long(acc); //p = 0x93456212- A4B23612

11

User Guide – IP Programmer for LPDSP32–V3
September 2013

Confidential and Proprietary
SANYO Semiconductor Co., Ltd.

Example 3:

long long Coef[100] = { };

//sine and cosine coefficients packed into 64-bit buffer

long long Data[100] = { };

//real and imaginary data packed into 64-bit buffer

int Csin, Ccos;

int Dr, Di;

//load the sine and cosine coefficients in a single cycle

lldecompose(Coef[i], Csin, Ccos);

//load the real and imaginary data in a single cycle

lldecompose(Data [i], Dr, Di);

// real part of the product

accum_t Ar = fract_mult(Csin, Dr) + fract_mult(Ccos, Di);

//imaginary part of the product

accum_t Ai = fract_mult(Ccos, Dr) - fract_mult(Csin, Di);

//store the product in a single cycle

llcompose(rnd_saturate(Ar>>1), rnd_saturate(Ai >>1));

Note:

 In the last line of the above example, storing the scaled data is directly mapped to the “scaled”
operation in the instruction. Thus the data is rounded, saturated, scaled and stored to the memory
in a single cycle.

 After arithmetic operations, before using llcompose always use rnd_saturate.

2.5.2 Arithmetic Functions
2.5.2.1 Multiplication

For regular C types int and unsigned int, the regular * operator is supported. The result is again an

int after wrapping and truncation. However to take advantage of the double precision output and

fractional multiplication support on the LPDSP32, the intrinsic functions listed below are provided.

The difference between integer and fractional multiplication is that in the latter one the result is shifted

up by one bit so that the result of Q1.31 * Q1.31 is aligned as Q1.63. The output (typically of type

accum_t) always has full precision.

Function Description
accum_t fract_mult(int, int); fractional signed × signed multiplication
accum_t fract_mult_su(int, unsigned); fractional signed × unsigned

multiplication
accum_t fract_mult_uu(unsigned, unsigned); fractional unsigned × unsigned

multiplication
long long long_mult(int, int); integer signed x signed multiplication
long long long_mult_su(int, unsigned); integer signed × unsigned multiplication
accum_t along_mult_uu(unsigned, unsigned); integer unsigned x unsigned

multiplication with 72-bit result, with
zero in extension word

The fractional functions above are of importance. The integer multiplications are selected
automatically by the CHESS compiler based on rewrite rules.

ffyfdy
ハイライト表示

ffyfdy
ハイライト表示

ffyfdy
ハイライト表示

ffyfdy
ハイライト表示

ffyfdy
ハイライト表示

ffyfdy
ハイライト表示

12

User Guide – IP Programmer for LPDSP32–V3
September 2013

Confidential and Proprietary
SANYO Semiconductor Co., Ltd.

Example 1: Rewrite rule
int a, b;

long long c = (long long)a * (long long)b;

 //mapped to long_mult(a, b);

Example 2:

int coef = 0xDE7F3456;

int img = 0x125690EF;

long long p = long_mult(coef, img); //p = coef×img

 //p = 0xFD999D71-E7163C4A

accum_t acc = fract_mult(coef, img); //acc = coef×img×2,

 //acc = 0xFF-FB333AE3-CE2C7894

2.5.2.2 Divide Step

The LPDSP32 has iterative divide step hardware for division support. There is a library function that
uses this hardware for performing division, which the compiler maps when a division is called i.e., a/b
maps to this function. Below is the intrinsic function for the divide step.

Function Description
accum_t div_step(accum_t x, accum_t y,

uint3_t& sr);

Non-restoring division step, i.e., 2x+y or 2x−y

dependent on previous sign, and complement
of new sign is added to LSB.

An example to divide two numbers with a zero Q format is available in the install folder of LPDSP32

processor ($ToolInstallFolder\designs\lpdsp32\lib\), in the files lpdsp32_div.h and

lpdsp32_div.c.

Example 1: 32-bit division of positive numbers

unsigned div32_pos(accum_t x, accum_t y, unsigned& r)

//assuming that 32-bit dividend is in low word of ’x’ and 32-bit

//divisor is in high word of ’y’ both with zero extension

{

uint3_t sr = 0; // clear N-bit

for (int i = 0; i < 32; i++)

x = div_step(x,y,sr);

unsigned q = extract_low(x); // quotient is in low word

if (neg(sr)) x = x + y; // restore remainder

r = extract_high(x); // remainder is in high word

return q;

}

Example 2: To divide two fractional numbers with a Qn.m format
int div32_nr_by_dr_for_q (int nr, int dr, short qf)

{

if(dr == 0) //validating the denominator

return(nr);

int sign = 0; //set sign to zero

accum_t num, den; //numerator and denominator declarations

//find the number of steps for “step divide”

int steps = 31 - norm(to_accum(nr));

sign = 1|(nr>>31); //find the sign of numerator

sign = sign*(1|(dr>>31)); //now decide the sign of the quotient

num = to_accum(abs(nr)); //load the numerator(unsigned)

ffyfdy
ハイライト表示

13

User Guide – IP Programmer for LPDSP32–V3
September 2013

Confidential and Proprietary
SANYO Semiconductor Co., Ltd.

num = num >> steps;

den = to_accum(abs(dr)); //load the denominator(unsigned)

//initialize the status reg ‘VNZ’ flags

//because the div_step will use these flags

uint3_t sr = 0;

//Run the step division for required Qn.m format

//qf = n in Qn.m

for(int i = 0; i < (steps + qf); i++)

num = div_step (num ,den ,sr);

//Quotient will be accumulated in the low word

//Return the quotient with the sign

return (extract_low(num)*sign);

}

2.5.2.3 Normalization

A normalization function is provided that computes the number of sign bits (minus 9 to account for the

8 overflow bits) of an accum_t variable. Sign bits mean, the number of ones before the first zero in

case of a negative number and number of zeros before the first one in case of a positive number.
When the input is zero, zero is returned, when the input is minus one (all ones), 63 is returned.

Function Description
int norm(accum_t a); computes shift factor (to the left) to normalize the input a

Example:
After some operations, the contents of ax0 and the corresponding normalization results are shown
below:

ax0 nrm(ax0) Remark

0x000000000000000000 0 //zero

0xFFFFFFFFFFFFFFFFFF 63 //-1

0x000000000004F55007 36 //pos. no.

0xFFFF80EF0600050100 8 //neg. no.

0x08F08C000000000700 -5 //pos. no.

0xC93367000000004500 -7 //neg. no.

2.5.2.4 Maximum, Minimum, Absolute Value

The following functions are provided for minimum, maximum, and absolute value, working on signed
integers:

Function Description
int max (int, int); returns the maximum of two signed integers
int min (int, int); returns the minimum of two signed integers
int abs (int); returns the absolute value of an integer
long long llmax(long long,

long long);

returns the maximum of two signed long long variables

long long llmin(long long,

long long);

returns the minimum of two signed long long variables

long long llabs(long long); returns the absolute value of a long long variable

accum_t max (accum_t,

accum_t);

returns the maximum of two accum_t variables

accum_t min (accum_t,

accum_t);

returns the minimum of two accum_t variables

ffyfdy
ハイライト表示

ffyfdy
ハイライト表示

ffyfdy
ハイライト表示

ffyfdy
ハイライト表示

ffyfdy
ハイライト表示

ffyfdy
ハイライト表示

ffyfdy
ハイライト表示

ffyfdy
ハイライト表示

ffyfdy
ハイライト表示

14

User Guide – IP Programmer for LPDSP32–V3
September 2013

Confidential and Proprietary
SANYO Semiconductor Co., Ltd.

accum_t abs (accum_t); returns the absolute value of an accum_t variable

Since these functions have very efficient, single cycle execution support in the hardware, it is
recommended to use them to improve efficiency.

2.5.2.5 Bit Set, Bit Reset, Bit Invert, Bit Test

The following functions can be used to set (bitset), reset (bitrst), invert (bitinv), or test

(bittst) a bit in an integer variable. These functions can as well be applied to unsigned integer

types (without any extra cost as the implicit signed/unsigned conversions have zero cost).

Function Description

int bitset(int, int i); bit number i must be in range [0,31]
int bitrst(int, int i);
int bitinv(int, int i);
bool bittst(int, int i);

long long llbitset(long long, int i); bit number i must be in range [0,63]
long long llbitrst(long long, int i);
long long llbitinv(long long, int i);
bool llbittst(long long, int i);

accum_t bitset(accum_t, int i); bit number i must be in range [0,63]
accum_t bitrst(accum_t, int i);
accum_t bitinv(accum_t, int i);
bool bittst(accum_t, int i);

The CHESS compiler will automatically select these functions in case of bit-wise logical operations with
manifest operands that are a power of two.

Example:

int a;

if ((a & 0x8) != 0) ...; //mapped to bittst(a,3)

2.5.3 Special Addressing Modes
2.5.3.1 Cyclic Addressing

To do cyclic addressing on an array, following pointer update function can be used.

Function Description
T* cyclic_add(T* p, int i,

T* start, int len);

Compute p+i considering wrapping when exceeding

the start address (when i is negative) or the end

address i.e., start + len (when i is positive)

This function is available for any type T, both built-in C types and user defined types (C structs). The

pointer offset (i) and length (len) arguments are scaled automatically based on sizeof(T). The

pointer offset may not exceed the array length. There are no alignment constraints on the allocation of
the array in memory. So, cyclic addressing can be applied to any array, e.g., local arrays on the
software stack or array struct members.

Example:

char chess_storage(DMA) buff_in[256];

char chess_storage(DMA) buff_out[256];

char *data_ptr;

char data_adr;

int adr_inc;

adr_inc = 3;

ffyfdy
ハイライト表示

ffyfdy
ハイライト表示

ffyfdy
ハイライト表示

ffyfdy
ハイライト表示

ffyfdy
ハイライト表示

ffyfdy
ハイライト表示

ffyfdy
ハイライト表示

ffyfdy
ハイライト表示

ffyfdy
ハイライト表示

ffyfdy
ハイライト表示

ffyfdy
ハイライト表示

ffyfdy
ハイライト表示

ffyfdy
ハイライト表示

ffyfdy
ハイライト表示

ffyfdy
ハイライト表示

15

User Guide – IP Programmer for LPDSP32–V3
September 2013

Confidential and Proprietary
SANYO Semiconductor Co., Ltd.

data_ptr=buff_in;

 for (int i = 0; i < 256; i++){

 data_ptr=cyclic_add(data_ptr, adr_inc, buff_in, 256);

 buff_out[i] = *data_ptr;

 }

2.5.3.2 Bit Reversal Addressing

Bit-reversal addressing is supported by the LPDSP32 hardware, which can be used with the following
function:

Function Description

T* reverse_add(T* p,

int Len/2, T* start);

compute p + Len/2 while propagating the carry

from right to left instead of left to right

Again, this function is available for any type T, and the pointer offset Len/2 is scaled automatically

based on sizeof(T).

