
© SCILLC, 2023
Previous Edition © 2022
“All Rights Reserved”

RSL10 Firmware Reference

M-20818-022
June 2023

onsemi
RSL10 Firmware Reference

www.onsemi.com

2

Page

1. Introduction . . 13
1.1 Purpose . 13
1.2 Intended Audience . . 13
1.3 Conventions . . 13
1.4 Further Reading . . 13

2. Firmware Overview . 15
2.1 Introduction . 15
2.2 Firmware Components . 15

2.2.1 Firmware Files . . 17

2.2.2 Compliance Exceptions . 20

2.3 Firmware Naming Conventions . . 20
2.4 Firmware Resource Usage . 21
2.5 Versions . 21

2.5.1 Hardware Variants and Firmware Compatibility 21

2.5.2 Firmware Versions. . 21

3. Hardware Definitions . . 23
3.1 Register and Register Bit-field Definition 23
3.2 Memory Map Definition . 24
3.3 Non-Volatile Record Memory Map . 24

3.3.1 Application Specific Record. . 25

3.3.2 Bond Information Record . 25

3.3.3 Device Configuration Record . 26

3.3.4 Manufacturing Records . 27

3.4 Interrupt Vector Definition . 30

4. Event Kernel . 32
4.1 Overview . . 32

4.1.1 Feature List . 32

4.1.2 Top-Level Objects . . 32

4.1.3 Include Files . 32

4.1.4 API Functions . 32

4.1.4.1 Kernel_Init . 33
4.1.4.2 Kernel_Schedule . 33

4.1.5 Kernel Environment . 33

4.2 Messages . . 34
4.2.1 Overview . 34

4.2.2 Message Format . 34

4.2.3 Message Identifier . . 34

4.2.4 Parameter Management . 35

4.2.5 Message Queue Object . 35

4.2.6 Message Queue Primitives . 35

4.2.6.1 Message Allocation . 35
4.2.6.2 Message Send . 36
4.2.6.3 Message Send Basic . 36
4.2.6.4 Message Forward . 37
4.2.6.5 Message Free . 37

Table of Contents

onsemi
RSL10 Firmware Reference

www.onsemi.com

3

4.3 Scheduler . 37
4.3.1 Overview . 37

4.3.2 Requirements . 38

4.3.2.1 Scheduling Algorithm . 38
4.3.2.2 Save Service . 38

4.4 Tasks . 38
4.4.1 Definition . 38

4.5 Kernel Timer . 39
4.5.1 Overview . 39

4.5.2 Time Definition . 39

4.5.3 Timer Object . 39

4.5.4 Timer Setting . 40

4.5.5 Time Primitives . 40

4.5.5.1 Timer Set . 40
4.5.5.2 Timer Clear . 41
4.5.5.3 Timer Activity . 41
4.5.5.4 Timer Expiry . 41

4.6 Useful Macros . 42

5. Program ROM. 43
5.1 Overview . 43
5.2 Vector Table . 43
5.3 Initialization Support . 43

5.3.1 Base System Initialization . 44

5.3.2 User-Defined System Initialization . 44

5.3.3 Boot and Wakeup Initialization . 45

5.4 Application Validation and Boot . 47
5.5 Function Table . 49

6. Bluetooth Stack and Profiles . 50
6.1 Introduction . 50

6.1.1 Include and Object Files . 50

6.1.2 Bluetooth Stack . 53

6.1.3 Stack Support Functions . 54

6.1.3.1 BLE_ADV_Flags_Set . 55
6.1.3.2 BLE_Init . 55
6.1.3.3 BLE_InitNoTL . 56
6.1.3.4 BLE_Power_Mode_Enter . 56
6.1.3.5 BLE_Reset . 57
6.1.3.6 BLE_Set_EventPriority. 57
6.1.3.7 BLE_Sleep_MaxDuration_Set 58
6.1.3.8 BLE_Sleep_ReductionTime_Set 58
6.1.3.9 BLE_Set_RxWinSize_Max . 59
6.1.3.10 BLE_Set_RxWinSize_Disconnect 59
6.1.3.11 BLE_Set_AnchorPointMoveReq 59
6.1.3.12 BLE_Set_ParmUpdtReqOffsets 60
6.1.3.13 BLE_Set_ScanConIndStatusCallBack. 60

onsemi
RSL10 Firmware Reference

www.onsemi.com

4

6.1.3.14 Platform_Reset . 61
6.1.3.15 SecurityKeys_Read . 62

6.2 HCI . 62
6.2.1 HCI Software Architecture . 64

6.2.1.1 HCI Control Messages Descriptors 66
6.2.1.2 Event Descriptors . 69
6.2.1.3 Internal Messages Definition . 70
6.2.1.4 Events . 71

6.2.1.4.1 Legacy Events . 71

6.2.1.4.2 LE Event . 72

6.2.1.4.3 Command Complete Event 72

6.2.1.4.4 Command Status Event . 72

6.2.1.4.5 LE ACL RX Data . . 73

6.2.1.4.6 LE ACL TX Data . 73

6.2.1.5 Internal Messages Routing . 74
6.2.1.5.1 For External Host to Internal Controller 75

6.2.2 Between Internal Host and Controller 77

6.2.3 Proprietary Rules for Connection Handle Allocation 77

6.2.4 Communication with External Host . 77

6.2.5 HCI Events . 79

6.2.5.1 Legacy Events . 79
6.2.5.2 Command Complete Events. . 80
6.2.5.3 Command Status Events . . 80
6.2.5.4 LE Events . 81
6.2.5.5 HCI ACL TX Data . 81
6.2.5.6 HCI ACL RX Data . 84

6.2.6 Generic Parameter Packing - Unpacking 84

6.2.6.1 Parameters Format Definition . 85
6.2.6.2 Generic Packer . . 85
6.2.6.3 Generic Unpacker . . 86
6.2.6.4 Alignment and Data Copy Primitives 87

6.3 GATT . . 87
6.3.1 GATT Fundamentals . 87

6.3.1.1 Roles . . 87
6.3.1.2 Security Features . 88
6.3.1.3 Attribute Grouping . 88

6.3.1.3.1 Service . 88

6.3.1.3.2 Included Service . 89

6.3.1.3.3 Characteristics . . 89

6.3.1.4 L2CAP . 92
6.3.2 Attribute Protocol Toolbox . 93

6.3.2.1 Basic Attribute Concepts. . 93
6.3.2.1.1 Attribute . . 93

6.3.2.1.2 Protocol Methods . 94

6.3.2.2 Attribute Protocol Packet Data Unit Format. 95

onsemi
RSL10 Firmware Reference

www.onsemi.com

5

6.3.2.3 Attribute Protocol Operations . 95
6.3.2.3.1 Atomic Operations . 95

6.3.2.3.2 Flow Control . 95

6.3.2.3.3 Transaction . 95

6.3.2.4 Attribute Protocol Module Interfaces 96
6.3.2.4.1 Interface with Upper Layers 96

6.3.2.4.2 Interface with L2CAP . 96

6.3.2.5 Attribute Manager (Database Owner) 96
6.3.2.5.1 Attribute Definition . 97

6.3.2.5.2 Service Definition . 97

6.3.2.5.3 Service Permission Field 98

6.3.2.5.4 Attribute Permission Field 98

6.3.2.5.5 Data Caching . 100

6.3.2.5.6 Attribute Database Example 100

6.3.2.6 Attribute Server . 100
6.3.2.6.1 Attribute Discovery / Read. 100

6.3.2.6.2 Attribute Write . 101

6.3.2.6.3 Server Initiated Events . 104

6.3.2.6.4 Data Caching . 105

6.3.2.7 Attribute Client . 107
6.3.2.7.1 Discovery Command . 107

6.3.2.7.2 Read Command . 111

6.3.2.7.3 Write Command . 113

6.3.2.7.4 Reception of Notification or Indications 116

6.3.3 Features and Functions . 117

6.3.3.1 Attribute Packet Size Negotiation 117
6.3.3.2 Primary Service Discovery. . 117
6.3.3.3 Relationship Discovery . . 118
6.3.3.4 Characteristic Discovery . 118
6.3.3.5 Characteristic Descriptor Discovery 119
6.3.3.6 Characteristic Value Read . 119
6.3.3.7 Characteristic Value Write . . 120
6.3.3.8 Characteristic Value Notification 121
6.3.3.9 Characteristic Value Indication 121
6.3.3.10 Characteristic Descriptor Value Read 122
6.3.3.11 Characteristic Descriptor Value Write 122

6.3.4 Service Discovery Procedure . 122

6.3.5 GATT Profile Service . 124

6.3.6 GATT Environment Variables . . 124

6.3.6.1 GATT Manager Environment 124
6.3.6.2 GATT Controller Environment 125

6.4 GAP Functionality . 125
6.4.1 Modes and Profile Roles . 126

6.4.2 General LE Procedures . 127

onsemi
RSL10 Firmware Reference

www.onsemi.com

6

6.4.2.1 Broadcasting and Observing 127
6.4.2.1.1 Conditions . .127

6.4.2.2 Advertising Modes . 128
6.4.2.2.1 Broadcast Mode .128

6.4.2.2.2 Non-Discoverable Mode129

6.4.2.2.3 General Discoverable . .129

6.4.2.2.4 Limited Discoverable . .129

6.4.2.2.5 Direct Mode .129

6.4.2.3 Scan Modes . 129
6.4.2.3.1 Device Discovery . .129

6.4.2.3.2 Observer Mode. .130

6.4.2.3.3 General Discovery. .130

6.4.2.3.4 Limited Discovery. .131

6.4.2.3.5 Name Discovery . .131

6.4.2.4 Connection . 131
6.4.2.4.1 Direct Connection Establishment 133

6.4.2.4.2 General Connection Establishment 134

6.4.2.4.3 Automatic Connection Establishment. 134

6.4.2.4.4 Selective Connection Establishment 135

6.4.2.4.5 Update Connection Parameters136

6.4.2.5 Bonding . 139
6.4.3 Low Energy Security . 140

6.4.3.1 Security Modes. 140
6.4.3.2 Authentication Procedure . 141
6.4.3.3 Authorization Procedure . 141
6.4.3.4 Data Signing . 141
6.4.3.5 Privacy . 142

6.4.3.5.1 Host Managed Privacy (1.1) 142

6.4.3.5.2 Controller Managed Privacy (1.2)142

6.4.3.5.3 LE Address . .142

6.4.4 Security Manager Toolbox . 144

6.4.4.1 Keys Definition . 145
6.4.4.2 AES-CMAC Algorithm . 146
6.4.4.3 Identity Root Generation. 146

6.4.4.3.1 Identity Resolving Key Generation 147

6.4.4.3.2 Diversifier Hiding Key Generation 147

6.4.4.3.3 Connection Signature Resolving Key Generation 147

6.4.4.3.4 Long Term Key and Diversifier Generation147

6.4.4.3.5 Encrypted Session Setup. 147

6.4.4.3.6 Link Layer Encryption .147

6.4.4.3.7 Signing Algorithm. .148

6.4.4.3.8 Slave Initiated Security 148

6.4.4.4 Procedure Details . 148
6.4.4.4.1 Random Address Generation 148

6.4.4.4.2 Address Resolution .150

onsemi
RSL10 Firmware Reference

www.onsemi.com

7

6.4.4.4.3 Encryption Toolbox Access 150

6.4.4.4.4 Pairing . 151

6.4.4.4.5 Encryption . . 160

6.4.4.4.6 Data Signing . 162

6.4.4.4.7 Pairing Repeated Attempts. 165

6.4.4.5 Security Manager Protocol Data Unit Format 165
6.4.4.5.1 SMP PDU Codes. . 166

6.4.5 LE Credit Based Channel . 166

6.4.5.1 Channel Registration . 168
6.4.5.2 Connection Creation. . 169
6.4.5.3 Disconnection. . 172
6.4.5.4 Data Exchange . 172
6.4.5.5 Credit Management . 175
6.4.5.6 LE Ping. . 175
6.4.5.7 LE Data Packet Length Extension 176
6.4.5.8 Profile Management . . 176
6.4.5.9 GAP service database . 178
6.4.5.10 GAP Environment Variables 179