Given a pointer p, the function returns the value in p incremented in bit-reversed order for an array of

size Len, which must be a power of 2.

For bit-reversal addressing, the start (or base) address of the buffer must be aligned to a multiple of a
power of two, being equal or larger than the size of the buffer. Suppose that the length of the bit-

reversal buffer is N, then the start address must be a multiple of 2n, with N≤2n. This address alignment

is done through the chess_storage() specifier.

Example: Address alignment

char chess_storage (DMA %1024) BitRevBuf[1024]

Example: To perform bit-reversed addressing on an array of length 128

int chess_storage(DMA % 128*sizeof(int)) A[128];

//Alignment constraint of 128*4

void copy_reversed(int B[])

{

int* p = A;

for (int i = 0; i < 128; i++)

{

*p = B[i];

p = reverse_add(p,128/2,A);

}

}

The compiler tends to automatically put circular buffers and bit-reversal buffers at the end of the
memory map. It is advised to force the linker to put them at the beginning of the memory space.

2.5.3.3 Wide Pointer Offset

The pointer offset registers in the address generation units (AALU) of LPDSP32 are restricted to 18-
bit signed values. This is sufficient for most applications. As long as the array sizes remain below
131072 Kbytes, no problem can occur. Also bigger arrays are typically handled correctly. Here further
explanation is provided on how wide pointer offsets, i.e., pointer offsets exceeding the 18-bit signed
range, after scaling, are handled by the compiler and simulator.

 When the pointer offset is a constant expression, known at compile time, the compiler will always
compute the correct result (on the AALU when possible and on the wider ALU when needed).

ffyfdy
ハイライト表示

16

User Guide – IP Programmer for LPDSP32–V3
September 2013

Confidential and Proprietary
SANYO Semiconductor Co., Ltd.

Example:
struct X

{

int A[32768]; // sizeof(A) == 131072

int a;

int b;

}

The compiler will correctly compute the address of a and b struct members (based on the start

address of the struct), even when these offsets are wide.

 When the pointer offset is data-dependent (which is only allowed inside arrays in C), the compiler
assumes that the offset fits in the 18-bit signed range, and will do the pointer addition on the
AALU. However, the simulator will generate a run-time warning when moving a value exceeding
the 18-bit signed range to an LPDSP32 18-bit AALU offset register.

To force a pointer addition on the wider ALU, to do a pointer addition with a wide data-dependent
offset, you can use following intrinsic function.

Function Description
T* wide_offset_add(T* p, int i); compute p + i, where i*sizeof(T) may

exceed the 18-bit signed range

Again, this function is available for any type T, and the pointer offset i is scaled automatically

based on sizeof(T).

2.5.4 Controlling the Processor Mode

The following functions are provided.

Function Description
void set_round_bit(int b); sets round bit R (b = 0 or 1)

void set_saturate_bit(int b); sets saturate bit S (b = 0 or 1)

void disable_interrupts(); sets IE bit to zero
void enable_interrupts(); sets IE bit to one
void set_interrupt_mask(int m); sets interrupt mask register (m = 0 to 32767). A zero bit

will discard any interrupt request
int get_interrupt_mask(); returns the value of the interrupt mask register
int get_irq_stat(); returns the value of the interrupt request status register
void software_interrupt(int x); call interrupt routine number (x = 1..15), independent

from mask register
void core_halt(); put core in power-down mode

2.6 Storage Qualifiers

By default global variables are allocated to memory DMA. Using chess_storage() annotations [2],

global or static variables can also be allocated to DMB or DMIO. LPDSP32 supports parallel memory

access using DMA and DMB.

Example:
int A[10]; //same as int chess_storage(DMA) A[10];

int chess_storage(DMB) B[10]; //This array will be mapped in DMB

volatile int chess_storage(DMIO) C; //This array will be mapped in DMIO

Note that 64-bit long long variables can only be allocated to the default memory DMA which

supports 64-bit single cycle access.

ffyfdy
ハイライト表示

ffyfdy
ハイライト表示

ffyfdy
ハイライト表示

ffyfdy
ハイライト表示

ffyfdy
ハイライト表示

ffyfdy
ハイライト表示

ffyfdy
ハイライト表示

ffyfdy
ハイライト表示

ffyfdy
ハイライト表示

ffyfdy
ハイライト表示

ffyfdy
ハイライト表示

17

User Guide – IP Programmer for LPDSP32–V3
September 2013

Confidential and Proprietary
SANYO Semiconductor Co., Ltd.

Explicit pointer definition using the chess_ directive is required, when using a pointer to data mapped

in DMB memory.

Example:
int chess_storage(DMB) * pointer_B;

When passing a variable or pointer mapped to non-DMA memory space through a function argument,

the function must be defined with the argument in the same memory space.

2.7 Mapping Variables to a Fixed Address

Variables can be assigned to a fixed address in the following two ways:

a) Using the chess_storage() specifier in the C code

From within the C code, assign absolute addresses to variables in a fixed memory space, using

the chess_storage() specifier. The address being an unsigned integer value represented in

decimal, octal or hexadecimal.

Example:
int chess_storage (DMA:155) xyz;

int chess_storage (DMIO: 0xC20000) check_var;

Especially when assigning variable names to I/O registers, this is very useful.

b) Mapping the symbol in the linker configuration file
The linker configuration file (<file_name>.bcf) can be customized as per the individual project
needs [3].

Example:
C code: int some_var

bcf file: _symbol some_var 84

Functionally, the methods are identical. It is advised to map the symbol in a linker configuration file, so
that the source code need not be recompiled if any change is there in the address mapping.

2.8 Alignment of Data Types

Unlike some processors where unaligned memory access is supported, the LPDSP32 does not
support unaligned access to memory.

char -> always aligned to an address of 1

short -> always aligned to an address of 2

int -> always aligned to an address of 4

long long -> always aligned to an address of 8

When declaring variables or arrays, the C compiler automatically takes care of the alignment
constraints involved in placing the data in the memory. Memory allocation in the stack for local
variables is also done automatically by the compiler. Since the stack space is defined in the linker
configuration file (.bcf file), it is necessary to initialize the stack space which is aligned to the
maximum word length supported by the processor i.e., 8 words for LPDSP32.

Example:

_stack DMA 0x4000 8192

The above statement tells the processor that the stack space starts from address 0x4000 (i.e.,

address 16384 in DMA) and is of length 8192 bytes.

ffyfdy
ハイライト表示

ffyfdy
ハイライト表示

ffyfdy
ハイライト表示

ffyfdy
ハイライト表示

ffyfdy
ハイライト表示

ffyfdy
ハイライト表示

18

User Guide – IP Programmer for LPDSP32–V3
September 2013

Confidential and Proprietary
SANYO Semiconductor Co., Ltd.

2.9 I/O interface

Data exchange with external devices or peripherals is implemented through I/O memory mapped

variables. Such I/O variables need to be declared as volatile and their scope has to be global.

This informs the compiler that their values can be changed by some external device, not under control
of this code.

Example:

volatile int chess_storage(DMIO:0xC50100) in_data_perix;

volatile int chess_storage(DMIO:0xC50104) out_data_perix;

int rx_data, tx_data;

rx_data= in_data_perix;

out_data_perix = tx_data;

2.10 Interrupts

The interrupt functions or interrupt service routines can also be described in C. The chess directive

property(isr) must be used with the function heading to inform the compiler that the function is an

Interrupt Service Routine. This directive also ensures that a return from interrupt is executed at the
end of the function. The compiler automatically saves the status register and all the other registers
(except hardware loop registers) when entering the routine and restores them back when exiting the
routine.

When there are function calls from inside an interrupt service routine and if the functions have

for/while loops, the compiler might use hardware loops. In order to inform the compiler to use the

software loop, for statement inside the functions should be followed by a chess_no_hw_loop

property Note that the compiler will warn when calling an unannotated function in an ISR. Further
explanation about interrupts and hardware loops is given in Section (§ 2.14.1).

Example 1:
 An example for loop used in a function called from within the ISR.

for (int i = 0;i< 16;i++) chess_no_hw_loop

{

fifo[i] = *ptrOut++;

}

Example 2:

The function below is ISR_process_samples() and returns a void argument. The symbol to be

used in the lpdsp32_init.s file is <isr_function_name>, in this case,

ISR_process_samples.

extern "C" void ISR_process_samples() property(isr)

{

count++;

left_out = *pcm_buf;

pcm_buf = cyclic_add(pcm_buf,1,PCMOutputBuffer,BUFFER_SIZE);

right_out = *pcm_buf;

pcm_buf = cyclic_add(pcm_buf,1,PCMOutputBuffer,BUFFER_SIZE);

}

ffyfdy
ハイライト表示

ffyfdy
ハイライト表示

ffyfdy
ハイライト表示

ffyfdy
ハイライト表示

ffyfdy
ハイライト表示

19

User Guide – IP Programmer for LPDSP32–V3
September 2013

Confidential and Proprietary
SANYO Semiconductor Co., Ltd.

The corresponding assembly initialization file lpdsp32_init.s then becomes:

// $Id: lpdsp32_init.s

//initialization before entering the main function

.text global 0 _main_init

r = 1 //enable rounding

s = 1 //enable saturation

sp = _sp_start_value_DMA //init SP (adjusted to stack in lpdsp.bcf)

ie = 1 ; nop //enable interrupts

//area to load main() arguments

.bss global 0 _main_argv_area DMA 256

//define the ISR vector to corresponding ISR

.undef global text ISR_process_samples

//the interrupt vector table with 15 interrupts

.text global 0 _ivt

jp _main_init //0 - reset

reti ; nop //2 - interrupt 1

jp ISR_process_samples //4 - interrupt 2

reti ; nop //6 - interrupt 3

reti ; nop //8 - interrupt 4

reti ; nop //10 - interrupt 5

reti ; nop //12 - interrupt 6

reti ; nop //14 - interrupt 7

reti ; nop //16 - interrupt 8

reti ; nop //18 - interrupt 9

reti ; nop //20 - interrupt 10

reti ; nop //22 - interrupt 11

reti ; nop //24 - interrupt 12

reti ; nop //26 - interrupt 13

reti ; nop //28 - interrupt 14

reti ; nop //30 - interrupt 15

2.11 Inline Functions

When a function is inlined, processor cycles used for pushing variables onto the stack can be saved.
Hence it is recommended to use inlining when the function size is small and it is not used often.

When the inline function is called many times in a code, the program memory size will increase since
the inline code will be replicated every time it is called.

To inline a function, use the keyword inline before the function definition. If the function is called in

one source file only, write the definition in this source file. If this function is going to be called in many
source files, then write the function definition in a header file and include this header file in the
corresponding source files.

Note: For Microsoft Visual C++, the __inline keyword is available in both C and C++, but the

inline keyword is available only in C++. During native simulation (compiling and executing the

application source code on your host machine with a regular C/C++ compiler), since the projects are

compiled with the /TP switch, either of the syntaxes can be used. To maintain uniformity we suggest

the use of only the inline keyword.

It is also possible to inline assembly functions within the C program, similar to inlining C code
functions.

ffyfdy
ハイライト表示

ffyfdy
ハイライト表示

20

User Guide – IP Programmer for LPDSP32–V3
September 2013

Confidential and Proprietary
SANYO Semiconductor Co., Ltd.

Example: Inlined assembly code for powerdown

This example has limited functionality, no list of registers to save in the clobbers [2].

inline assembly void core_halt()

clobbers() property(volatile functional loop_free)

{

 asm_begin

 powerdown; nop

 asm_end

}

2.12 C Library Support

Chess provides support for most standard C headers, as discussed in,([2]§3.3). In addition, on

LPDSP32, following functions from <math.h> are supported.

Single Precision Double Precision

float ceilf(float); double ceil(double);

float floorf(float); double floor(double);

float truncf(float); double trunc(double);

float roundf(float); double round(double);

float fabsf(float); double fabs(double);

float ldexpf(float, int); double ldexp(double, int);

float frexpf(float, int*); double frexp(double, int*);

float copysignf(float, float); double copysign(double, double);

float cosf(float); double cos(double);

float sinf(float); double sin(double);

float expf(float); double exp(double);

float logf(float); double log(double);

float log10f(float); double log10(double);

float sqrtf(float); double sqrt(double);

float powf(float, float); double pow(double, double);

2.13 C-Application Design Flow

Develop the fixed point C code for the application. Compile it with the C compiler and run it on the
native platform to make sure it is working as expected ([2], §3.2 Native compilation of target-specific
C/C++ source code).

 Wherever possible use the appropriate types, operations, etc. as outlined in this chapter

 Replace all dynamic memory allocations with static allocations.

 To increase performance, replace all the appropriate code with intrinsic functions.

 Apply source code annotations to provide the compiler with more information to increase
performance.

 Use storage qualifiers (memory specifiers) to explicitly assign some arrays or scalars to DMB

memory.

 Check the results of this modified version with that of the fixed point version using a set of test
cases. Define an acceptance criteria for the differences in the results and proceed to native
compilation.

21

User Guide – IP Programmer for LPDSP32–V3
September 2013

Confidential and Proprietary
SANYO Semiconductor Co., Ltd.

 Native compilation is performed using the standard C++ compiler by including the library which
supports the LPDSP32 data types, operations and intrinsic functions. Since the simulation time
using the CHESS compiler is much longer as compared to native compilation, the latter can be
used to quickly simulate and debug the functionality of the C code.

 For native compilation, follow these steps:

 Add lpdsp32_native.c,.\isg\lpdsp32_chess_opns.c

and .\isg\lpdsp32_chess_types.c to the C++ application project. These files are

located in: $ToolInstallFolder\designs\lpdsp32\lib\

 Include the CHESS compiler processor header file lpdsp32_chess.h, using an include

statement at the beginning of some central header file or use the include file option of the C++

compiler (eg. /FI option i.e Force include file option in Microsoft Visual C++). By including this

file the functions to emulate the LPDSP32 are automatically called. This file will include the
other required header files located in the following directories:
$ToolInstallFolder\chessdir\,

$ToolInstallFolder\designs\lpdsp32\lib\ and
$ToolInstallFolder\designs\lpdsp32\lib\isg.

 Use the /TP switch to compile C code as C++.

 If exact-width C types such as int32_t, int64_t are used in the application source files,

include the stdint.h file to the project.

 During native compilation, there is no need to remove chess-specific directives like

chess_storage() from the code. They are defined as nothing in the chess.h file except for the

restrict keyword [2].

 At this point check the results of the test cases according to the criteria set before; proceed to

compilation and simulation on the LPDSP32 compiler and simulator.

 Open the CHESSDE and create a new project, and include all the source code files into it. Run
CHESS compiler to compile the application and use CHECKERS simulator to simulate it. This is a
bit-true and cycle-true simulation. Compare the results of the test cases – they should be identical
to the results of the native simulation. Generate the profiling data for further analysis.

 Use DSP optimisation techniques to reduce the cycle count and the memory usage (§2.14). Also
analyze using alternative algorithms for sub-modules

 After trying out these changes, the application can still be simulated and compiled with the C
compiler on the native platform, to debug the function, and then same can be run on the
LPDSP32 simulator to check for the cycles/memory reductions.

 C compiler directives allow code optimizations, while remaining completely within the unified C
language environment, hence they should be used wherever possible.

 As far as possible write the code for the LPDSP32 in ANSI C. Use assembly language
programming only when absolutely necessary.

2.14 Optimization Techniques

In this section different optimization techniques to generate efficient code are described. By applying
these techniques the required number of cycles and the program memory can be reduced.

Before optimizing, it is important that the programmer understands the processor architecture
including its advantages/ limitations, the instructions supported by the processor, ANSI-C code etc.

22

User Guide – IP Programmer for LPDSP32–V3
September 2013

Confidential and Proprietary
SANYO Semiconductor Co., Ltd.

1. Some of the limitations of the processor are given below :

 There is a single ALU unit (shift operators, logical operators etc).

 There is a dual adder for the accumulator (only add/sub and multiply from the second ALU).

 The dual load/store will work only with 32-bit data types.

 The 64-bit load/store works only on the DMA address space.

 Although there are two multipliers, only one of them supports unsigned multiplications.

 Output of the multiplier is always placed in an accumulator. (i.e., a*b*c may result in

inefficient code if not written properly).

Note: By ‘limitations’, we mean the properties of the processor. The programmer should be aware
of the above so that he can design the C code with the above architecture in mind.

2. Some of the ISA points to be understood are listed below :

 Load/Store instruction execution with the pipeline.

 Relative jumps and absolute jumps.

 Delayed branch and calls.

 Arrangement of instructions in the 40-bit program memory.

 Types of instructions available in short and long instructions.

3. Some general comments for generating good assembly code are listed below. The best way to

accomplish it would be to get to know the minor C details that affect the optimizations.

 If variables/pointers remain constant, declare them using the keyword const. The compiler

will be free to store these anywhere.

 Declare the scope of function and variables properly. Do not make the scope global un-
necessarily, as that will hurt the optimization.

 Use restrict keyword when necessary, this will help the compiler to generate better

assembly code for independent pointers [2].

 Use chess_xxxxx qualifiers when necessary. This will help the programmer to tune the

code for the requirements [2].

 Take a look at the compiler specific options. This will help in advanced programming
situations, e.g. at times for a specific file, one would like the compiler not to generate a
specific optimization/instruction class. So by setting the properties for the compiler for the
specific file/project one can generate code, fine tuned.

 In all situations, one MUST avoid writing code that is not defined by ANSI-C,

e.g., int x = y >> (-5), this is a negative shift and is not defined in ANSI-C.

The compilers may not flag any errors for this code, but may result in different outputs for
different platforms /compilers.

 Another example of the above non-ANSI C code would be as below :
*ptr_inp = (*ptr_inp++) + *ptr_inp;

On LPDSP -> ptr_inp[0] = ptr_inp[0] + ptr_inp[1];

On VC -> ptr_inp[0] = ptr_inp[0] + ptr_inp[0];

Depending on its precedence of evaluation, each compiler can generate its own version of the
code as the ANSI C has not defined the rule for above case.

With the above points as a start, the programmer may get a brief idea about how to write good code
and where to be cautious. The above points are not comprehensive and they are not a substitute to
the architecture manual, ISA manual, Chess C compiler manual and the ANSI-C standard.

Some points below give more specific examples of generating good quality code.

 If constants which need more than 24 bits are used in the code, for example in a comparison

operation, then they will be stored in DMA, occupying one location. This is a limitation of the

instruction set. This will be an unintended usage of DMA during their mapping in memory. Also

the load for this data uses direct addressing mode (long instructions) and can cost extra cycles

especially inside a loop. A solution is, declare such data as constants using the keyword const

and access them using pointers (indirect access).

23

User Guide – IP Programmer for LPDSP32–V3
September 2013

Confidential and Proprietary
SANYO Semiconductor Co., Ltd.

Example:
/* original code */

#define VAR1 = 0x12345678;

#define VAR2 = 0x76843219;

............

{

 int x;

 if(x==VAR1)

 x++;

 if(x==VAR2)

 x--;

}

/* modified code */

/* constant declaration & indirect access using pointers*/

const int constArray [] ={ 0x12345678, 0x76843219 };

............

{

 int x;

 int *dataptr;

 dataptr = (int *) &constArray[0];

 if(x==*dataptr++)

 x++;

 if(x==*dataptr++)

 x--;

}

 Try to get the linker to put bit-reversal buffers at the beginning of the memory space of your
application. This way it will be simpler to place the other address independent data anywhere in
the application’s space.