6.4.5.10.1 GAP Manager Environment 179

6.4.5.10.2 GAP Controller Environment 179

6.4.5.10.3 GAP Profiles Environment 180

6.4.5.11 Device initialization . 180
6.4.5.11.1 Software Reset . 180

6.4.5.11.2 Device Configuration . 180

6.4.6 Profile Functionalities . 181

6.4.7 Message API naming requirements . 182

6.4.8 Memory Optimization . 183

6.4.8.1 Connection Oriented Task . 183
6.4.8.2 Operation Model . . 183

7. Custom Protocols . . 185
7.1 Overview . 185
7.2 Audio Stream Broadcast Custom Protocol 185

7.2.1 Audio Stream Broadcast Packet Structure 186

7.2.2 Audio Stream Broadcast Transmission Structure 187

7.2.2.1 Packet Sets. . 187
7.2.2.2 RF Physical Layer Configuration. 187
7.2.2.3 RF Transmission Structure . . 188

7.2.3 Audio Stream Broadcast API . 190

7.2.3.1 RM_Configure . 190
7.2.3.2 RM_Disable . 191
7.2.3.3 RM_Enable . 191
7.2.3.4 RM_EventHandler . 191
7.2.3.5 RM_StatusHandler . 192

7.3 Low-Latency Custom Protocol . 192

onsemi
RSL10 Firmware Reference

www.onsemi.com

8

7.3.1 Low-Latency Protocol Physical Layer 193

7.3.2 Low-Latency Protocol Packet Structure 193

7.3.3 Low-Latency Protocol Link Layer Structure. 194

7.3.4 Low-Latency Protocol Application Program Interface 195

7.3.5 Low-Latency Protocol Modules/Peripheral Usage 196

7.3.6 Low-Latency Custom Protocol API 196

7.3.6.1 CP_Configure . 196
7.3.6.2 CP_Disable . 197
7.3.6.3 CP_Enable . 197
7.3.6.4 CP_EventHandler . 197

8. CMSIS Implementation Library Reference . .199
8.1 SystemCoreClockUpdate . .199
8.2 SystemInit .200

9. System Library Reference .201
9.1 BLE_DeviceParam_Set_ADV_IFS .201
9.2 BLE_DeviceParam_Set_AdvDelay .202
9.3 BLE_DeviceParam_Set_ClockAccuracy 203
9.4 BLE_DeviceParam_Set_ForcedClockAccuracy 204
9.5 BLE_DeviceParam_Set_MaxNumRAL 205
9.6 BLE_DeviceParam_Set_MaxRxOctet . .206
9.7 BLE_DeviceParam_Set_SlaveLatencyDelay 207
9.8 Device_Param_Prepare .208
9.9 Device_Param_Read . .209
9.10 Sys_ADC_Clear_BATMONStatus .210
9.11 Sys_ADC_Get_BATMONStatus . . 211
9.12 Sys_ADC_Get_Config . .212
9.13 Sys_ADC_InputSelectConfig . .213
9.14 Sys_ADC_Set_BATMONConfig . .214
9.15 Sys_ADC_Set_BATMONIntConfig . .215
9.16 Sys_ADC_Set_Config . .216
9.17 Sys_AES_Cipher . .217
9.18 Sys_AES_Config . .219
9.19 Sys_ASRC_CalcPhaseCnt . .220
9.20 Sys_ASRC_CheckInputConfig .221
9.21 Sys_ASRC_Config . .222
9.22 Sys_ASRC_ConfigRunTime . .223
9.23 Sys_ASRC_InputData . .224
9.24 Sys_ASRC_IntEnableConfig . .225
9.25 Sys_ASRC_OutputCount .226
9.26 Sys_ASRC_OutputData . .227
9.27 Sys_ASRC_PhaseIncConfig .228
9.28 Sys_ASRC_Reset . .229
9.29 Sys_ASRC_ResetOutputCount .230
9.30 Sys_ASRC_Status .231
9.31 Sys_ASRC_StatusConfig .232
9.32 Sys_Audio_DMICDIOConfig . .233
9.33 Sys_Audio_ODDIOConfig . .234
9.34 Sys_Audio_ODDIOConfigMult . .235
9.35 Sys_Audio_Set_Config . .236

onsemi
RSL10 Firmware Reference

www.onsemi.com

9

9.36 Sys_Audio_Set_DMICConfig . 237
9.37 Sys_Audio_Set_ODConfig . 238
9.38 Sys_Audiosink_Config . 239
9.39 Sys_Audiosink_Counter . 240
9.40 Sys_Audiosink_InputClock . 241
9.41 Sys_Audiosink_PeriodCounter . 242
9.42 Sys_Audiosink_PhaseCounter . 243
9.43 Sys_Audiosink_ResetCounters . 244
9.44 Sys_Audiosink_Set_Ctrl . 245
9.45 Sys_BBIF_ConnectRFFE . . 246
9.46 Sys_BBIF_DIOConfig . . 247
9.47 Sys_BBIF_RFFE . 248
9.48 Sys_BBIF_RFFEDrivenExternal . 249
9.49 Sys_BBIF_SPIConfig . 250
9.50 Sys_BBIF_SyncConfig . 251
9.51 Sys_BootROM_Reset . 252
9.52 Sys_BootROM_StartApp . 253
9.53 SYS_BOOTROM_STARTAPP_RETURN 254
9.54 Sys_BootROM_StrictStartApp . 255
9.55 Sys_BootROM_ValidateApp . . 256
9.56 Sys_Clocks_ClkDetEnable . 257
9.57 Sys_Clocks_Osc . . 258
9.58 Sys_Clocks_Osc32kCalibratedConfig . 259
9.59 Sys_Clocks_Osc32kHz . 260
9.60 Sys_Clocks_OscRCCalibratedConfig . 261
9.61 Sys_Clocks_Set_ClkDetConfig . 262
9.62 Sys_Clocks_SystemClkConfig . 263
9.63 Sys_Clocks_SystemClkPrescale0 . 264
9.64 Sys_Clocks_SystemClkPrescale1 . 265
9.65 Sys_Clocks_SystemClkPrescale2 . 266
9.66 Sys_CRC_Calc . 267
9.67 Sys_CRC_Check . 268
9.68 Sys_CRC_Get_Config . . 269
9.69 Sys_CRC_Set_Config . 270
9.70 Sys_Delay_ProgramROM . . 271
9.71 Sys_DIO_Config . 272
9.72 Sys_DIO_Get_Mode . 273
9.73 Sys_DIO_IntConfig . 274
9.74 Sys_DIO_NMIConfig . 275
9.75 Sys_DIO_Set_Direction . 276
9.76 Sys_DMA_ChannelConfig . 277
9.77 Sys_DMA_ChannelDisable . 279
9.78 Sys_DMA_ChannelEnable . 280
9.79 Sys_DMA_ClearAllChannelStatus . 281
9.80 Sys_DMA_ClearChannelStatus . 282
9.81 Sys_DMA_Get_ChannelStatus . 283
9.82 Sys_DMA_Set_ChannelDestAddress . 284
9.83 Sys_DMA_Set_ChannelSourceAddress 285
9.84 Sys_Flash_Compare . 286

onsemi
RSL10 Firmware Reference

www.onsemi.com

10

9.85 Sys_Flash_Copy . .287
9.86 Sys_Flash_ECC_Config .288
9.87 Sys_GPIO_Set_High .289
9.88 Sys_GPIO_Set_Low . .290
9.89 Sys_GPIO_Toggle .291
9.90 Sys_I2C_ACK .292
9.91 Sys_I2C_Config . .293
9.92 Sys_I2C_DIOConfig . .294
9.93 Sys_I2C_Get_Status . .295
9.94 Sys_I2C_LastData .296
9.95 Sys_I2C_NACK . .297
9.96 Sys_I2C_NACKAndStop . .298
9.97 Sys_I2C_Reset .299
9.98 Sys_I2C_StartRead . .300
9.99 Sys_I2C_StartWrite . .301
9.100 Sys_Initialize . .302
9.101 Sys_Initialize_Base . .303
9.102 Sys_IP_Lock . .304
9.103 Sys_IP_Unlock . .305
9.104 Sys_LPDSP32_Command .306
9.105 Sys_LPDSP32_DIOJTAG .307
9.106 Sys_LPDSP32_Get_ActivityCounter 308
9.107 Sys_LPDSP32_IntClear .309
9.108 Sys_LPDSP32_Pause . .310
9.109 Sys_LPDSP32_Reset . 311
9.110 Sys_LPDSP32_Run .312
9.111 Sys_LPDSP32_Run_Status .313
9.112 Sys_LPDSP32_RuntimeAddr .314
9.113 Sys_LPDSP32_Set_DebugConfig . .315
9.114 Sys_NVIC_ClearAllPendingInt . .316
9.115 Sys_NVIC_DisableAllInt . .317
9.116 Sys_PCM_ClearStatus . .318
9.117 Sys_PCM_Config .319
9.118 Sys_PCM_ConfigClk . .320
9.119 Sys_PCM_DIOConfig . .321
9.120 Sys_PCM_Disable . .322
9.121 Sys_PCM_Enable . .323
9.122 Sys_PCM_Get_Status . .324
9.123 Sys_Power_BandGapCalibratedConfig 325
9.124 Sys_Power_BandGapConfig . .326
9.125 Sys_Power_BandGapStatus . .327
9.126 Sys_Power_DCDCCalibratedConfig .328
9.127 Sys_Power_Get_ResetAnalog .329
9.128 Sys_Power_Get_ResetDigital .330
9.129 Sys_Power_ResetAnalogClearFlags .331
9.130 Sys_Power_ResetDigitalClearFlags .332
9.131 Sys_Power_VCCConfig . .333
9.132 Sys_Power_VDDAConfig .334
9.133 Sys_Power_VDDCCalibratedConfig .335
9.134 Sys_Power_VDDCConfig .336
9.135 Sys_Power_VDDCStandbyCalibratedConfig337

onsemi
RSL10 Firmware Reference

www.onsemi.com

11

9.136 Sys_Power_VDDMCalibratedConfig 338
9.137 Sys_Power_VDDMConfig . 339
9.138 Sys_Power_VDDMStandbyCalibratedConfig 340
9.139 Sys_Power_VDDPACalibratedConfig 341
9.140 Sys_Power_VDDPAConfig . . 342
9.141 Sys_Power_VDDRFCalibratedConfig 343
9.142 Sys_Power_VDDRFConfig . . 344
9.143 Sys_PowerModes_Sleep . . 345
9.144 Sys_PowerModes_Sleep_Init . 346
9.145 Sys_PowerModes_Sleep_Init_2Mbps 347
9.146 Sys_PowerModes_Sleep_WakeupFromFlash 348
9.147 Sys_PowerModes_Standby . 349
9.148 Sys_PowerModes_Standby_Wakeup . 350
9.149 Sys_PowerModes_Wakeup . 351
9.150 Sys_PowerModes_Wakeup_2Mbps . 352
9.151 Sys_ProgramROM_UnlockDebug . . 353
9.152 Sys_PWM_Config . 354
9.153 Sys_PWM_ConfigAll . 355
9.154 Sys_PWM_Control . 356
9.155 Sys_PWM_DIOConfig . 357
9.156 Sys_PWM_Enable . 358
9.157 Sys_ReadNVR4 . 359
9.158 Sys_RFFE_InputDIOConfig . 360
9.159 Sys_RFFE_OutputDIOConfig . 361
9.160 Sys_RFFE_SetTXPower . . 362
9.161 Sys_RFFE_SPIDIOConfig . 363
9.162 Sys_RTC_Config . 364
9.163 Sys_RTC_Start . . 365
9.164 Sys_RTC_Value . 366
9.165 Sys_SPI_Config . 367
9.166 Sys_SPI_DIOConfig . 368
9.167 Sys_SPI_MasterInit . 369
9.168 Sys_SPI_Read . 370
9.169 Sys_SPI_ReadWrite . 371
9.170 Sys_SPI_TransferConfig . . 372
9.171 Sys_SPI_Write . . 373
9.172 Sys_Timer_BBConfig . 374
9.173 Sys_Timer_Get_Status . 375
9.174 Sys_Timer_Set_Control . 376
9.175 Sys_Timers_Start . 377
9.176 Sys_Timers_Stop . 378
9.177 Sys_UART_DIOConfig . 379
9.178 Sys_UART_Disable . 380
9.179 SYS_WAIT_FOR_EVENT . 381
9.180 SYS_WAIT_FOR_INTERRUPT . 382
9.181 Sys_Watchdog_Refresh . 383
9.182 Sys_Watchdog_Set_Timeout . 384

10. Math Library Reference . 385
10.1 Math_Add_frac32 . 385

onsemi
RSL10 Firmware Reference

www.onsemi.com

12

10.2 Math_AttackRelease . .386
10.3 Math_AttackRelease_frac32 .387
10.4 Math_ExpAvg . .388
10.5 Math_ExpAvg_frac32 .389
10.6 Math_LinearInterp .390
10.7 Math_LinearInterp_frac32 . .391
10.8 Math_Mult_frac32 .392
10.9 Math_SingleVar_Reg .393
10.10 Math_Sub_frac32 .394

11. Flash Library Reference. .395
11.1 Flash_EraseAll .395
11.2 Flash_EraseSector .396
11.3 Flash_WriteBuffer .397
11.4 Flash_WriteCommand .398
11.5 Flash_WriteInterfaceControl .399
11.6 Flash_WriteWordPair .400

12. Calibration Library Reference . .401
12.1 Calibrate_Clock_32K_RCOSC .401
12.2 Calibrate_Clock_Initialize . .402
12.3 Calibrate_Clock_Start_OSC .403
12.4 Calibrate_Power_DCDC .404
12.5 Calibrate_Power_Initialize . .405
12.6 Calibrate_Power_VBG . .406
12.7 Calibrate_Power_VDDC .407
12.8 Calibrate_Power_VDDM .408
12.9 Calibrate_Power_VDDPA . .409
12.10 Calibrate_Power_VDDRF .410

A. Glossary . . 411

www.onsemi.com

13

CHAPTER 1

1.Introduction
1.1 PURPOSE

This manual describes the firmware for RSL10. The firmware provides developers with a convenient software
layer on which to build their applications. It is also responsible for system-level tasks such as coordinating Bluetooth
communications, booting the system and implementing portions of the device security layer. It consists of include files,
libraries, and ROM code. This manual includes descriptions, function listings, and usage examples to help you to
understand the firmware and its parts.

1.2 INTENDED AUDIENCE

This manual is for developers who are designing and implementing applications for RSL10. Both novice and
experienced developers can benefit from this information.

This manual assumes the reader has a basic understanding of:

• C and the fundamentals of the Arm® Thumb-2 assembly language
• The integrated development environment and toolchains that form the development tools
• RSL10 architecture

1.3 CONVENTIONS

The following conventions are used in this manual to signify particular types of information:

monospace font

Assembly code, macros, functions, defines and addresses.

italics
File and path names, or any portion of them.

<angle brackets>

Optional parameters and placeholders for specific information. To use an optional parameter or
replace a placeholder, specify the information within the brackets; do not include the brackets
themselves.

1.4 FURTHER READING

For more information about the Event Kernel, Bluetooth Stack and Profile library interface specifications, refer to
the documents referenced in Chapter 4, “Event Kernel” on page 32 and Chapter 6, “Bluetooth Stack and Profiles” on
page 50.

For more information about RSL10, refer to the following documents:

• RSL10 Hardware Reference
• RSL10 Software Development Tools User’s Guide
• The datasheet for RSL10

IMPORTANT: onsemi acknowledges that this document might contain the inappropriate terms “white list",
"master" and "slave”. We have a plan to work with other companies to identify an industry wide solution that
can eradicate non-inclusive terminology but maintains the technical relationship of the original wording. Once
new terminologies are agreed upon, future products will contain new terminology.

onsemi
RSL10 Firmware Reference

www.onsemi.com

14

• Bluetooth Core Specification v5.0, available from
https://www.bluetooth.com/specifications/adopted-specifications

For more information about the Arm® Cortex®-M3 processor, refer to the following documents:

• ARMv7M Architecture Reference Manual
• ARM and Thumb-2 Instruction Set Quick Reference Card
• ARM Core Cortex-M3/Cortex-M3 with ETM (AT420/AT425) Errata Notice
• ARM Cortex-M3 Processor Toolchain Reference for Ezairo 7100

www.onsemi.com

15

CHAPTER 2

2.Firmware Overview
2.1 INTRODUCTION

RSL10 is supported by firmware sets that provide:

• A thin layer of support between the hardware and the developer. This firmware allows the developer to focus
on application development and reduces the number of details a developer is required to know about the
underlying RSL10 hardware.

• A support layer for common complex operations that will be used by user applications.
• Wireless protocol support functionality for Bluetooth low energy and custom protocol support.

The system firmware provides an interface for common operations that is easier to use and understand than
low-level C or assembly code. For instance, you can control and configure the underlying hardware while avoiding the
use of absolute addresses, which helps you to produce code quickly, with fewer errors. The support and wireless
protocol firmware provide more advanced functionality that can form the basis for any application that has been
developed to take advantage of the hardware provided by the RSL10 SoC.

When multiple programmers are involved in development, using the firmware leads to increased consistency,
which in turn leads to increased overall robustness and correctness of code.

In some cases, depending on the particulars of the application, the firmware implementation might not be optimal;
however, even in these situations, the firmware serves as an example and advanced starting point for custom-developed
functions and macros.

The firmware also encapsulates the details of the hardware such that many changes due to hardware revisions are
transparent at the application level. The encapsulation also provides a basic level of error checking of the hardware
usage. Compatibility information for firmware and hardware revisions is described in Section 2.5, “Versions” on
page 21.

2.2 FIRMWARE COMPONENTS

Firmware supporting the RSL10 SoC can be divided into three groups:

System Firmware
This set of firmware provides a layer of support between the application developer and the
underlying hardware. It is a collection of files, macros, functions and libraries designed to make
application development simpler, quicker and more reliable. The firmware serves many
functions, including performing system-level tasks (e.g., switching applications), implementing
part of the security functionality, power mode configuration, and improving application
readability.

The system support firmware consists of:

• Hardware definitions such as a register description, memory maps, interrupt vectors, and
related components. The firmware applies a layer of names and labels to the underlying
hardware for ease of use. This firmware is described in Chapter 3, “Hardware Definitions” on
page 23.

• A C-startup implementation for applications paired with a Cortex Microcontroller Software
Interface Standard (CMSIS) compliant application template provided by the CMSIS

onsemi
RSL10 Firmware Reference

www.onsemi.com

16

implementation library. Reference information for this library is provided in Chapter 8,
“CMSIS Implementation Library Reference” on page 199.

• A set of macros, in-line functions and other functions that provide basic and complex system
functionality to simplify development provided through the System Library. Reference
material for this library is provided in Chapter 9, “System Library Reference” on page 201.

• A set of functions providing fixed point mathematics and an extension of standard floating
point functions from math.h, provided through the Math Library. Reference material for this
library is provided in Chapter 10, “Math Library Reference” on page 385.

Support Firmware
This set of firmware consists of more complex firmware components that are used to complete
complex tasks which can be used as an extension to an application, or can be used as the
common core functionality of an application.

The support firmware consists of:

• An event handler kernel that can be used to exchange and store messages, schedule events,
and register call-back functions that respond to other events that have occurred in the system.
More information about this kernel is provided in Chapter 4, “Event Kernel” on page 32.

• The Program ROM which contains code for ensuring that the system starts and restarts in
known states with known behaviors. The Program ROM loads information for the security
implementations. The Program ROM also integrates the Flash Write Support Library and
provides implementations to a number of ROM vector-based functions that are provided by
the System Library. For more information about the Program ROM, see Chapter 5, “Program
ROM” on page 43.

• A set of functions for erasing and writing the contents of flash memory provided through the
Flash Write Support Library. Reference material for this library is provided in Chapter 11,
“Flash Library Reference” on page 395.

• A set of macros and functions that can be used to calibrate system components to
non-standard target values to supplement the calibration settings calculated during device
manufacturing and provided in NVR4. This functionality is provided by the Supplemental
Calibration Library, and reference material for this library is provided in Chapter 12,
“Calibration Library Reference” on page 401.

Bluetooth Protocol Stack and Profiles and Custom Protocols
This set of firmware implements a Bluetooth low energy stack and a set of Bluetooth profiles.
This firmware consists of a collection of include files and pre-compiled libraries that are
designed to make Bluetooth-based application development simpler and quicker, while meeting
the interoperability test requirements required for Bluetooth certification. Information about the
Bluetooth support firmware is provided in Chapter 6, “Bluetooth Stack and Profiles” on
page 50.

This set of firmware also contains include files and libraries implementing onsemi-defined
custom protocols. These protocols can be used as is, or can be used as the starting point for
user-defined custom protocols.

All firmware components listed above execute on the Arm Cortex-M3 processor, and all of these components are
CMSIS-compatible.

onsemi
RSL10 Firmware Reference

www.onsemi.com

17

2.2.1 Firmware Files

The firmware files consist of include files (denoted with .h extensions), and precompiled library binaries (denoted
with .a extensions). Some precompiled libraries are also provided in source code format.

The Arm Cortex-M3 processor firmware include files and libraries for each of the three groups of firmware are
listed in Table 1, Table 2, and Table 3/Table 4. Applications that use the libraries provided must:

• Include the associated firmware include file.
• Link against any dependencies of the desired library.
• Link against a version of the desired library.

Table 1. Arm Cortex-M3 Processor System Firmware Include Files and Libraries

Firmware Component Include Files Library Dependencies

Hardware Definition rsl10_map.h

rsl10_map_nvr.h

rsl10_reg.h

rsl10_vectors.h

N/A N/A

CMSIS Include Files and library arm_common_tables.h

arm_math.h

core_cm3.h

core_cmFunc.h

core_cmInstr.h

rsl10.h

rsl10_start.h

system_rsl10.h

libcmsis.a -

onsemi
RSL10 Firmware Reference

www.onsemi.com

18

System Macros and Library rsl10_romvect.h

rsl10_sys_aes.h

rsl10_sys_asrc.h

rsl10_sys_audio.h

rsl10_sys_audiosink.h

rsl10_sys_bbif.h

rsl10_sys_clocks.h

rsl10_sys_cm3.h

rsl10_sys_crc.h

rsl10_sys_dio.h

rsl10_sys_dma.h

rsl10_sys_flash.h

rsl10_sys_gpio.h

rsl10_sys_i2c.h

rsl10_sys_ip.h

rsl10_sys_lpdsp32.h

rsl10_sys_adc.h

rsl10_sys_mem.h

rsl10_sys_pcm.h

rsl10_sys_power.h

rsl10_sys_power_modes.h

rsl10_sys_pwm.h

rsl10_sys_rffe.h

rsl10_sys_rtc.h

rsl10_sys_spi.h

rsl10_sys_timers.h

rsl10_sys_uart.h

rsl10_sys_watchdog.h

libsyslib.a CMSIS library (or equivalent)

Math Library rsl10_math.h libmathlib.a -

Flash Library rsl10_flash.h libflashlib.a -

Table 2. Arm Cortex-M3 Processor Support Firmware Include Files and Libraries

Firmware Component Include Files Library Dependencies

Event Kernel rsl10_ke.h libkelib.a -

Calibration Library rsl10_calibrate.h libcalibratelib.a System library

Table 1. Arm Cortex-M3 Processor System Firmware Include Files and Libraries (Continued)

Firmware Component Include Files Library Dependencies

onsemi
RSL10 Firmware Reference

www.onsemi.com

19

The event kernel support firmware and the Bluetooth protocol stack are available in the following formats:

Table 3. Bluetooth Support Firmware Include Files and Libraries

Firmware Component Include Files Library Dependencies

Bluetooth Stack rsl10_bb.h

rsl10_ble.h

libblelib.a Event kernel

Bluetooth Profiles rsl10_profiles.h libanpc.a

libanps.a

libbasc.a

libbass.a

libblpc.a

libblps.a

libcppc.a

libcpps.a

libcscpc.a

libcscps.a

libdisc.a

libdiss.a

libfindl.a

libfindt.a

libglpc.a

libglps.a

libhogpbh.a

libhogpd.a

libhogprh.a

libhrpc.a

libhrps.a

libhtpc.a

libhtpt.a

liblanc.a

liblans.a

libpaspc.a

libpasps.a

libproxm.a

libproxr.a

librscpc.a

librscps.a

libscppc.a

libscpps.a

libtipc.a

libtips.a

libwptc.a

libwpts.a

Event kernel,

Bluetooth stack

Table 4. Custom Protocol Firmware Include Files and Libraries

Firmware Component Include Files Library Dependencies

Custom Low-Latency Audio Profile cp_pkt.h libcustom_protocolLib.a System library

onsemi
RSL10 Firmware Reference

www.onsemi.com

20

• Debug, debug with HCI access, debug (light)
• Release, release with HCI access, release (light)

The Bluetooth profiles are available in the following formats:

• Debug, debug with HCI access
• Release, release with HCI access

The remaining libraries are available in the following formats:

• Source code
• Debug
• Debug for RSL10 beta revision 1.02 (RSL10_CID = 8102)
• Release

2.2.2 Compliance Exceptions

The firmware provided for the Arm Cortex-M3 processor is generally compliant with the MISRA-C:2004 rules, as
required by the CMSIS standard. The RSL10 firmware exceptions in compliance are the same compliance exceptions
that are part of the CMSIS Core standard.