 The size and start address of the stack are defined in the .bcf file that should be included in
every project. An example of the linker configuration file is given in Appendix A.
It contains the line,
_stack DMA 0xe000 8184

//stack region - 8184 bytes stored at addresses 0xe000 to FFF8

The above definition sets the stack size to 8184 bytes, which may be way too large for most
applications. The maximum stack size of the application can be found out by generating the

*.calltree file (using the dump call tree option of the linker), where the maximum number of

calls and stack depth information can be seen. Also in the ISS, the stack size used in the
current simulation can be monitored in the “Statistics” tab. When the stack size is set smaller
than the needs of the application in the current simulation, the simulator generates an error as
and when an overrun occurs, but the hardware JTAG debugger currently has no means to
check the stack overrun. Note that the stack start address MUST be aligned to 64-bit memory.
This is because the compiler allocates the variables on the stack assuming the above while
entering any function.

 Normally accum_t variables are used only in a small scope. If the scope of the accum_t

24

User Guide – IP Programmer for LPDSP32–V3
September 2013

Confidential and Proprietary
SANYO Semiconductor Co., Ltd.

variable is very large, then it may be stored in the stack or memory. Avoid such instances

(storing of accum_t variables in memory or on stack) as they will occupy ~ 9 bytes of stack

excluding the alignment for the next memories and will need at least 2 cycles for load/store. If

possible convert them to int or long long so that a save can be avoided or be cheaper and

faster.

 Small function code can be inlined for more efficiency. This may increase the program memory,
but this will save ~4 to 6 instructions before and after the call for the register/context restoring
excluding the data storage in the register for the function call convention.

 It is better not to use more pointers than the available number of address generation registers –

8 for DMA memory and 4 for DMB memory. Otherwise, the complete address (base, step and

modulo registers) have to be saved to the stack and again restored back later which will
consume a lot of processor cycles.

 Try to reduce memory loads and stores as much as possible by rewriting the C code in such a
way that data such as coefficients or other elements are re-used efficiently after being loaded
into registers.

 If possible rewrite the code in loops such that a store instruction is not followed by a load
instruction. This constraint is to eliminate the store -> load hazard of the compiler. (Refer the
instruction pipeline of load/store instruction for more details). If a store instruction is followed by

a load instruction, a nop is introduced (if no other useful instruction was found) by the compiler.

By designing a software pipeline in the code, it may be possible to avoid the hazard.

Example:
/* original code */

............

for (int i=0;i<N;i+=2)

{

acc_0 += fract_mult(coef[i], data[i]);

acc_1 += fract_mult(coef[i+1], data[i+1]);

out[i] = rnd_saturate(acc_0 + acc_1);

out[i+1] = rnd_saturate(acc_0 - acc_1);

}

............

............

/* modified code for better pipelining between store/load */

............

int iCoef = coef[0]; // do a pre-load before entering loop (DMB)

int iData = data[0]; // do a pre-load before entering loop (DMA)

for (int i= 0;i<N;i+=2)

{

acc_0 += fract_mult(iCoef, iData);

iCoef = coef[i+1]; int iData = data[[i+1];

acc_1 += fract_mult(iCoef, iData);

iCoef = coef[i+2]; int iData = data[[i+2];

out[i] = rnd_saturate(acc_0 + acc_1);

out[i+1] = rnd_saturate(acc_0 - acc_1);

}

............

............

Sometimes it may be possible that the compiler itself will be able to do the above optimization
without any re-writing of the code. Note that the above code will result in one extra memory load.

25

User Guide – IP Programmer for LPDSP32–V3
September 2013

Confidential and Proprietary
SANYO Semiconductor Co., Ltd.

 The usage of compiler directives is very important to generate optimized assembly code. A
number of features are supported by the compiler by means of directives [2].

 Write the code in a way that helps the compiler to do register allocation better and access arrays

at the appropriate scope. For example if an element buff[m] is going to be used in a loop and

m changes only outside the loop, then explicitly preload buff[m] to a scalar variable and then

use the variable inside the loop. The compiler will not miss the possibility of preloading, but the
programmer doing it explicitly seems to help it choose a better register usage strategy.

Example:
............

............

for(int i=0;i<N;i++)

{

int iCoef_tmp = coef[i];

for(int j = 0;j<M;j++)

{

//acc += long_mult(coef[i],inp[j]);

acc += long_mult(iCoef_tmp,inp[j]); //may result in better code

}

}

............

............

 To place some constant data in the memory the keyword const is used, for instance with tables

that need to go into ROM. When using pointers to access data from such a table, the keyword

const has to be repeated so that the compiler can place the load instruction optimally.

Example:
const int chess_storage(DMB) SineCoef[32] = {...};

//int *ptrCoef; //regular code

const int chess_storage(DMB) *ptrCoef; //recommended code

ptrCoef = &(SineCoef[index-1]);

2.14.1 Optimization of Loops

LPDSP32 supports four nested levels for hardware do loops. Hence, the compiler can translate up to

four nested levels of for/while loops in the C code into efficient hardware do loops. Since there are

none reserved for interrupts, the ISR should be written such that the compiler does not use the loop
registers, instead uses the non-hardware (i.e. software) loop for code looping, else the programmer
should take certain precautions as explained the remarks below.

The compiler assumes that the upper bound of the loop is not larger than 65535(that it fits into the 16-
bit loop count register). It is the programmer's responsibility to make sure that the upper bound is not
too large. If the programmer is not sure that the upper bound will not exceed 65535, the compiler can

be informed not to use a hardware loop by using the chess_loop_range(N,M) property (M is the

upper bound, N is the lower bound) to specify a value higher than 65535 for the upper bound of the

loop([2], § 4.1.6.1 Loop Count Annotation). The actual value used for M does not actually matter, as

long as it is higher than 65535. For manifest values larger than 65535, the compiler automatically
uses a software loop, and issues a warning.

Note that during execution the simulator stops with an error for an invalid loop value (exceeding the
valid range [1,65536]). Such a check is not present in the hardware JTAG debugger.

The source code annotation property(loop_levels_N) can be used with functions to inform the

compiler as to how many hardware loops are being used by the function. It also informs to compiler

ffyfdy
ハイライト表示

26

User Guide – IP Programmer for LPDSP32–V3
September 2013

Confidential and Proprietary
SANYO Semiconductor Co., Ltd.

the number of hardware loops it should restrict itself to inside the function. If this annotation is not
present for a function and it is called inside a loop, then the compiler will assume the worst case, that
all the hardware loops are being used inside the function and will implement the current outer loop
with a non-hardware(software) loop.

N has to be replaced by the actual value. If N = 0, it can be specified using property(loop_free)

i.e., property(loop_levels_0) = property(loop_free)

Specifying the chess_loop_range(N,M) property wherever possible will help the compiler to

decide whether to generate the initial test to check the loop count (it skips the loop if loop count is
zero) or not.

The compiler tries to generate code as efficient as possible by using software pipelining. ([2], § 4.1.6.2
Prepare for Software Pipelining).

Some remarks:

1. The compiler will not use hardware loop lp instruction in the following cases:

 If the for/while variable is not an int variable

Example:
short i;

for(i = 0; i < 5; i++) // lp is not used

 If the for/while loop condition involves a volatile variable

Example:
volatile int loopMaxCnt; /* Global volatile variable */

void funcA(void)

{

volatile int loopMaxCntX; /* Local volatile variable */

....

....

for(int i = 0; i < loopMaxCnt; i++) // lp is not used

/* or */

loopMaxCntX = 25 * 10 + loopMaxCnt; /* could be anything */

for(int i = 0; i < loopMaxCntX; i++) // lp is not used

}

 As discussed above, if the for/while loop calls a function and the function declaration

doesn't have loop levels property

(property(loop_levels_N) or property(loop_free))

Example:

void SomeOtherFunction(void);

void funcA(void)

{

for(int i = 0; i < 10; i++) // lp isn't used

{

SomeOtherFunction();

}

}

2. In the case of nested function calls or nested for/while loops, the compiler will use the hardware

loops starting from the inner most for/while loop. Once all the four hardware loops get used, the

27

User Guide – IP Programmer for LPDSP32–V3
September 2013

Confidential and Proprietary
SANYO Semiconductor Co., Ltd.

compiler implements the remaining loops with non-hardware(software) loops.

 Nested function calls

Example:
Consider an example with nested function calls, where each function has one loop and one
function call.
/*original code*/

void func1(void)property(loop_levels_1);

void func2(void)property(loop_levels_1);

void func3(void)property(loop_levels_1);

void func4(void)property(loop_levels_1);

void func5(void);

int counter;

void func5(void){

 for(int i=0; i<10; i++) counter++;

}

void func4(void){

 for(int i=0; i<10; i++) func5();

}

void func3(void){

 for(int i=0; i<10; i++) func4();

}

void func2(void){

 for(int i=0; i<10; i++) func3();

}

void func1(void){

 for(int i=0; i<10; i++) func2();

}

void main(){

 func1();

}

Here even though programmer’s intention of using property(loop_levels_1)for every

function is to use one hardware loop for each of the outer four functions, compiler will detect

the nested function calls and hardware loops are not used.

So, the programmer needs to know the depth of the loop nesting and use

property(loop_levels_x) with an appropriate value for each function, (x=0 to 4).

Modified code to use hardware loops for the four outer functions:

/*modified code*/

void func1(void)property(loop_levels_4);

void func2(void)property(loop_levels_3);

void func3(void)property(loop_levels_2);

void func4(void)property(loop_levels_1);

void func5(void)property(loop_levels_0);

3. Compiler can decide to choose a hardware loop based on the chess_property

default_loop_range_maximum, redefined either in local C file or in a central header file of

28

User Guide – IP Programmer for LPDSP32–V3
September 2013

Confidential and Proprietary
SANYO Semiconductor Co., Ltd.

the project. This property indicates the maximum value the loop count can reach, whenever the
loop count is not known at compile-time. It is used by the compiler to decide whether it is safe to

use a hardware loop or not. By default the default_loop_range_maximum is set to 65535 in

the lpdsp32_chess.h file.