The RSL10 firmware and CMSIS-CORE violate the following MISRA-C:2004 rules:

• Required Rule 8.5, object/function definition in header file. Violated because function definitions in header
files are used to allow “inlining” of functions.

• Required Rule 18.4, declaration of union type or object of union type: {...}. Violated because unions are
used for effective representation of core registers.

• Advisory Rule 19.7, Function-like macro defined. Violated because function-like macros are used to allow for
more efficient code.

2.3 FIRMWARE NAMING CONVENTIONS

For clarity and ease of use, the firmware follows several naming conventions for library functions and macros.
These conventions are compatible with the CMSIS naming requirements.

The macros provided for the Arm Cortex-M3 processor control the registers and peripherals of the processor and
surrounding system. Arm Cortex-M3 processor macros that are implemented using a #define statement use all
capitals in the macro name. These macros are prefixed with an all-capital prefix indicating the library they are
supporting (e.g., SYS_). If the macro supports a specific target component, this prefix is followed by the name of the
component it supports. The rest of the macro name indicates the intended functionality of the macro.

Inline and standard firmware functions for the Arm Cortex-M3 processor use camel-case function names (e.g.,
CalcPhaseCnt). All functions use a prefix to indicate which library provides the function (e.g., Sys_). The remainder
of a function’s name indicates the block they affect and their intended functionality.

 Table 5 lists the prefixes for each of the firmware libraries.

onsemi
RSL10 Firmware Reference

www.onsemi.com

21

2.4 FIRMWARE RESOURCE USAGE

The firmware uses the Arm Cortex-M3 processor system stack. It expects that the Arm Cortex-M3 processor stack
pointer points to a valid stack that grows downward (i.e., decreasing memory addresses).

The firmware and sample code also recommend use cases for the non-volatile memory records, as described in
Section 3.3, “Non-Volatile Record Memory Map” on page 24. To take advantage of the firmware design, we
recommend that applications follow the use cases provided by these non-volatile memory records.

2.5 VERSIONS

2.5.1 Hardware Variants and Firmware Compatibility

To simplify identification of systems-on-chips that are compatible with a given set of firmware, the RSL10 SoC
provides chip version information using the AHBREGS_CHIP_ID_NUM register which can be used to calculate the chip
identifier (CID) used by the firmware. Devices that share a CID are compatible with firmware built for that CID.

The CID is a two-byte value with the most significant byte set to the value of the
AHBREGS_CHIP_ID_NUM_CHIP_VERSION bit-field, and the least significant byte set to the value of the
AHBREGS_CHIP_ID_NUM_CHIP_MAJOR_REVISION bit-field. Devices with the same CID but different minor revisions
(readable from the AHBREGS_CHIP_ID_NUM_CHIP_MINOR_REVISION bit-field) are compatible with the same
firmware packages. See the RSL10 Hardware Reference for more information.

When including rsl10.h, specify the CID by using the symbol RSL10_CID. Set this symbol to the target platform
either in the source files or through the project build settings. The following example instructs the system libraries to
provide the CID 101 variant of the constants:

#define RSL10_CID 101 // Target RSL10 version 1.01.xx
#include <rsl10.h>

By default, new projects include the correct settings to target CID 101 for the RSL10 chip. To modify the target
CID, update the build settings for your project. You can change the chip ID using build properties or preprocessor
settings.

2.5.2 Firmware Versions

Version symbols are provided for each major system firmware component and most support firmware components.
The version symbols can be used directly or indirectly to verify the version of the components used to build an
application. There are two types of version symbols available:

Table 5. Library Function Naming Convention

Library Macro Prefix Function Prefix

CMSIS Implementation Library None1

1. The CMSIS standard provides standard names for all CMSIS macros and functions, so no prefixes are used.

None

System Library SYS_ Sys_

Math Library N/A Math_

Flash Write Support Library N/A Flash_

Supplemental Calibration Library N/A Calibrate_

onsemi
RSL10 Firmware Reference

www.onsemi.com

22

Define A preprocessor define containing the version information

Constants A constant global variable value included in each library, which contains the version
information for that library

The available version information for each firmware component is listed in Table 6.

The version information contains a major version, minor version and revision. The major version is updated to
indicate significant changes to the component. Significant changes can involve a total redesign of the component,
including its interfaces and functionality. The minor version is updated to indicate minor changes or additions that are
usually backward-compatible. This would generally indicate a change to the interfaces or underlying functionality,
including different register modifications or leaving a different system state. The revision is updated to indicate a fairly
insignificant change to the component. For example, the revision is updated when the interfaces and functionality of the
component remain the same, and some other change has occurred. This can include non-functional changes to the
source code, or optimizations that do not affect the calling application.

The major version, minor version and revision are contained in a 16-bit value. The version is described as
Major.Minor.Revision. For example, Math Library v1.1.0 (0x1100) indicates major version 1, minor version 1, and
revision 0. Table 7 shows the bit fields in the version symbols.

Table 6. Firmware Version Symbols

Component Define Constant

CMSIS and System Library RSL10_SYS_VER RSL10_Sys_Version

Flash Library FLASH_FW_VER RSL10_FlashLib_Version

Math Library MATH_FW_VER RSL10_MathLib_Version

Calibration Library CALIBRATE_FW_VER RSL10_CalibrateLib_Version

Program ROM N/A PROGRAM_ROM_VERSION1

1. The Program ROM version can be read from 0x0000 001C

Table 7. Firmware Version Bit Fields

Bits 15-12 Bits 11-8 Bits 7-0

Major Version Minor Version Revision

www.onsemi.com

23

CHAPTER 3

3.Hardware Definitions
The Arm Cortex-M3 processor on the RSL10 chip is supported by a set of header files and system library

functions. These provide a description that defines the Arm Cortex-M3 processor subsystem of the RSL10 SoC. This
includes:

• Register and bit descriptions for control and configuration registers in the Arm Cortex-M3 core memory map
• A memory map for the non-volatile records (NVR*) areas accessible to the Arm Cortex-M3 processor
• Interrupt vector table descriptions
• Macros that support basic Arm Cortex-M3 core functionality

The format and configuration of all of these firmware components conform to CMSIS compatibility requirements.
Therefore, most of the system library consists of inline functions that are defined within the library header files.

The top-level include file for the system library, rsl10.h, combines all of the system hardware definition, system
support macro and system library firmware components provided for the Arm Cortex-M3 processor subsystem of the
RSL10 chip. If an application includes this file and defines SL1_CID to match the chip identifier of RSL10, then all of
the support macros and system library functions that are available to support Arm Cortex-M3 processor development
on the RSL10 chip are made accessible to that application.

Hardware definition files are integral to the system firmware. The hardware definitions apply a layer of data
structures and address mappings to the underlying hardware, so that every control register and bit field in the system is
easily accessible from C code.

3.1 REGISTER AND REGISTER BIT-FIELD DEFINITION

Using the hardware definition files allows you to refer to system components by C structures and preprocessor
symbols instead of by addresses and bit fields. This greatly improves the readability, reliability and maintainability of
your application code. The use of hardware definitions in an application also means that some hardware changes, such
as changes to addresses or bit field values, are transparent to your application code.

Hardware register descriptions for components that are linked to the RSL10 Arm Cortex-M3 processor peripheral
bus are defined in the file rsl10_hw.h and rsl10_hw_cid*.h. Register descriptions for standard Arm Cortex-M3
processor peripherals, such as NVIC and SysTick, are defined in the core CMSIS header file, core_cm3.h.

Hardware descriptions in the register include files provide definitions for the components listed in Table 8.

Table 8. Hardware Register Components

Item Example Description

Component Register
Structure

DIO_Type Provides a list of all of the registers that support a specified
component, and the read/write types for those registers.

Component Register
Instance

DIO Link the component register structure to the underlying hardware
or sets of hardware

Bit-Field Positions DIO_CFG_DRIVE_Pos Defines the base position for any bit-field within a register

Bit-Field Mask DIO_CFG_DRIVE_Mask Defines a bit mask for any bit-field of more than one bit within a
register

onsemi
RSL10 Firmware Reference

www.onsemi.com

24

3.2 MEMORY MAP DEFINITION

Memory map definitions from the perspective of the Arm Cortex-M3 processor are provided in rsl10_map.h.
Specifically, this file defines the locations of the following structures:

• Instruction and data bus memory structures
• System bus memory structures
• Peripheral bus memory-mapped control registers (including the base of control register groups for each system

component)
• Private peripheral bus internal memory-mapped control registers
• System variables

For more information on the Arm Cortex-M3 processor memory map see the RSL10 Hardware Reference.

3.3 NON-VOLATILE RECORD MEMORY MAP

A second set of memory map definitions are provided in rsl10_map_nvr.h for the non-volatile records (NVR)
sections of flash that are used to hold system information, including:

• Application specific information (NVR1)
• Address and key information for bonded devices (NVR2)
• Device configuration information (NVR3)

• The local device's Bluetooth address information
• IP protection configuration
• An initialization function that can be called by the ROM to load calibrated settings to their desired

registers

Register Structure DIO_CFG_Type Provides a list of all of the sub-registers and alias structures.

• Sub-registers are defined byte (8-bit) or short (16-bit)
access interfaces to part of a register that includes all
elements belonging to the same configuration area.

• Aliases are Arm Cortex-M3 processor bitband aliases
that provide bit access to individual single-bit bit-fields
where the underlying hardware supports this single-bit
access.

Register Instance DIO_CFG Link the register structure to the underlying hardware or sets of
hardware for sub-registers

Bit-Setting DIO_MODE_GPIO_IN_0 Defines providing human-readable equivalents to settings that
can be applied to a register bit-field to obtain the desired behavior.

Bit-Setting (bitband) DIO_LPF_DISABLE_BITBAND Alternate forms of a bit-setting that apply when using bitband
aliases to read/write single register bits.

Bit-Field Sub-Register
Positions

DIO_CFG_IO_MODE_BYTE_Pos Defines the base position for any bit-field within a register’s
sub-register

Bit-Field Sub-Register
Mask

DIO_CFG_IO_MODE_BYTE_Mask Defines a bit mask for any bit-field of more than one bit within a
register’s sub-register

Sub-Register Bit-Setting DIO_MODE_GPIO_IN_0_BYTE Defines providing human-readable equivalents to settings that
can be applied to a register’s sub-register bit-field to obtain the
desired behavior.

Table 8. Hardware Register Components (Continued)

Item Example Description

onsemi
RSL10 Firmware Reference

www.onsemi.com

25

• Manufacturing information (NVR4)
• Calibration settings for power supplies and clocks
• The delays needed to write to the local flash instance
• Manufacturing and test information

3.3.1 Application Specific Record

We recommend that information stored to non-volatile record 1 (NVR1) relate to a single user application or user
application set. The defined fields described in Table 9 must be defined for the user application or user application set.
Data in all other locations from NVR1 are not used by the firmware and should be application defined.

3.3.2 Bond Information Record

Information stored to non-volatile record 2 (NVR2) includes data to be used for bonded device information. Each
bonded device has a record of BondInfo_Type, accessible through BOND_INFO as defined in rsl10_map_nvr.h. This
record contains all of the stored values needed to create a whitelist or otherwise identify a bonded device. This is limited
by SIZEOF_WHITELIST = 28. A description of the records stored is provided in Table 10. See the Bluetooth Core
Specification v5.0 (https://www.bluetooth.com/specifications/adopted-specifications) for more information.

Table 9. Application Specific Information

Address Field Description

0x00080000 SYS_INFO_START_ADDR Location of the base of the default user application to be booted by
the ROM (if no valid vector table exists at the application address, fails
back to attempting to boot from the base of flash; if this attempt fails,
any previous error from attempting to boot the application at
SYS_INFO_START_ADDR is overwritten by the failure code for the
attempt to boot from the base of flash).

0x00080004 SYS_INFO_START_MEM_CFG Bit-field indicating which memories to enable for this application when
rebooting from sleep mode. Use the defines for
SYSCTRL_MEM_POWER_CFG, with the specified memory
configuration used if at least PROM, flash, and DRAM0 are enabled
and the system is waking up from sleep mode.

Table 10. Bond Information

Address Offset Field Description

0x00 STATE State for this bonding record; 0xFF indicates an unused record, 0x00
indicates a used record that is no longer valid. Other settings for
STATE can be used as an index for the record.

0x04 LTK Long Term Key established with the bonded device

0x14 EDIV Encrypted diversifier used to identify the LTK distributed during legacy
pairing

0x18 ADDR Address of the bonded device

0x1E ADDR_TYPE Address type for this bond record (public or static random address)

0x20 CSRK Connection signature resolving key for the bonded device; used to
authenticate signed data is received from this bonded device.

0x30 IRK Identity Resolving Key used to generate and resolve random private
addresses for this bonded device.

0x40 RAND Stored random number used to identify the LTK distributed during
legacy pairing

onsemi
RSL10 Firmware Reference

www.onsemi.com

26

The stored bond information is valid if the INDEX is not all zeros or all ones.

3.3.3 Device Configuration Record

Information stored to non-volatile record 3 (NVR3) includes data to be used for device configuration. This includes
the device’s Bluetooth (MAC) address, the device lock configuration and key, and an optional initialization function
that can be used to load configurations calibrated during manufacturing. A description of the records stored is provided
in Table 11. The use of data in all unused locations in NVR3 are defined by the user’s device and application.

Table 11. Device Configuration

Address Field Description

0x00081000 DEVICE_INFO_BLUETOOTH_ADDR EUI-48 MAC address, to be used as the device’s
Bluetooth public address (see caution note
below)

0x00081010 DEVICE_INFO_BLUETOOTH_IRK 128-bit identity resolving key (IRK), used to
generate resolvable private addresses (RPA)
when using Bluetooth privacy.

If the device is communicating with more than
one set of devices, where the device’s privacy
should be maintained between groups, additional
IRKs can be created and stored in a separate
user application defined location.

0x00081020 DEVICE_INFO_BLUETOOTH_CSRK 128-bit connection signature resolving key
(CSRK), used to sign data when using signed
data.

If the device is signing data that will be provided
to more than one set of devices, additional
CSRKs can be created and stored in a separate
user application defined location.

0x00081040 LOCK_INFO_SETTING Value to be written to the debug lock
configuration register; to restrict access after

boot, set to DBG_ACCESS_LOCK. 1

0x00081044 LOCK_INFO_KEY 128-bit key that can be used to override the
DBG_ACCESS_LOCK configuration.

0x00081080 MANU_INFO_INIT Manufacturing initialization function definition;
requires a length field indicating the length of the
function, the function implementation, and a
CRC-CCITT calculated over the length field and
the function’s implementation code.

MANU_INFO_LENGTH Length of the version identifier and initialization
function in bytes. The manufacturing information
function must fit in NVR3.

0x00081082 - Manufacturing initialization function version
identifier (if used; otherwise, set to 0x0000)

0x00081084 - Manufacturing initialization function
implementation

0x00081082 + MANU_INFO_LENGTH - CRC-CCITT calculated over
MANU_INFO_LENGTH and the manufacturing
initialization function’s implementation.

onsemi
RSL10 Firmware Reference

www.onsemi.com

27

NOTE: A default implementation of the manufacturing initialization function is written during
manufacturing to load the default calibrated settings from the manufacturing records (see
Table 13 on page 29). The source for this default initialization function and the code needed to
load this to NVR3 is provided as part of the sample code in the default MANU_INFO_INIT
application. This application can be used to update this initialization function to provide other
initialization behaviors prior to application boot.

3.3.4 Manufacturing Records

Information stored to non-volatile record 4 (NVR4) consists of information from test and manufacturing. This data
is stored with hardware redundancy and cannot be written outside of manufacturing. Data stored to the manufacturing
records includes:

1. Calibration settings used by firmware and user applications
2. Manufacturing and test records for traceability
3. Flash startup configuration

A description of the calibration records stored is provided in Table 12. The Availability Version column identifies
the version of the manufacturing calibration process in which that field became available. Your version of the
manufacturing calibration process is always obtainable from the MANU_INFO_VERSION field. Calibration records are
generally split between a 16-bit calibration target value and a 16-bit trim setting that should be applied to the
appropriate register to get the target calibration for a power supply or clock. Exceptions are the MANU_INFO_VCC field
where each 16-bit trim setting is divided into two 8-bit fields for DCDC and LDO trimmings, and the MANU_INFO_ADC
bit field structure which does not contain target calibration values. Up to four records can be stored for each element
that is calibrated.

0x000817A0 DEVICE_INFO_ECDH_PRIVATE 256-bit private key from a locally generated
Elliptic Curve Diffie-Hellman (ECDH)
public-private key pair. This is used to generate
keys needed for Bluetooth secure connections.

0x000817C0 DEVICE_INFO_ECDH_PUBLIC_X 256-bit public key (X) from a locally generated
Elliptic Curve Diffie-Hellman (ECDH)
public-private key pair. This is used to generate
keys needed for Bluetooth secure connections.

0x000817E0 DEVICE_INFO_ECDH_PUBLIC_Y 256-bit public key (Y) from a locally generated
Elliptic Curve Diffie-Hellman (ECDH)
public-private key pair. This is used to generate
keys needed for Bluetooth secure connections.

1. CAUTION: If the LOCK_INFO_SETTING is set to 0x0000 0000 or 0xFFFF FFFF, the device may not boot properly when VBAT <
1.25 V, as the ROM cannot differentiate between unreadable data and unwritten flash contents.

CAUTION: The DEVICE_INFO_BLUETOOTH_ADDR value is set during testing to a unique EUI-48 MAC address for
each device. Take care when erasing and writing NVR3 to preserve and restore this address if the device expects to use
it as its Bluetooth device address.

Table 11. Device Configuration (Continued)

Address Field Description

onsemi
RSL10 Firmware Reference

www.onsemi.com

28

Table 12. Calibration Settings

Address Field
Target
Units

Trimmed Bit-field Description
Availability
Version

0x00081800 MANU_INFO_BANDGAP mV / 10 VTRIM from
ACS_BG_CTRL

Bandgap trim settings 01

1. If you need to distinguish between versions that are 0, contact your onsemi Customer Support representative.

0x00081810 MANU_INFO_VDDRF mV / 10 VTRIM from
ACS_VDDRF_CTRL

VDDRF trim settings 21

0x00081820 MANU_INFO_VDDPA mV / 10 VTRIM from
ACS_VDDPA_CTRL

VDDPA trim settings; only used
if VDDRF requirements exceed
VCC supply

21

0x00081830 MANU_INFO_VDDC mV / 10 VTRIM from
ACS_VDDC_CTRL

VDDC trim settings 0

0x00081840 MANU_INFO_VDDC_STANDBY mV / 10 STANDBY_VTRIM from
ASC_VDDC_CTRL

VDDC trim settings for use in
standby mode

0

0x00081850 MANU_INFO_VDDM mV / 10 VTRIM from
ACS_VDDM_CTRL

VDDM trim settings 0

0x00081860 MANU_INFO_VDDM_STANDBY mV / 10 STANDBY_VTRIM from
ACS_VDDM_CTRL

VDDM trim settings for use in
standby mode

0

0x00081870 MANU_INFO_VCC2

2. For MANU_INFO_VERSION 21 or lower, this field was called MANU_INFO_DCDC, and it contained only the VCC trim settings for the
DC-DC buck converter in bits 0 - 4.

mV / 10 VTRIM from
ASC_VCC_CTRL

VCC trim settings for the LDO
mode and for the DC-DC buck
converter mode.

Bits 0 - 4 are for LDO mode,
and bits 8 - 12 are for DC-DC
buck converter mode.

22

0x00081880 MANU_INFO_OSC_32K Hz FTRIM_32K_ADJ +

FTRIM_32K from

ACS_RCOSC_CTRL

32 kHz RC oscillator trim
settings

0

0x00081890 MANU_INFO_OSC_RC kHz FTRIM_START from

ACS_RCOSC_CTRL

RC start oscillator trim settings
to be used without the RC
oscillator multiplier

0

0x000818B0 MANU_INFO_OSC_RC_MULT kHz FTRIM_START from

ACS_RCOSC_CTRL

RC start oscillator trim settings
to be used with the RC
oscillator multiplier

0

0x000818C0 MANU_INFO_ADC_OFFSET N/A DATA from
ADC_OFFSET

ADC trim settings; the gain
factor is calculated by
ADC_DATA_AUDIO_CH[7:
0] * gain/65536

27

0x000818D0 MANU_INFO_DCDC_ICH_TRIM N/A ICH_TRIM from
ACS_VDDM_CTRL

Calibrated optimal current
setting for VCC in DC-DC buck
converter mode

28

0x000818F8 MANU_INFO_VERSION - N/A Version of the manufacturing
calibration record

0

0x000818FC MANU_INFO_CRC - N/A CRC-CCITT calculated over the
calibration settings

0

onsemi
RSL10 Firmware Reference

www.onsemi.com

29

Table 13 lists the pre-loaded calibration records that are calculated for each part during manufacturing. The default
values from this table are loaded by the default implementation of the manufacturing initialization function stored to the
device configuration record (see Table 11 on page 26).

Table 13. Manufacturing Calibrated Settings

Field Targets Description Default

MANU_INFO_BANDGAP 0.75 V Default bandgap trim X

MANU_INFO_VDDRF 1.10 V Default VDDRF trim setting; minimum setting for optimal RX sensitivity. X

1.07 V Average VDDRF trimming for 0 dBm output power on channel 19
(VDDRF selected and VDDPA disabled)

1.20 V Average VDDRF trimming for 2 dBm output power on channel 19
(VDDRF selected and VDDPA disabled)

MANU_INFO_VDDPA 1.30 V Default VDDPA trim setting X

1.26 V Average VDDPA trimming for 3 dBm output power on channel 19

1.60 V Average VDDPA trimming for 6 dBm output power on channel 19

MANU_INFO_VDDC 1.15 V Default VDDC trim setting after power-on reset: Minimum value set by
the device after power-on reset to ensure safe booting of the system
across all VBAT supply levels and temperatures.