When the following setting is done:

chess_properties { default_loop_range_maximum : 65537; }

//any number higher than 65535(216-1)

If the loop count is known at compile-time: the compiler will select hardware loop, when loop
count is less than 2

16
. If the loop count is not known (data-dependent), then it considers the

default_loop_range_maximum parameter and since the maximum possible value exceeds

the unsigned integer 16 bit range (0 to 65535), hardware loop will be not be used.

The above line can be added directly in a C file or in a header file which will be included in the
required C file. If entire project needs to use the header file then we can add the header file to
Project_settings C-front-end Always include files

4. If the function is an Interrupt Service Routine(ISR) i.e., the function has property(isr), the

compiler does not use hardware loops for any loop. However, if the property is changed to

property(isr loop_levels_N), then the compiler uses hardware loops for such loops which

do not fall into any of the above mentioned cases.

Note: property(isr)source code annotation indicates that the function is an ISR and the

property(isr loop_levels_N) informs the compiler the number of loops that are being

used in the ISR, similar to the source code annotation property(loop_levels_N)for functions.

5. The default zero-overhead loop levels used for normal functions and interrupt routines can be

overwritten by the following statements (with N a non-negative integer) :
chess_properties {

loop_levels : N ;

isr_loop_levels : N ;

}

These statements have to come at the start of every compilation module, but after including the

file lpdsp32_chess.h.

When changing the calling convention in this way, you have to take care that all source files and

libraries are compiled with the same settings. The best way to obtain this is by using the Always

include files option of the CHESS front end(Project_settings C-front-end

Always include files), where you include the relevant headers in the correct order. Note

that inconsistencies resulting from different default settings cannot be detected at compile-time,
which makes this approach unsafe (as opposed to overriding the defaults locally for functions).

6. A possible case where a hardware loop in ISR may corrupt the program is shown below.

Example:

 Let all the 4 hardware loops be used. Normally when running various codes, this may be the
case.

 for(int i = 0; i < 10; i++) {

 for(int j = 0; j < 10; j++) {

 for(int k = 0; k < 10; k++) {

 unsigned int loopCntLocal1 = loopCnt1;

 unsigned int loopCntLocal2 = loopCnt2;

 for(int l = 0;l < 10; l++) {

 /*At this point all 4 HW loops used*/

ffyfdy
ハイライト表示

29

User Guide – IP Programmer for LPDSP32–V3
September 2013

Confidential and Proprietary
SANYO Semiconductor Co., Ltd.

 loopCntLocal2 += loopCntLocal1; /*Check point 1*/

 }

 loopCnt1 = loopCntLocal1;

 loopCnt2 = loopCntLocal2;

 }

 }

}

 Consider a case where an interrupt occurs when the core is executing the code at /*Check

point 1*/ and inside the interrupt sub-routine, a separate function that has an hardware

loop instruction is being called, as shown below:

 void func1(void);

 extern "C" void isr1(void) property(isr)

 {

 func1();

 }

 void func1(void)

 {

 unsigned int loopCntLocal1 = loopCnt1;

 unsigned int loopCntLocal2 = loopCnt2;

 for(int i = 0; i < 10; i++) { /*Check point 2*/

 loopCntLocal2 += loopCntLocal1;

 }

 loopCnt1 = loopCntLocal1;

 loopCnt2 = loopCntLocal2;

 loopCnt2--;

 }

 When the code reaches /*Check point 2*/, core tries to use hardware loop instruction,

but since all the hardware loops are already in use, the loop count pointer register, LCP will be

0. This will lead to a wrong execution.
So, it is recommended that the programmer should make sure that any functions that are
called in the interrupt context do not use a hardware loop instruction.

7. To overcome the problem mentioned in the above point, one possible solution is to write inline

assembly code for saving the Hardware loop registers onto stack inside the ISR and restoring
them while returning back from the ISR as shown below.

inline assembly void chess_isr_envelope_open()

 clobbers() property(volatile functional loop_free){

 asm_begin

 sp += -56

 sp[0] = lcp

 lcp = 0

 sp[4] = lc

 sp[8] = lstk

 sp[12] = lpa

 lcp = 1

 sp[16] = lc

 sp[20] = lstk

 sp[24] = lpa

 lcp = 2

 sp[28] = lc

30

User Guide – IP Programmer for LPDSP32–V3
September 2013

Confidential and Proprietary
SANYO Semiconductor Co., Ltd.

 sp[32] = lstk

 sp[36] = lpa

 lcp = 3

 sp[40] = lc

 sp[44] = lstk

 sp[48] = lpa

 lcp = 4

 asm_end

}

inline assembly void chess_isr_envelope_close()

 clobbers() property(volatile functional loop_free){

asm_begin

 lcp = 3

 lpa = sp[48]

 lstk = sp[44]

 lc = sp[40]

 lcp = 2

 lpa = sp[36]

 lstk = sp[32]

 lc = sp[28]

 lcp = 1

 lpa = sp[24]

 lstk = sp[20]

 lc = sp[16]

 lcp = 0

 lpa = sp[12]

 lstk = sp[8]

 lc = sp[4]

 lcp = sp[0]

 sp += 56

 asm_end

}

These envelope functions are called automatically at beginning/end of every ISR.

For other directives and more details, please refer to the Chess Compiler User Manual [2].

31

User Guide – IP Programmer for LPDSP32–V3
September 2013

Confidential and Proprietary
SANYO Semiconductor Co., Ltd.

Appendix A. Linker Configuration file

A default linker configuration file (lpdsp32.bcf) is included with the compiler installation in the

$ToolInstallFolder\designs\lpdsp32\lib\ folder. This file must be copied and customized

according to the needs of the project. The modified .bcf file location should be mentioned on

CHESSDE ->Project settings->Linking->Linker configuration file. If no settings are

done, then the default configuration file will be used. In the default file the entry point for the program

is set (which is present in the initialization file), a stack is allocated and the use of argv, argc

arguments is enabled.

// file lpdsp.bcf

// central link file with default link constraints

_symbol _ivt 0 // interrupt vector table at PM 0

_entry_point _ivt

_symbol _main_init _after _ivt

_symbol _main _after _main_init

_stack DMA 0xe000 8184 //stack region in DMA (start_address size).

 //SP is initialised to (start_address + size),

 //which must be multiple of 8

 //(to have aligned long access).

// include to use main(argc,argv) arguments

_always_include _main_argv_area

For a more detailed explanation please refer the Bridge Linker User Manual [3]

ffyfdy
ハイライト表示

32

User Guide – IP Programmer for LPDSP32–V3
September 2013

Confidential and Proprietary
SANYO Semiconductor Co., Ltd.

Appendix B. Initialization Code

A default initialization code written in assembly, lpdsp32_init.s, is included with the compiler

installation in the $ToolInstallFolder\designs\lpdsp32\lib\ folder. This file must be copied

to your project directory, adapted and added to your compilation project. If not the default initialization
file will be used. This initialization code is then first executed before the control is transferred to the
main C function. Typically, the rounding and saturation control bits are set, interrupts are enabled, the
stack is initialized according to the stack definition in the .bcf file, followed by the Interrupt Vector
Table(IVT). This functionality can be modified according to the project requirements.

// $Id: lpdsp32_init.s

//initialization before entering the main function

.text global 0 _main_init

r = 1 //enable rounding

s = 1 //enable saturation

sp = _sp_start_value_DMA //init SP (adjusted to stack in lpdsp.bcf

ie = 1 ; nop //enable interrupts

//area to load main() arguments

.bss global 0 _main_argv_area DMA 256

//the interrupt vector table with 15 interrupts

.text global 0 _ivt

jp _main_init //0 - reset

reti ; nop //2 - interrupt 1

reti ; nop //4 - interrupt 2

reti ; nop //6 - interrupt 3

reti ; nop //8 - interrupt 4

reti ; nop //10 - interrupt 5

reti ; nop //12 - interrupt 6

reti ; nop //14 - interrupt 7

reti ; nop //16 - interrupt 8

reti ; nop //18 - interrupt 9

reti ; nop //20 - interrupt 10

reti ; nop //22 - interrupt 11

reti ; nop //24 - interrupt 12

reti ; nop //26 - interrupt 13

reti ; nop //28 - interrupt 14

reti ; nop //30 - interrupt 15

In the default initialization code since no interrupt is defined, any hardware/software interrupt results in
a return from the ISR vector.
To define an interrupt:

 use jp <label> in the interrupt vector table and define this function to be extern as this

function may not reside in the same file.

 use this label for the function describing this interrupt.

Example:
In the initialization file:
.undef global text _isr_pcm

jp _isr_pcm // 4 - interrupt 2

In the C file having the ISR routine:
extern "C" void _isr_pcm(void) property(isr)

33

User Guide – IP Programmer for LPDSP32–V3
September 2013

Confidential and Proprietary
SANYO Semiconductor Co., Ltd.

The native simulation will not contain the above code since this is specific to LPDSP32, thus it is built
such that on start up the round and saturation bits are enabled. To maintain the same behavior in
native compilation it is recommended to enable them in the C code rather than the initialization code.

34

User Guide – IP Programmer for LPDSP32–V3
September 2013

Confidential and Proprietary
SANYO Semiconductor Co., Ltd.

Appendix C. Examples

C.1 Dual MAC Operation

Below is an example to use the dual MAC operation of LPDSP32 and the corresponding generated
assembly code.

C-code:
int chess_storage(DMIO:0xD01000) output_port;

static int x_1[6];

static int chess_storage(DMB) y_2[6];

void dual_mac(void)

{

int i, out_D;

accum_t ansA_72 = to_accum(0);

accum_t ansB_72 = to_accum(0);

accum_t ansC_72;

for(i=0;i<5;i+=2)

{

ansA_72 += fract_mult(x_1[i],y_2[i]);

ansB_72 += fract_mult(x_1[i+1],y_2[i]);

ansA_72 += fract_mult(x_1[i],y_2[i+1]);

ansB_72 += fract_mult(x_1[i+1],y_2[i+1]);

}

ansC_72 = ansA_72 + ansB_72;

out_D = rnd_saturate(ansC_72);

output_port = out_D;

}

Assembly code:
.text global 2 void_dual_mac

c0 = 4; axs0 = zero

a0 = __test1_x_1

a4 = __test1_y_2

lp 2 4

bx0 = ax0 + 0; ra1 = [a0+c0]; rb0 = [a4+c0]

bx0 = bx0+ra1*rb0; ra0 = [a0+c0]; rb1 = [a4+c0]

ax0+= ra0 * rb0; bx0+= rb1 * ra1; ra1 = [a0+c0]; rb0 = [a4+c0]

ax0+= ra0 * rb1; bx0+= rb0 * ra1; ra0 = [a0+c0]; rb1 = [a4+c0]

ax0+= ra0 * rb0; bx0+= rb1 * ra1

ax0 = ax0+ra0*rb1

ax0 = bx0 + ax0; retdb

 [13635584] = axs0

.label void_dual_mac__end last

nop; nop

35

User Guide – IP Programmer for LPDSP32–V3
September 2013

Confidential and Proprietary
SANYO Semiconductor Co., Ltd.