X

0.92 V Minimum VDDC voltage to ensure chip functionality at 16 MHz, with
reduced ADC functionality

1.00 V Minimum VDDC voltage to ensure accurate ADC functionality across
temperature

1.05 V Minimum VDDC voltage to ensure chip functionality at 48 MHz

MANU_INFO_VDDC_STANDBY 0.8 V Default VDDC standby trim setting X

MANU_INFO_VDDM 1.15 V Default VDDM trim setting; minimum value to allow for a safe boot
across all VBAT supply levels and temperature

X

1.05 V Minimum VDDM voltage to ensure memory functionality

1.10 V Minimum VDDM voltage to ensure chip functionality with VDDO = 3 V

MANU_INFO_VDDM_STANDBY 0.8 V Default VDDM standby trim setting X

MANU_INFO_VCC or
MANU_INFO_DCDC

1.20 V Default DCDC trim setting; minimum required to guarantee VDDC,
VDDM can reach 1.15 V

X

1.12 V Minimum required to guarantee VDDRF can reach 1.07 V (0 dBm
output power)

1.15 V Minimum required to guarantee VDDC and VDDM can reach 1.1 V

1.25 V Minimum required to guarantee VDDRF can reach 1.20 V (2 dBm
output power)

MANU_INFO_OSC_32K 32768 Hz Default trim setting for the 32 kHz RC oscillator X

MANU_INFO_OSC_RC 3.00 MHz Default trim setting for the startup RC oscillator (un-multiplied)

MANU_INFO_OSC_RC_MULT 10.00 MHz Default trim setting for the startup RC oscillator (multiplied) X

onsemi
RSL10 Firmware Reference

www.onsemi.com

30

The bit fields for MANU_INFO_ADC are illustrated in Figure 1.

Figure 1. ADC Bit Fields in NVR4

The manufacturing records include MANU_INFO_BLUETOOTH_ADDR, which provides a copy of the Bluetooth
public address that was written to DEVICE_INFO_BLUETOOTH_ADDR during manufacturing as a backup in case the
information stored to the device information sector was accidentally erased.

Information stored to other manufacturing records is not intended for direct use by user applications, and their
records are not described here.

3.4 INTERRUPT VECTOR DEFINITION

Interrupt vector definitions are defined in rsl10_vectors.h for both internal and external interrupts. These
definitions have the form <interrupt_name>_IRQn. You can use these definitions with the NVIC-related functions

MANU_INFO_ADC N/A ADC offset (low/high frequency mode) for VCC = 1.2 V

ADC gain (low frequency mode) for VCC = 1.2 V

ADC gain (high frequency mode) for VCC = 1.2 V

ADC offset (low/high frequency mode) for VCC = 1.12 V

ADC gain (low frequency mode) for VCC = 1.12 V

ADC gain (high frequency mode) for VCC = 1.12 V

ADC offset (low/high frequency mode) for VCC = 1.15 V

ADC gain (low frequency mode) for VCC = 1.15 V

ADC gain (high frequency mode) for VCC = 1.15 V

ADC offset (low/high frequency mode) for VCC =1.25V

ADC gain (low frequency mode) for VCC =1.25V

ADC gain (high frequency mode) for VCC =1.25V

MANU_INFO_DCDC_ICH_TRIM N/A Calibrated optimal current setting for VCC in DC-DC buck converter
mode

Table 13. Manufacturing Calibrated Settings (Continued)

Field Targets Description Default

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x0008 18C0

0x0008 18C4

0x0008 18C8

0x0008 18CC

0x0008 18D0

0x0008 18D4

0x0008 18D8

0x0008 18DC

0x0008 18E0

0x0008 18E4

0x0008 18E8

0x0008 18EC

ADC offset (high frequency mode) for VCC @1.2 V ADC offset (low frequency mode) for VCC @1.2 V

ADC offset (high frequency mode) for VCC @1.12 V ADC offset (low frequency mode) for VCC @1.12 V

ADC offset (high frequency mode) for VCC @1.15 V ADC offset (low frequency mode) for VCC @1.15 V

ADC offset (high frequency mode) for VCC @1.25 V ADC offset (low frequency mode) for VCC @1.25 V

0x0000 ADC gain (low frequency mode) for VCC @ 1.2 V
0x0000 ADC gain (high frequency mod) for VCC @ 1.2 V

0x0000 ADC gain (low frequency mode) for VCC @ 1.12 V
0x0000 ADC gain (high frequency mode) for VCC @ 1.12 V

0x0000 ADC gain (low frequency mode) for VCC @ 1.15 V
0x0000 ADC gain (high frequency mode) for VCC @ 1.15 V

0x0000 ADC gain (low frequency mode) for VCC @ 1.25 V
0x0000 ADC gain (high frequency mode) for VCC @ 1.25 V

onsemi
RSL10 Firmware Reference

www.onsemi.com

31

included with the core CMSIS (and defined in core_cm3.h). For a complete list of interrupts, see the RSL10 Hardware
Reference.

The CMSIS Implementation library also provides default weakly defined interrupt handlers for each of these
vectors. These interrupt handlers have the form <interrupt_name>_IRQHandler(). If a user application defines a
function with this same name, the user application’s definition of the interrupt handler will replace the default (empty)
handlers.

www.onsemi.com

32

CHAPTER 4

4.Event Kernel
4.1 OVERVIEW

4.1.1 Feature List

The RSL10 Kernel is a small and efficient event and message handling system that can be used as a Real Time
Operating System (RTOS) or as a process executed under an RTOS, offering the following features:

• Exchange of messages
• Message saving
• Timer functionality
• The kernel also provides an event functionality used to defer actions

The purpose of the event kernel is to provide messages (such as the ones in Section 4.2, “Messages” on page 34)
and timed tasks to keep RF traffic on schedule and aligned with the specification requirements.

4.1.2 Top-Level Objects

To use the services offered by the kernel, include the header file rsl10_ke.h.

In addition to the header file, always include the object file libkelib.a.

4.1.3 Include Files

4.1.4 API Functions

The event kernel is supported by two primary functions as described in Table 15.

Table 14. Kernel File List

File Description

ke.h Contains the kernel environment definition

ke_config.h Contains all the constants that can be changed in order to tailor the kernel

ke_event.h Contains the event handling primitives

ke_mem.h Contains the implementation of the heap management module

ke_misc.h This file contains the kernel initialization function and defines related to the environment definition.

ke_msg.h This file contains the scheduler primitives called to create or delete a task. It also contains the
scheduler itself

ke_task.h Contains the implementation of the kernel task management

ke_timer.h Contains the scheduler primitives called to create or delete a timer task. It also contains the timer
scheduler itself

Table 15. Event Kernel Support Functions

Function Description Reference

Kernel_Init Initialize the event kernel for use within an application. 4.1.4.1 on p. 33

Kernel_Schedule Execute any pending events that have been scheduled with the
event kernel.

4.1.4.2 on p. 33

onsemi
RSL10 Firmware Reference

www.onsemi.com

33

4.1.4.1 Kernel_Init

Initialize the event kernel for use within an application.

4.1.4.2 Kernel_Schedule

Execute any pending events that have been scheduled with the event kernel.

4.1.5 Kernel Environment

The kernel environment structure contains the queues used for event, timer and message management:

queue_sent Queue of sent messages but not yet delivered to receiver

queue_saved Queue of messages delivered but not consumed by receiver

Type Function

Include File #include <rsl10_ke.h>

Template void Kernel_Init(uint32_t mode)

Description Initialize the event kernel for use within an application.

Inputs mode = Kernel initialization mode; set to 1 if using the kernel without the Bluetooth low
energy stack, 0 otherwise.

Outputs None

Assumptions None

Example /* Initialize the kernel and Bluetooth stack */
Kernel_Init(0);
BLE_InitNoTL(0);
BLE_Reset();

Type Function

Include File #include <rsl10_ke.h>

Template void Kernel_Schedule(void)

Description Execute any pending events that have been scheduled with the event kernel.

Inputs None

Outputs None

Assumptions None

Example /* Main application loop:
 * - Run the kernel scheduler
 * - Refresh the watchdog and wait for an interrupt before continuing */
while (1)
{
 Kernel_Schedule();

 /* Refresh the watchdog timer */
 Sys_Watchdog_Refresh();

 /* Wait for an event before executing the scheduler again */
 SYS_WAIT_FOR_EVENT;

}

onsemi
RSL10 Firmware Reference

www.onsemi.com

34

queue_timer Queue of timer

mblock_first Pointer to first element of linked list

If kernel profiling is enabled, the following fields are added:

max_heap_used Maximum heap memory used by the kernel

queue_timer Queue of messages delivered but not consumed by receiver

4.2 MESSAGES

4.2.1 Overview

Message queues provide a mechanism to transmit one or more messages to a task. (Queue names and purposes are
defined in Section 4.1.5, “Kernel Environment” on page 33.)

Transmission of messages is performed in 3 steps:

• Sender task allocates a message structure
• Message parameters are filled
• Message structure is pushed in the kernel

A message is identified by a unique ID composed of the task type and an increasing number. The macro in Figure 2
builds the first message ID of a task.

Figure 2. First Message ID of Task

A message has a list of parameters that is defined in a structure (see Section 4.2.2, “Message Format”).

4.2.2 Message Format

The structure of the message contains:

• id: Message identifier
• dest_id: Destination task identifier
• src_id: Source task identifier
• param_len: Parameter embedded structure length
• param: Parameter embedded structure. Must be word-aligned.

4.2.3 Message Identifier

• Message identifier is defined as follows:
typedef unit16_t_ke_msg_id_t;

• The message identifier must be defined by task type in one file only to avoid multiple identical definitions.

onsemi
RSL10 Firmware Reference

www.onsemi.com

35

In xx_task.h for XX task.

4.2.4 Parameter Management

During message allocation, the size of the parameter is passed and memory is allocated in the kernel heap. In order
to store this data, the pointer on the parameters is returned. The scheduler frees this memory after the transition
completion. For example:

void *ke_msg_alloc(ke_msg_id_t const id,
ke_task_id_t const dest_id,
ke_task_id_t const src_id,
uint16_t const param_len)
{
 struct ke_msg *msg = (struct ke_msg*) ke_malloc(sizeof(struct ke_msg) +
 param_len - sizeof (uint32_t));
 ...
 return param_ptr;
}

4.2.5 Message Queue Object

A Message queue is defined as a linked list composed of message elements:

• *first: pointer to first element of the list
• *last: pointer to the last element

If kernel profiling is enabled, these following fields are added:

• cnt: number of elements in the list
• maxcnt: maximum number of elements in the list
• mincnt: minimum number of elements in the list

4.2.6 Message Queue Primitives

4.2.6.1 Message Allocation

Prototype:

void *ke_msg_alloc(ke_msg_id_t const id, ke_task_id_t const dest_id, ke_task_id_t const
src_id, uint16_t const param_len)

Parameters:

Table 16. Message Allocation Parameters

Type Parameters Description

ke_msg_id_t id Message Identifier

ke_task_id_t dest_id Destination Task
Identifier

ke_task_id_t src_id Source Task
Identifier

unit16_t param_len Length of Parameter

onsemi
RSL10 Firmware Reference

www.onsemi.com

36

Return: Pointer to the parameter member of the ke_msg. If the parameter structure is empty, the pointer points to
the end of the message and must not be used (except to retrieve the message pointer or to send the message).

Description: This primitive allocates memory for a message that has to be sent. The memory is allocated
dynamically on the heap, and the length of the variable parameter structure (param_len) must be provided in order to
allocate the correct size.

4.2.6.2 Message Send

Prototype:

void ke_msg_send(void const *param_ptr)

Parameters:

Return: None

Description: Send a message previously allocated with any ke_msg_alloc()-like functions. The kernel takes
care of freeing the message memory.

Once the function has been called, it is not possible to access its data any more as the kernel might have copied the
message and freed the original memory.

4.2.6.3 Message Send Basic

Prototype:

void ke_msg_send_basic(ke_msg_id_t const id, ke_task_id_t const dest_id, ke_task_id_t
const src_id)

Parameters:

Return: None

Description: Send a message that has a zero length parameter member. No allocation is required as this is
performed internally.

Table 17. Message Send Parameters

Type Parameters Description

void const * param_ptr Pointer to the parameter member of
the message that will be sent

Table 18. Message Send Basic Parameters

Type Parameters Description

ke_msg_id_t id Message Identifier

ke_task_id_t dest_id Destination Task Identifier

ke_task_id_t src_id Source Task Identifier

onsemi
RSL10 Firmware Reference

www.onsemi.com

37

4.2.6.4 Message Forward

Prototype:

void
 ke_msg_forward (void const *param_ptr, ke_task_id_t const dest_id, ke_task_id_t const

src_id)

Parameters:

Return: None

Description: Forward a message to another task by changing its destination and source task IDs (dest_id and
src_id).