C.2 Normalization

This example shows the use of normalization function.

Without using built in normalization function:
#define EXP30 0x40000000l

long norm32bit(long long acc, int *nrm)

{

short exp;

long answer_w;

answer_w = (long)acc;

exp = 0;

if (answer_w == 0l)

{

exp = 0;

}

else if (answer_w >= 0)

{

 while (answer_w < EXP30)

{

answer_w = answer_w << 1;

exp++;

}

}

else

{

while (answer_w >= -EXP30)

{

answer_w = answer_w << 1;

exp++;

}

}

*nrm = exp;

return answer_w;

}

void main(void)

{

int nrm;

long long Data = 0xF8l;

int Val = (int)norm32bit(Data,&nrm);

}

Using built in normalization function:
int Val;

void main(void)

{

long Data = 0xF8l;

int nrm = norm(to_accum(Data));

Val = extract_high(to_accum(Data) << nrm);

}

36

User Guide – IP Programmer for LPDSP32–V3
September 2013

Confidential and Proprietary
SANYO Semiconductor Co., Ltd.

C.3 Bit Reverse Addressing

This example shows the use of bit reverse addressing mode of LPDSP32.

Without using bit reverse addressing:
int Real[8]={0};

int Imag[8]={0};

int *RevDataPtr;

int main(void)

{

int NumBits=0,i,rev,index;

int NumSamples = 8;

int sample;

while(!(NumSamples & (1 << NumBits)))

NumBits++;

for (sample = 0; sample < NumSamples; sample++)

{

index = sample;

for (i = rev = 0; i < NumBits; i++)

{

rev = (rev << 1) | (index & 1);

index >>= 1;

}

RevDataPtr = &Real[rev];

}

return 0;

}

Optimized using bit reverse addressing:
int chess_storage(DMA % 8*sizeof(int)) Real[8]={0}; // memory alignment

int chess_storage(DMA % 8*sizeof(int)) Imag[8]={0}; // memory alignment

int RevDataPtr[8];

int main(void)

{

int N = 8;

int *fftptr = Real;

for (int i =0; i< N; i++)

{

RevDataPtr[i] = *fftptr;

fftptr = reverse_add((int *) fftptr, N>>1, Real);

}

return 0;

}

37

User Guide – IP Programmer for LPDSP32–V3
September 2013

Confidential and Proprietary
SANYO Semiconductor Co., Ltd.

C.4 FIR filter

The FIR filter of order is given by,

where NS is the number of input and output samples.

The C-code for this FIR filter when the data and the coefficients are integers, is as shown below.

#define NS 256 //No. of samples

#define N 64 //No. of filter coefficients or No. of tap weights

int y[NS]; //Output Signal

int x[NS+N-1]; //Input Signal

int h[N]; //Filter coefficients or tap weights

void fir(int *y, int *x, int *h)

{

for(int n=0; n<NS; n++)

{

long long sum = 0;

for(int k=0; k<N; k++)

{

sum += x[n+k] * h[k];

}

y[n] = sum;

}

}

If the data and the coefficients are in the fixed-point Q1.31 format, then the multiplier output will be in

the Q1.62 format, which must be converted back to Q1.31 format. Using the 72-bit accumulator,

fract_mult() and the rnd_saturate() functions of the LPDSP32, the fixed-point real FIR filter

can be coded as shown below.

Fixed-point initial C-code for porting on LPDSP32:

#define NS 256 //No. of samples

#define N 64 //No. of filter coefficients or No. of tap weights

h(1) h(0)

y(n)

x(n+N-1)

h(N-1) h(N-2)

FIR Filter of Order (N-1)

38

User Guide – IP Programmer for LPDSP32–V3
September 2013

Confidential and Proprietary
SANYO Semiconductor Co., Ltd.

int y[NS]; //Output Signal

int x[NS+N-1]; //Input Signal

int h[N]; //Filter coefficients or tap weights

void fir(int *y, int *x, int *h)

{

for(int n=0; n<NS; n++)

{

accum_t sum = to_accum(0);

for(int k=0; k<N; k+=2)

{

sum += fract_mult(x[n+k] , h[k]);

sum += fract_mult(x[n+k+1] , h[k+1]);

sum = to_accum(rnd_saturate(sum));

}

y[n] = extract_high(sum);

}

}

The above code can be further optimized using the chess directives, cyclic addressing, dual

load/store features of LPDSP32 as shown below.

Fixed-point optimized C-code for porting on LPDSP32:

#define NS 256 //No. of samples

#define N 64 //No. of filter coefficients or No. of tap weights

int chess_storage(DMB) y[NS]; //Output Signal

int chess_storage(DMA %(sizeof(long long))) x[NS+N-1]; //Input Signal

//Filter coefficients or tap weights

int chess_storage(DMA %(sizeof(long long))) h[N];

void fir(int *y, int *x, int *h)

{

int chess_storage(DMB) *p_y = y;

int chess_storage(DMA) *p_x = x;

int chess_storage(DMA) *p_h = h;

int coef1, coef2;

int dat1, dat2;

for(unsigned int n=0; n<NS; n+=2) chess_loop_range(1,)

{

p_x = x + n;

lldecompose(*((long long *)p_h), coef1, coef2);

p_h = cyclic_add(p_h,2,h,N);

lldecompose(*((long long *)p_x), dat1, dat2); p_x += 2;

accum_t sum1 = fract_mult(dat1, coef1);

accum_t sum2 = fract_mult(dat2, coef1);

sum1 += fract_mult(dat2 , coef2);

sum1 = to_accum(rnd_saturate(sum1));

for(unsigned int k=2; k<N; k+=2) chess_loop_range(1,)

{

lldecompose(*((long long *)p_x), dat1, dat2); p_x += 2;

sum2 += fract_mult(dat1, coef2);

39

User Guide – IP Programmer for LPDSP32–V3
September 2013

Confidential and Proprietary
SANYO Semiconductor Co., Ltd.

sum2 = to_accum(rnd_saturate(sum2));

lldecompose(*((long long *)p_h), coef1, coef2);

p_h = cyclic_add(p_h,2,h,N);

sum1 += fract_mult(dat1, coef1);

sum2 += fract_mult(dat2, coef1);

sum1 += fract_mult(dat2, coef2);

sum1 = to_accum(rnd_saturate(sum1));

}

lldecompose(*((long long *)p_x), dat1, dat2);

sum2 += fract_mult(dat1, coef2);

sum2 = to_accum(rnd_saturate(sum2));

*p_y++ = extract_high(sum1);

*p_y++ = extract_high(sum2);

}

}

C.5 Complex FIR Filter

This example shows the FIR filter for complex data and complex filter coefficients. The real and
imaginary parts of the complex data are stored in consecutive memory locations. The C-code for the
complex FIR filter when the data and the coefficients are complex integers, is as shown below.

#define NS (256 * 2) //No. of samples

#define N (64 * 2) //No. of filter coefficients

int y[NS]; //Complex Output Signal

int x[NS+N-2]; //Complex Input Signal

int h[N]; //Complex Filter coefficients

void fir_cmplx(int *y, int *x, int *h)

{

for(int n=0; n<NS; n+=2)

{

long long sum_re = 0;

long long sum_im = 0;

for(int k=0; k<N; k+=2)

{

sum_re += x[n+k] * h[k];

sum_re -= x[n+k+1] * h[k+1];

sum_im += x[n+k] * h[k+1];

sum_im += x[n+k+1] * h[k];

}

y[n] = sum_re;

y[n+1] = sum_im;

}

}

If the real and imaginary parts of the data and the coefficients are in the fixed-point Q1.31 format,

then the multiplier output is in the Q1.62 format, which must be converted back to Q1.31 format.

Using the 72-bit accumulator, fract_mult() and the rnd_saturate() functions of the LPDSP32,

the fixed-point complex FIR filter can be coded as shown below.

40

User Guide – IP Programmer for LPDSP32–V3
September 2013

Confidential and Proprietary
SANYO Semiconductor Co., Ltd.

Fixed-point initial C-code for porting on LPDSP32:

#define NS (256 * 2) //No. of samples

#define N (64 * 2) //No. of filter coefficients

int y[NS]; //Complex Output Signal

int x[NS+N-2]; //Complex Input Signal

int h[N]; //Complex Filter coefficients

void fir_cmplx(int *y, int *x, int *h)

{

 for(int n=0; n<NS; n+=2)

 {

 accum_t sum_re = to_accum(0);

 accum_t sum_im = to_accum(0);

 for(int k=0; k<N; k+=2)

 {

 sum_re += fract_mult(x[n+k], h[k]);

 sum_re -= fract_mult(x[n+k+1], h[k+1]);

 sum_im += fract_mult(x[n+k], h[k+1]);

 sum_im += fract_mult(x[n+k+1], h[k]);

 sum_re = to_accum(rnd_saturate(sum_re));

 sum_im = to_accum(rnd_saturate(sum_im));

 }

 y[n] = extract_high(sum_re);

 y[n+1] = extract_high(sum_im);

 }

}

The above code can be further optimized using the chess directives, cyclic addressing, dual

load/store features of LPDSP32 as shown below.

Fixed-point optimized C-code for porting on LPDSP32:

#define NS (256 * 2) //No. of samples

#define N (64 * 2) //No. of filter coefficients

//Complex Output Signal

int chess_storage(DMA %(sizeof(long long))) y[NS];

//Complex Input Signal

int chess_storage(DMA %(sizeof(long long))) x[NS+N-2];

//Complex Filter coefficients

int chess_storage(DMA %(sizeof(long long))) h[N];

void fir_cmplx(int *y, int *x, int *h)

{

 int chess_storage(DMA) *p_y = y;

 int chess_storage(DMA) *p_x = x;

 int chess_storage(DMA) *p_h = h;

 int h_re, h_im;

 int dat_re, dat_im;

 for(int n=0; n<NS; n+=2) chess_loop_range(1,)

 {

 p_x = x + n;

 accum_t sum_re = to_accum(0);

 accum_t sum_im = to_accum(0);

 for(int k=0; k<N; k+=2) chess_loop_range(1,)

41

User Guide – IP Programmer for LPDSP32–V3
September 2013

Confidential and Proprietary
SANYO Semiconductor Co., Ltd.

 {

 lldecompose(*((long long *)p_h), h_re, h_im);

 p_h = cyclic_add(p_h,2,h,N);

 lldecompose(*((long long *)p_x), dat_re, dat_im); p_x += 2;

 sum_re += fract_mult(dat_re, h_re);

 sum_re -= fract_mult(dat_im, h_im);

 sum_im += fract_mult(dat_re, h_im);

 sum_im += fract_mult(dat_im, h_re);

 sum_re = to_accum(rnd_saturate(sum_re));

 sum_im = to_accum(rnd_saturate(sum_im));

 }

 *((long long *)p_y) =

 llcompose(extract_high(sum_re), extract_high(sum_im));

 p_y += 2;

 }

}

C.6 IIR Filter
Below, the tutorial example in [[2], §Chapter 1] is rewritten in terms of the LPDSP32 intrinsics.
// file : iirdirect.c

// Low pass filter:

// Sample frequency (Hz) : 44000

// Cut off frequency (Hz) : 5000

// Damping factor : 1.5

 const double a = 0.0409501; // m = 2, s = 1

 const double b = 0.170625;

 const double g = 0.506825;

 const int C[5] = {

 as_int(a), as_int(2*a), as_int(a), as_int(g), as_int(-b)

 };

 int xd[2];

 int yd[2];

 int low_pass(int x)

 {

 accum_t sum = fract_mult(x, C[0])

 + fract_mult(xd[0],C[1]) + fract_mult(xd[1],C[2])

 + fract_mult(yd[0],C[3]) + fract_mult(yd[1],C[4]);

 int y = rnd_saturate(sum << 1);

 xd[1] = xd[0];

 xd[0] = x;

 yd[1] = yd[0];

 yd[0] = y;

 return y;

 }

 volatile int chess_storage(DMIO:0xC00004) input_port;

 volatile int chess_storage(DMIO:0xC00008) output_port;

 void main()

 {

 while(1)

 output_port = low_pass(input_port);

 }

42

User Guide – IP Programmer for LPDSP32–V3
September 2013

Confidential and Proprietary
SANYO Semiconductor Co., Ltd.

C.7 All-pole IIR Lattice Filter

This example shows a real all-pole IIR filter in lattice structure with and without optimization for
LPDSP32. This filter consists of lattice stages (must be an even number and >=4). Each stage

requires one reflection coefficient and one delay element . The delay elements are initialized to

zero. The order of the coefficients is such that corresponds to the first lattice stage after the input

and corresponds to the last stage.

The c-code for this real all-pole IIR filter in lattice structure when the data and the coefficients are
integers, is as given below.

#define NS 256 //No. of samples

#define N 64 //Lattice structure with N stages for IIR filter of order N

int y[NS]; //Output Signal

int x[NS]; //Input Signal

int k[N]; //Reflection coefficients

int b[N+1]; //Delay elements initialized to zero

void iir_lattice(int *y, int *x, int *k, int *b)

{

 int rt;

 for(int n=0; n<NS; n++)

 {

 rt = x[n];

 for(int i=0; i < N; i++)

 {

 rt -= b[i+1] * k[i];

 b[i] = b[i+1] + rt * k[i];

 }

 b[N] = rt;

 y[n] = rt;

 }

}

If the data and the coefficients are in the fixed-point Q1.31 format, then the multiplier output is in the

Q1.62 format, which must be converted back to Q1.31 format. Using the 72-bit accumulator,

fract_mult() and the rnd_saturate() functions of the LPDSP32, the fixed-point real all-pole

IIR filter in lattice structure can be coded as shown below.

b(N-2) b(N-1)

k(0)

y(n)

x(n)

k(N-1)

-k(N-1)
-k(0)

-k(N-2)

k(N-2)

b(0)
b(N)

All-pole IIR Filter with N Lattice Stages

43

User Guide – IP Programmer for LPDSP32–V3
September 2013

Confidential and Proprietary
SANYO Semiconductor Co., Ltd.

Fixed-point initial C-code for porting on LPDSP32:

#define NS 256 //No. of samples

#define N 64 //Lattice structure with N stages for IIR filter of order N

int y[NS]; //Output Signal

int x[NS]; //Input Signal

int k[N]; //Reflection coefficients

int b[N+1]; //Delay elements initialized to zero

void iir_lattice(int *y, int *x, int *k, int *b)

{

 int rt;

 for(int n=0; n<NS; n++)

 {

 accum_t acc1 = to_accum(x[n]);

 for(int i=0; i < N; i++)

 {

 acc1 -= fract_mult(b[i+1], k[i]);

 rt = rnd_saturate(acc1);

 acc1 = to_accum(b[i+1]) + fract_mult(rt, k[i]);

 b[i] = rnd_saturate(acc1);

 acc1 = to_accum(rt);

 }

 b[N] = rt;

 y[n] = rt;

 }

}

The above code can be further optimized using the chess directives as shown below.

Fixed-point optimized C-code for porting on LPDSP32:

int chess_storage(DMA) y[NS]; //Output Signal

int chess_storage(DMA) x[NS]; //Input Signal

int chess_storage(DMA) k[N]; //Reflection coefficients

int chess_storage(DMB) b[N+1]; //Delay elements initialized to zero

void iir_lattice(int *y, int *x, int *k, int chess_storage(DMB) *b)

{

 int rt;

 for(int n=0; n<NS; n++) chess_loop_range(1,)

 {

 accum_t acc1 = to_accum(x[n]);

 for(int i=0; i < N; i++) chess_loop_range(1,)

 {

 acc1 -= fract_mult(b[i+1], k[i]);

 rt = rnd_saturate(acc1);

 acc1 = to_accum(b[i+1]) + fract_mult(rt, k[i]);

 b[i] = rnd_saturate(acc1);

 acc1 = to_accum(rt);

 }

 b[N] = rt;

 y[n] =rt;

 }

}

44

User Guide – IP Programmer for LPDSP32–V3
September 2013

Confidential and Proprietary
SANYO Semiconductor Co., Ltd.

C.8 Matrix Multiplication

For the matrix multiplication of two matrices and , the number of columns of must be equal to the
number of rows of The resulting matrix has the same number of rows as and the same number

of columns as . Consider the matrix multiplication, .

The matrix elements of are stored as,

 where
The matrix elements of are stored as,

 where
The matrix elements of are stored as,

 where

Note that the elements of matrix are stored in a different order when compared with the matrices

and .

The C-code for matrix multiplication function when all the elements of all the matrices are integers, is
as given below.

#define R1 128 //No. of rows in matrix A and Y

#define C1 64 //No. of columns in matrix A and No. of rows in matrix B

#define C2 256 //No. of columns in matrix B and Y

int A[R1 * C1]; //Input matrix of size R1 x C1

int B[C1 * C2]; //Input matrix of size C1 x C2

int Y[R1 * C2]; //Output matrix of size R1 x C2

void matrix_mul(int *Y, int *A, int *B)

{

 for(int ar=0; ar<R1; ar++) //A rows and Y rows

 {

 for(int bc=0; bc<C2; bc++) //B columns and Y columns

 {

 long long sum = 0;

 for(int ac=0; ac<C1; ac++) //A columns and B rows

 {

 sum += A[ac + (ar*C1)] * B[ac + (bc*C1)] ;

 }

 Y[bc + (ar*C2)] = sum;

 }

 }

}

If all the elements of all the matrices are in the fixed-point Q1.31 format, then the multiplier output is

in the Q1.62 format, which must be converted back to Q1.31 format. Using the 72-bit accumulator,

fract_mult() and the rnd_saturate() functions of the LPDSP32, the fixed-point matrix

multiplication function can be coded as shown below.

45

User Guide – IP Programmer for LPDSP32–V3
September 2013

Confidential and Proprietary
SANYO Semiconductor Co., Ltd.

Fixed-point initial C-code for porting on LPDSP32:

#define R1 128 //No. of rows in matrix A and Y

#define C1 64 //No. of columns in matrix A and No. of rows in matrix B

#define C2 256 //No. of columns in matrix B and Y

int A[R1 * C1]; //Input matrix of size R1 x C1

int B[C1 * C2]; //Input matrix of size C1 x C2

int Y[R1 * C2]; //Output matrix of size R1 x C2

void matrix_mul(int *Y, int *A, int *B)

{

 for(int ar=0; ar<R1; ar++) //A rows and Y rows

 {

 for(int bc=0; bc<C2; bc++) //B columns and Y columns

 {

 accum_t sum = to_accum(0);

 for(int ac=0; ac<C1; ac++) //A columns and B rows

 {

 sum += fract_mult(A[ac + (ar*C1)] , B[ac + (bc*C1)]);

 sum = to_accum(rnd_saturate(sum));

 }

 Y[bc + (ar*C2)] = extract_high (sum);

 }

 }

}

The above code can be further optimized using the chess directives, cyclic addressing feature of

LPDSP32 as shown below.