4.2.6.5 Message Free

Prototype:

void ke_msg_free(struct ke_msg const *msg)

Parameters:

Return: None

Description: Free allocated message.

4.3 SCHEDULER

4.3.1 Overview

• The scheduler is called in the main loop of the user application using the Kernel_Schedule() function.
• In the user application’s main loop, the kernel checks if the event field is non-null, and executes the event

handlers for which the corresponding event bit is set.

Table 19. Message Forward Parameters

Type Parameters Description

void const * param_ptr Pointer to the parameter member of
the message that will be sent

ke_task_id_t dest_id Destination Task Identifier

ke_task_id_t src_id Source Task Identifier

Table 20. Message Free Parameters

Type Parameters Description

struct ke_msg
const *

msg Pointer to the message to be freed

onsemi
RSL10 Firmware Reference

www.onsemi.com

38

4.3.2 Requirements

4.3.2.1 Scheduling Algorithm

Figure 3 shows how the scheduler handles messages. The message handler pops messages from the message queue,
passes them to the pre-defined message handler, and then handles either releasing or saving those messages based on
the responses from those handlers.

Figure 3. Scheduling Algorithm

4.3.2.2 Save Service

The Save service can SAVE a message, i.e. store it in memory without it being consumed. If the task state changes
after a message is received, the scheduler will try to handle the saved message before scheduling any other signals.

4.4 TASKS

4.4.1 Definition

A kernel task is defined by:

• Its task type, i.e. a constant value defined by the kernel, unique for each task
• Its task descriptor, which is a structure containing all the information about the task:

• The messages that it is able to receive in each of its states
• The messages that it is able to receive in the default state
• The number of instances of the task
• The number of states of the task
• The current state of each instance of the task

1: In the background loop, the
kernel pops the first message

from the queue Msg0 Msg1 Msg2 Msg3

First Msg

NULL

2: From the message structure
(id, destination task), the kernel

determines which message
handler has to be called

MsgStatus = Msg0_Handler(Msg0Id, Msg0Param, etc.)

3: According to the status
returned by the message

handler, the kernel performs the
required action

Msg0Msg6 Msg9

First Saved
Msg

NULL

Kernel
Free

Message
Pool

Msg0

Msg0MsgStatus?

Mes
sa

ge
Con

su
med

Message Saved

The kernel does nothing, it leaves the
responsibility to the receiver task to

free the message later

Do nothing

onsemi
RSL10 Firmware Reference

www.onsemi.com

39

The kernel keeps a pointer to each task descriptor, which is used to handle the scheduling of the messages
transmitted from one task to another.

4.5 KERNEL TIMER

4.5.1 Overview

• RW Kernel provides a Time reference (absolute time counter.)
• RW Kernel provides timer services: Start, Stop timer.
• Timers are implemented by means of a reserved queue of delayed messages.
• Timer messages do not have parameters.

4.5.2 Time Definition

Time is defined as duration; the minimum step is 10 ms.

4.5.3 Timer Object

The structure of the timer message contains:

• *next: Pointer on the next timer
• id: Message identifier
• task: Destination task identifier
• time: Duration

onsemi
RSL10 Firmware Reference

www.onsemi.com

40

4.5.4 Timer Setting

Figure 4. Timer Setting Flow

4.5.5 Time Primitives

4.5.5.1 Timer Set

Start or restart a timer.

Prototype:

void ke_timer_set(ke_msg_id_t const timer_id, ke_task_id_t const task, uint32_t delay);

Parameters:

Return: None

Table 21. Timer Set Parameters

Type Parameters Description

ke_msg_id_t timer_id Timer identifier

ke_task_id_t task Task identifier

uint32_t delay Timer duration
(multiple of 10 ms)

1: When a task requests to
program a timer in the future, the

kernel allocates one timer
structure from the free pool. The

kernel then fills the new timer
with the parameters passed by
the task (time, timer_id, task_id)

Kernel Free
Timer Pool

Free
Timer

2: The kernel pushes the new
timer at the right place into the

ordered timer list
New
Timer

Tmr0 Tmr1 Tmr2New
Tmr

First Tmr

NULL

3: If the new timer is the first of
the list, then the kernel programs

the HW gross target time to
match the target time of the new

timer
Tmr0Tmr1 Tmr2New

Tmr

First Tmr

NULL

onsemi
RSL10 Firmware Reference

www.onsemi.com

41

Description: The function first cancels the timer if it exists; then it creates a new one. The timer can be one-shot, or
periodic (i.e. it will be automatically set again after each trigger).

NOTE: The delay parameter for this function needs to be limited to 24 bits.

4.5.5.2 Timer Clear

Remove a registered timer.

Prototype:

void ke_timer_clear(ke_msg_id_t const timer_id, ke_task_id_t const task);

Parameters:

Return: None

Description: This function searches for the timer element identified by its timer and task identifiers (timer_id
and task). If found, it is stopped and freed.

4.5.5.3 Timer Activity

Check if a requested timer is active.

Prototype:

bool ke_timer_active(ke_msg_id_t const timer_id, ke_task_id_t const task);

Parameters:

Return: TRUE if the timer identified by timer_id is active for the task, FALSE otherwise

Description: This function pops the first timer from the timer queue and notifies the appropriate task by sending a
kernel message. If the timer is active, the function returns True; otherwise, it returns False (zero).

4.5.5.4 Timer Expiry

Figure 5 shows the process flow for handling expired timers.

Table 22. Timer Clear Parameters

Type Parameters Description

ke_msg_id_t timer_id Timer identifier

ke_task_id_t task Task identifier

Table 23. Timer Activity Parameters

Type Parameters Description

ke_msg_id_t timer_id Timer identifier

ke_task_id_t task Task identifier

onsemi
RSL10 Firmware Reference

www.onsemi.com

42

Figure 5. Timer Expiry Flow

4.6 USEFUL MACROS

• Builds the task identifier from the type and the index of that task:
#define KE_BUILD_ID(type, index) ((ke_task_id_t)(((index) << 8)|(type)))

• Retrieves task type from ke_task_id:
#define KE_TYPE_GET(ke_task_id) ((ke_task_id) & 0xFF)

• Retrieves task index number from ke_task_id:
#define KE_IDX_GET(ke_task_id) (((ke_task_id) >> 8) & 0xFF)

1: Upon gross target timer expiry,
a kernel event is scheduled in

background. In the event
scheduler, the kernel pops the

first timer from the queue

Tmr0 Tmr1 Tmr2 Tmr3

First Tmr

NULL

2: From the timer structure
(tmr_id, destination task), the

kernel sends the corresponding
message to the task that
programmed the timer

3: The kernel frees the elapsed
timer

Kernel
Free
Timer
Pool

Tmr0

4: The kernel programs the HW
gross target time to match the
target time of the next timer Tmr1 Tmr2 Tmr3

First Tmr

NULL

www.onsemi.com

43

CHAPTER 5

5.Program ROM
5.1 OVERVIEW

The goal of the program ROM is to efficiently boot an application or restore an application from sleep to a known
state, to handle soft resets cleanly, and to ensure that all applications behave as expected once started, as the underlying
portions of the system they depend on are re-initialized.

The Program ROM for the RSL10 SoC is implemented in the ROM at the base of the Arm Cortex-M3 core
memory space, and contains the following features:

• A simple vector table as described in Section 5.2, “Vector Table”
• System initialization and re-initialization support as described in Section 5.3, “Initialization Support”
• Application boot and verification as described in Section 5.4, “Application Validation and Boot”
• A function table providing access to the support functions as described in Section 5.5, “Function Table”

5.2 VECTOR TABLE

The program ROM contains a minimal vector table located at the base of memory. This vector table is described in
Table 24.

The Program ROM version (PROGRAM_ROM_VERSION) is stored in, and is accessible from, the address
immediately following this simple vector table (0x0000001C).

5.3 INITIALIZATION SUPPORT

The RSL10 program ROM contains three sets of initializations:

1. Base system initialization
2. User-defined system initialization
3. Boot and wakeup initialization

These three initialization sets each perform a specific task to ensure that the system is in a good state for whatever
application code or other tasks will follow. A description of each initialization can be found in the following
sub-sections.

Table 24. Program ROM Vector Table

Address Entry Description

0x00000000 ROM Stack Initial value for the Program ROM stack pointer;
set to 0x20002000 (top of DRAM 0)

0x00000004 Reset Interrupt Handler Entry point for the program ROM

0x00000008 NMI Handler Handler that consists of a spin loop used to
capture an unexpected NMI event during the
execution of the ROM (waits for watchdog timer
to reset the device)

0x0000000C Hard Fault Handler Handler that consists of a spin loop used to
capture an unexpected fault event during the
execution of the ROM (waits for watchdog timer
to reset the device)

0x00000010 Memory Fault Handler (promoted to Hard Fault)

0x00000014 Bus Fault Handler (promoted to Hard Fault)

0x00000018 Usage Fault Handler (promoted to Hard Fault)

onsemi
RSL10 Firmware Reference

www.onsemi.com

44

5.3.1 Base System Initialization

The base system initialization function is used to ensure that key functional elements of the system are in their
power-on reset state after a soft reset or other non-wakeup boot. This is generally not required, but provides an option
for safely putting the system into a known good state at startup, to ensure proper behavior of everything that executes
after this function.

The base system initialization function reconfigures the following components to their default configurations:

• ARM Cortex-M3 processor fault handlers promoted to the hard fault handler
• ARM Cortex-M3 processor external interrupt handlers disabled and all pending interrupts cleared
• LPDSP32 DSP disabled and reset
• All DMA channels disabled
• All digital I/Os disabled (no I/O, weak pull-up resistor enabled)
• Watchdog set to the maximum time out and refreshed
• Clock distribution divisors reset
• Flash timing reset for compatibility with the default clock settings
• Power supply configurations reset
• All memories powered and enabled in normal mode

The base system initialization function is accessible for use in a user application through the program ROM
function table, as described in Section 5.5, “Function Table” on page 49.

5.3.2 User-Defined System Initialization

The user-defined system initialization function is used to verify that the manufacturing initialization function
included in the device configuration record (described in Section 3.3.3, “Device Configuration Record” on page 26) is
valid, and to execute that function if it is. This function is intended to load calibration information for the device to
provide a calibrated environment for the application code that follows.

The manufacturing initialization function can be replaced by a user-defined manufacturing initialization function to
change the default behavior of this system initialization. The default manufacturing initialization function loads default
calibration values for a number of clocks and power supplies from the base of their array of calibrated trim values.
Elements that are configured using this function include:

1. The bandgap, which is trimmed using the default trim setting from MANU_INFO_BANDGAP.
2. The DC-DC convertor, which is trimmed using the default trim setting from MANU_INFO_DCDC.
3. The digital power supplies VDDC and VDDM (including retention trim settings), which are trimmed using the

default trim settings from MANU_INFO_VDDC, MANU_INFO_VDDC_STANDBY, MANU_INFO_VDDM, and
MANU_INFO_VDDM_STANDBY.

4. The RF power supplies VDDRF and VDDPA, which are trimmed using the default trim settings from
MANU_INFO_VDDRF and MANU_INFO_VDDPA.

5. The RC startup oscillator, which is trimmed to the default multiplied configuration using the default trim
setting from MANU_INFO_OSC_RC_MULT with the flash delay timing parameters configured to match the
declared frequency for proper system behavior.

6. The 32 kHz RC oscillator, which is trimmed using the default trim setting from MANU_INFO_OSC_32K.

NOTE: Generally, only replace the manufacturing initialization function if you want to boot with
calibration targets other than the default targets.

onsemi
RSL10 Firmware Reference

www.onsemi.com

45

For more information about each of these blocks, see the power supply and clocking chapters of the RSL10
Hardware Reference. For default trim targets for each of these power supplies and clock frequencies, refer to the
datasheet for RSL10.

NOTE: No power supply or clocking elements are enabled by this initialization routine.