Fixed-point optimized C-code for porting on LPDSP32:

int chess_storage(DMA) A[R1 * C1]; //Input matrix of size R1 x C1

int chess_storage(DMB) B[C1 * C2]; //Input matrix of size C1 x C2

int chess_storage(DMA) Y[R1 * C2]; //Output matrix of size R1 x C2

void matrix_mul(int *Y, int *A, int *B)

{

 int chess_storage(DMA) *p_Y = Y;

 int chess_storage(DMA) *p_A_st = A;

 int chess_storage(DMA) *p_A = p_A_st;

 int chess_storage(DMB) *p_B = B;

 //A rows and Y rows

 for(unsigned int ar=0; ar<R1; ar++) chess_loop_range(1,)

 {

 //B columns and Y columns

 for(unsigned int bc=0; bc<C2; bc++) chess_loop_range(1,)

 {

 accum_t sum = to_accum(0);

 //A columns and B rows

 for(unsigned int ac=0; ac<C1; ac++) chess_loop_range(1,)

 {

 sum += fract_mult(*p_A, *p_B);

 p_A = cyclic_add(p_A,1,p_A_st,C1);

 p_B = cyclic_add(p_B,1,B,C1*C2);

46

User Guide – IP Programmer for LPDSP32–V3
September 2013

Confidential and Proprietary
SANYO Semiconductor Co., Ltd.

 sum = to_accum(rnd_saturate(sum));

 }

 *p_Y++ = extract_high (sum);

 }

 p_A_st += C1;

 p_A = p_A_st;

 }

}

C.9 Auto Correlation

The auto correlation function of length is given by,

where is the Number of input samples.

The code below shows the autocorrelation function with and without optimization for LPDSP32.

Initial C-code for porting on LPDSP32:

#define L 16 //Length of Autocorrelation

#define N 64+L //No. of Input Samples

int x[N]; //Input Signal

int r[N-L]; //Output Signal

void auto_corr(int *r, int *x)

{

 int i, k,sum;

 for(int i=0; i<(N-L); i++){

 sum = 0;

 for(int k=(N-L); k<N; k++){

 sum += x[k] * x[k-i];

 }

 r[i] = sum;

 }

}

Optimized C-code for porting on LPDSP32:

#define L 16 //Length of Autocorrelation

#define N 64+L //No. of Input Samples

int chess_storage(DMA %(sizeof(long long))) x[N]; //Input Signal

int chess_storage(DMB) r[N-L]; //Output Signal

void auto_corr(int *p_r, int *p_x)

{

 int chess_storage(DMA) *p_c_st, *p_c;

 long long sum0, sum1;

 int dat1, dat2, dat3, dat4;

 p_c_st = p_x + N-L;

 p_c = p_x + N - 2;

 lldecompose(*((long long *)p_c), dat2, dat1);

 p_c = cyclic_add(p_c,-2,p_c_st,L);

47

User Guide – IP Programmer for LPDSP32–V3
September 2013

Confidential and Proprietary
SANYO Semiconductor Co., Ltd.

 sum0 = long_mult(dat1 , dat1);

 sum0 += long_mult(dat2 , dat2);

 sum1 = long_mult(dat1 , dat2);

 for(unsigned int i=0; i<3; i++) chess_loop_range(1,)

 {

 lldecompose(*((long long *)p_c), dat4, dat3);

 p_c = cyclic_add(p_c,-2,p_c_st,L);

 sum0 += long_mult(dat3, dat3);

 sum0 += long_mult(dat4, dat4);

 sum1 += long_mult(dat2, dat3);

 sum1 += long_mult(dat3, dat4);

 lldecompose(*((long long *)p_c), dat2, dat1);

 p_c = cyclic_add(p_c,-2,p_c_st,L);

 sum0 += long_mult(dat1, dat1);

 sum0 += long_mult(dat2, dat2);

 sum1 += long_mult(dat4, dat1);

 sum1 += long_mult(dat1, dat2);

 }

 lldecompose(*((long long *)p_c), dat4, dat3);

 p_c = cyclic_add(p_c,-2,p_c_st,L);

 sum0 += long_mult(dat3, dat3);

 sum0 += long_mult(dat4, dat4);

 sum1 += long_mult(dat2, dat3);

 sum1 += long_mult(dat3, dat4);

 int chess_storage(DMA) *p_v;

 p_v = p_x + N-L -1; //63

 sum1 += long_mult(dat4 , *p_v);

 *p_r++ = extract_low(sum0);

 *p_r++ = extract_low(sum1);

 for(unsigned int i=0; i<(N-L-2); i+=2) chess_loop_range(1,)

 {

 p_v = p_x + N - 4 - i; //76, 74,...,16

 int cdat1, cdat2;

 lldecompose(*((long long *)p_c), cdat2, cdat1);

 p_c = cyclic_add(p_c,-2,p_c_st,L);

 lldecompose(*((long long *)p_v), dat2, dat1); p_v -= 2;

 sum0 = long_mult(cdat1, dat1);

 sum0 += long_mult(cdat2, dat2);

 sum1 = long_mult(cdat1 , dat2);

 for(unsigned int j=0; j<7; j++) chess_loop_range(1,)

 {

 int dat1, dat2;

 lldecompose(*((long long *)p_v), dat2, dat1); p_v -= 2;

 sum1 += long_mult(cdat2 , dat1);

 lldecompose(*((long long *)p_c), cdat2, cdat1);

 p_c = cyclic_add(p_c,-2,p_c_st,L);

 sum0 += long_mult(cdat1, dat1);

 sum0 += long_mult(cdat2, dat2);

 sum1 += long_mult(cdat1, dat2);

 }

 lldecompose(*((long long *)p_v), dat2, dat1);

 sum1 += long_mult(cdat2, dat1);

 *p_r++ = extract_low(sum0);

 *p_r++ = extract_low(sum1);

 }

}

48

User Guide – IP Programmer for LPDSP32–V3
September 2013

Confidential and Proprietary
SANYO Semiconductor Co., Ltd.

Appendix D. Exceptional cases

D.1 Elongation failure (before version 10R1.12)
 In certain exceptional cases, when having inline assembly code, sometimes elongation breaks,

because CHESSDE’s scheduler does not want to elongate any inline assembly instructions. In a later

scheduler version, this has been improved (so as to elongate instructions present in inline assembly

code). But, the scheduler has not been updated into the IP Programmer, since the assembly code

generated might differ from the assembly code generated by the previous version of the scheduler.

One such example which can trigger the error and the workaround are given below:
int data[4];

void test();

void test()

{

 // nothing

}

void main(void)

{

 data[0] = 0x000000;

 data[1] = 0x187DE2;

 data[2] = 0x2D413C;

 data[3] = 0x3B20D7;

 test();

 enable_interrupts();

 while(1){

 test();

 }

}

The inline assembly code of the user function enable_interrupts() is as follows:
inline assembly void enable_interrupts()

 clobbers() property(volatile functional loop_free)

{

 asm_begin

 ie = 1

 nop

 asm_end

}

The above C code generates the following error message

Error: found no preceding instruction that could be elongated in order to

meet instruction alignment constraint encountered in:

in "$working_directory/main.c", line 9

The workaround for this is, the programmer has to introduce a nop() between the enable_

interrupts() and the while loop as shown below:

int data[4];

void test();

void test()

{

49

User Guide – IP Programmer for LPDSP32–V3
September 2013

Confidential and Proprietary
SANYO Semiconductor Co., Ltd.

 // nothing

}

void main(void)

{

 data[0] = 0x000000;

 data[1] = 0x187DE2;

 data[2] = 0x2D413C;

 data[3] = 0x3B20D7;

 test();

 enable_interrupts();

 nop(); //added to remove elongation error

 while(1){

 test();

 }

}

D.2 Induction Variable Analysis failure

The CHESSDE front-end tool can fail to do Induction Variable Analysis in a few rare cases.

One such case is caused by the simultaneous presence in one function of both:

 void* operator+/- (void*, int)

 int operator- (void*, void*)

on the same pointer variable.

Example:

 *(p_stmp0--) = ...;

 non = (int)(p_stmp0 - p_c);

One easy workaround is by isolating the pointer difference use, replacing the second line by:

 non = (int)(chess_copy(p_stmp0) - p_c);

The front-end should detect this automatically and act appropriately, however there is no easy (short

term) tool fix possible. Since the issue is very uncommon, we propose to use the workaround.

50

User Guide – IP Programmer for LPDSP32–V3
September 2013

Confidential and Proprietary
SANYO Semiconductor Co., Ltd.

Bibliography

[1] Overview of manuals. Target Compiler Technologies, Technologielaan 11-0002, B-3001 Leuven,
Belgium, May 2010. Release 10R1.

[2] Chess Compiler User manual. Target Compiler Technologies, Technologielaan 11-0002, B-3001
Leuven, Belgium, May 2010. Release 10R1.

[3] Bridge Linker User manual. Target Compiler Technologies, Technologielaan 11-0002, B-3001
Leuven, Belgium, May 2010. Release 10R1.

../manuals/overview-manual-10R1.pdf
../manuals/chess_user-manual-10R1.pdf
../manuals/bridge-manual-10R1.pdf

	1. Introduction
	2. C Application Layer
	2.1 Overview
	2.2 C Integer Types
	2.3 C Floating-Point Types
	2.4 Accumulator Type
	2.5 Intrinsic Functions
	2.5.1 Type Conversion Functions
	2.5.2 Arithmetic Functions
	2.5.2.1 Multiplication
	2.5.2.2 Divide Step
	2.5.2.3 Normalization
	2.5.2.4 Maximum, Minimum, Absolute Value
	2.5.2.5 Bit Set, Bit Reset, Bit Invert, Bit Test

	2.5.3 Special Addressing Modes
	2.5.3.1 Cyclic Addressing
	2.5.3.2 Bit Reversal Addressing
	2.5.3.3 Wide Pointer Offset

	2.5.4 Controlling the Processor Mode

	2.6 Storage Qualifiers
	2.7 Mapping Variables to a Fixed Address
	2.8 Alignment of Data Types
	2.9 I/O interface
	2.10 Interrupts
	2.11 Inline Functions
	2.12 C Library Support
	2.13 C-Application Design Flow
	2.14 Optimization Techniques
	2.14.1 Optimization of Loops

	Appendix A. Linker Configuration file
	Appendix B. Initialization Code
	Appendix C. Examples
	C.1 Dual MAC Operation
	C.2 Normalization
	C.3 Bit Reverse Addressing
	C.4 FIR filter
	C.5 Complex FIR Filter
	C.6 IIR Filter
	C.7 All-pole IIR Lattice Filter
	C.8 Matrix Multiplication
	C.9 Auto Correlation

	Appendix D. Exceptional cases
	D.1 Elongation failure (before version 10R1.12)
	D.2 Induction Variable Analysis failure

	Bibliography