The manufacturing initialization function is considered valid if it:

1. Specifies a length (MANU_INFO_LENGTH) that fits within the device configuration record. No error
(SYS_INIT_ERR_NONE) is reported if the 16-bit length value stored at MANU_INFO_LENGTH is set to 0x0000
or 0xFFFF to indicate that there is no manufacturing initialization function. An error code of
SYS_INIT_ERR_INVALID_BLOCK_LENGTH is returned if the specified length extends beyond the end of the
device configuration record sector.

2. Includes a CRC-CCITT calculated over the MANU_INFO_LENGTH field and a code section of the specified
length (in bytes). If the CRC calculation indicates that the CRC value is incorrect, the
SYS_INIT_ERR_BAD_CRC error code is returned to indicate this failure.

The manufacturing initialization function uses no parameters, and does not respond with any return code. If
execution completes and returns, the user-defined system initialization function reports that no error was encountered
using the SYS_INIT_ERR_NONE error code.

The user-defined system initialization function is accessible for use in a user application through the program ROM
function table, as described in Section 5.5, “Function Table” on page 49.

5.3.3 Boot and Wakeup Initialization

The RSL10 program ROM starts execution in the reset vector after initial startup, after a soft or core reset, and after
returning from a system wakeup event. This boot and wakeup initialization routine is designed to reboot and
reconfigure the system as efficiently as possible for a device that quickly needs to return to sleep or another low power
state.

Prior to anything else, the ROM reset vector loads the value of ASC_WAKEUP_CTRL, and clears the
ACS_WAKEUP_CTRL_BOOT_SELECT bit from this register. The loaded value is used to determine what path is used
through the boot and wakeup initialization routine - and this value is cleared after being loaded to ensure that the system
defaults back to a regular boot from flash memory in case of a failure during boot.

 The loaded value is used for the following initial sequence:

1. If the ACS_WAKEUP_CTRL_BOOT_XTAL_EN bit is set (BOOT_XTAL_ENABLE) and
ACS_WAKEUP_CTRL_BOOT_SELECT is cleared (BOOT_ON_FLASH) in the loaded value, the RF block and 48
MHz crystal oscillator are enabled. This enables the system to start this oscillator with a minimum delay,
allowing an application running on the RSL10 SoC to remain in sleep mode for a longer duration.

2. The flash is configured for correct behavior upon startup, given the current clock source configuration. The
flash itself is not enabled.

IMPORTANT: Prior to switching to the 48 MHz clock, a user application that is using BOOT_XTAL_ENABLE
needs to verify that the XTAL oscillator has completed its initialization by confirming that the
RF_REG39_ANALOG_INFO_CLK_DIG_READY bit from the RF_REG39 register is set
(ANALOG_INFO_CLK_DIG_READY).

onsemi
RSL10 Firmware Reference

www.onsemi.com

46

3. If the ACS_WAKEUP_CTRL_BOOT_XTAL_EN bit is cleared (BOOT_XTAL_DISABLE) and
ACS_WAKEUP_CTRL_BOOT_SELECT is set (BOOT_CUSTOM) in the loaded value, the program ROM attempts to
restore an application running from RAM as the system is waking up from a sleep or similar low-power mode
with a reboot defined.

To restore a running application the ROM uses the following wakeup sequence:

a. Loads the current value of the ACS_WAKEUP_GP_DATA register.
b. Verifies that bit 0 of this value (PROM) is set. If this is not the case, then continue with step 4. Otherwise:

• Copies this value to SYSCTRL_MEM_POWER_CFG
• Clears SYSCTRL_MEM_RETENTION_CFG
• Copies this value to SYSCTRL_MEM_ACCESS_CFG

NOTE: The SYSCTRL_MEM_ACCESS_CFG mapped register contains a packed 7-bit wakeup restore
address WAKEUP_ADDR_PACKED field which is linked to the unpacked 32-bit wakeup restore
address SYSCTRL_WAKEUP_ADDR. Once either one is written to, the other is updated accordingly.

c. Loads the value of the SYSCTRL_WAKEUP_ADDR register.
d. If the value of SYSCTRL_WAKEUP_ADDR is non-zero, uses this as the wakeup restore address for the

application being restored. Otherwise, the ROM indicates a failure and continues with step 4. If restoring,
the application finds the following information starting at the specified wakeup restore address:
i. The debug port lock configuration register (SYSCTRL_DBG_LOCK) register contents.
ii. The four words of the lock key used with the SYSCTRL_DBG_LOCK_KEY registers to restrict or

unrestrict access to the debug port.
iii. The application’s restart address, which indicates the first item executed in the restored user

application (this address can be anywhere in memory, but is typically located in RAM or flash). The
ROM branches to this restart address at this time.

4. If the value loaded from ASC_WAKEUP_CTRL indicates that the device is rebooting (the
ACS_WAKEUP_CTRL_BOOT_FLASH_APP_REBOOT bit is set to BOOT_FLASH_APP_REBOOT_ENABLE), the
following initialization sequence is followed:
a. Clear the ACS_WAKEUP_CTRL_BOOT_SELECT, ACS_WAKEUP_CTRL_BOOT_XTAL_EN, and

ACS_WAKEUP_CTRL_BOOT_FLASH_APP_REBOOT bits from the ACS_WAKEUP_CTRL register, to ensure
that if the boot fails, the system does not attempt to reboot again.

b. Enable all of the memories in the RSL10 system, except the DSP_PRAM instances.
c. Read the memory power configuration from SYS_INFO_START_MEM_CFG in the application specific

record (described in Section 3.3.1, “Application Specific Record” on page 25).
d. If SYS_INFO_START_MEM_CFG would enable the PRAM, flash, and DRAM0 memory instances (bits 0, 1,

and 6 are set in the value read), enable the memories specified and disable all memory retention settings.
Otherwise, enable all of the memories in the RSL10 system, disabling all memory retention settings.

5. If the program ROM has found that the device is not rebooting, the following initialization sequence is
followed:
a. Enable all of the memories in the RSL10 system, disabling all memory retention settings.
b. Switch to the RC clock as the source for SYSCLK.
c. Load the default VCC = 1.25 V trim setting.

IMPORTANT: The reset vector does not modify or access the stack prior to determining if the system is exiting
a low-power mode. This will ensure that an application returning from these modes can continue from a known
or fixed location without needing to reset the contents of the stack.

onsemi
RSL10 Firmware Reference

www.onsemi.com

47

d. Load the calibrated bandgap and VDDM settings from the manufacturing records in NVR4. If either read
reports an ECC error, repeat the read using increasing power supply values until no error is reported, and
use the last loaded values as the bandgap and VDDM configuration settings.

e. Once valid bandgap and VDDM settings are found, write them to the ACS_BG_CTRL and
ACS_VDDM_CTRL_VDDM_TRIM registers. If no valid trim settings can be loaded from the manufacturing
records, the ROM defaults to a fail-safe, high trim setting for these registers that is used to guarantee that
memory access is reliable after this step.

f. Execute the base system initialization function described in Section 5.3.1, “Base System Initialization”.

6. The debug port lock information is loaded using the following sequence:
a. The value of LOCK_INFO_SETTING setting is loaded from the device configuration record (described in

Section 3.3.3, “Device Configuration Record” on page 26)
b. If an error has been observed, the VDDM setting is set to the nominal value for 1.25 V and this value is

reloaded.
c. The loaded value from LOCK_INFO_SETTING is written to SYSCTRL_DBG_LOCK. If this register is set to

DBG_ACCESS_LOCK, debug port accesses remain restricted. If this register is set to any other, full access to
the debug port will be available following this step.

d. The 128-bit debug port unlock key is read from LOCK_INFO_KEY and copied to the four DBG_LOCK_KEY
registers. This key will be valid once the last value is written, and can be written over the debug port while
access to the debug port remains restricted to clear SYSCTRL_DBG_LOCK and unrestrict the debug port.

7. If the program ROM has found that the device is rebooting, the vector table is set to point to the value
indicated by SYS_INFO_START_ADDR from the application specific record (see Section 3.3.1, “Application
Specific Record” on page 25) and execution continues from this rebooted application’s reset vector.

8. If the program ROM has found that the device is not rebooting:
a. The user-defined system initialization function described in Section 5.3.2, “User-Defined System

Initialization” is executed.
b. The application pointed to by SYS_INFO_START_ADDR is verified from the application specific record

(see Section 3.3.1, “Application Specific Record”), using the application validation routine defined in
Section 5.4, “Application Validation and Boot”. If this is a valid application, execution continues from this
application’s reset vector.

c. The application located at the base of flash memory is verified using the application validation routine
defined in Section 5.4, “Application Validation and Boot”. If this is a valid application, execution
continues from this application’s reset vector.

d. If no valid application has been found, the error code from the application verification is written to
VAR_BOOTROM_ERROR (located at the base of DRAM0) and the ROM hard fault handler is executed. The
hard fault handler continues to execute until a watchdog reset triggers a power-on reset of the RSL10
system.

5.4 APPLICATION VALIDATION AND BOOT

The RSL10 program ROM contains a set of functions that are used to validate and boot applications.

The program ROM only boots an application if the system is not returning from sleep mode. (If the device fails on
return from sleep mode, the system triggers a reset which forces a boot.) An application is booted only after all system
initialization, as described in Section 5.3, “Initialization Support”, has completed. The program ROM first attempts to
boot the application pointed to by SYS_INFO_START_ADDR (see Section 3.3.1, “Application Specific Record” on
page 25). If this application fails to boot, the ROM then attempts to boot an application starting from the base of flash as

onsemi
RSL10 Firmware Reference

www.onsemi.com

48

a fail-safe measure. If the application at the base of flash also fails, the ROM records an error code and waits in the
hard-fault handler for a watchdog reset to reset the system.

The ROM considers an application valid if it starts with its vector table, and no errors that would prevent boot are
detected. Possible errors, and the error codes reported for these errors, are described in Table 25. If neither the
application pointed to by SYS_INFO_START_ADDR nor an application located at the base of flash successfully boots,
the boot ROM writes this error code to VAR_BOOTROM_ERROR (located at the base of DRAM0).

If the ROM determines that an application should be booted, the ROM:

1. Sets the VTOR bit-field in the Arm Cortex-M3 processor’s SCB register to point to the application’s vector table
2. Loads the initial stack pointer value from the application’s vector table to the Arm Cortex-M3 processor’s SP

register
3. Pushes the application’s status code to the top of the newly defined stack (valid error codes for a booted

application are “None” and “Bad CRC” - as described in Table 25)
4. Branches to the beginning of the reset handler, as indicated by the reset vector in the application’s vector table

IMPORTANT: If the application at SYS_INFO_START_ADDR cannot be booted, and the subsequent attempt to
boot the application at the base of flash fails in any way (including a “Bad CRC” error), any previous error from
the attempt to boot the application at SYS_INFO_START_ADDR is overwritten by the failure code for the attempt
to boot from the base of flash.

Table 25. Application Validation

Error Error Code Description

None 0x0 No error detected

Bad Alignment 0x1 The Arm Cortex-M3 processor requires that the application’s vector table is aligned to a
512-byte boundary in memory, for a device with the number of external interrupts that are
included in the RSL10 SoC. The location of the specified application is not at a valid
location in memory.

Bad Stack Pointer 0x2 The initial stack pointer must point to a valid memory location on the system bus or to a
valid memory location in PRAM or DSP_PRAM on the D-code bus. This requires that the
specified stack pointer is 32-bit aligned, and that the next address stack data will be placed
at is in DRAM, DSP_DRAM, BB_DRAM, PRAM, or DSP_PRAM (remapped area).

Bad Reset Vector 0x3 The program ROM checks that the reset handler is located immediately after the vector
table (or after a CRC located after the vector table). This check is performed indirectly by
confirming that the reset vector points to a location that:

• Provides space for at least the minimum number of entries in the vector table (a
minimum valid vector table contains 4 entries; the stack pointer, reset vector,
NMI handler, and hard fault handler)

• Provides space for no more than the stack pointer, the 88 potential vectors, and
a CRC (maximum of 90 words between the base of the application and the reset
vector’s location)

Failed to Start the
Application

0x6 Indicates that the application has failed to boot or has returned with no identifiable cause.

Bad CRC 0x7 A CRC-CCITT value can be placed between the vector table and the reset handler. The
boot validation step validates if a CRC calculated over the vector table matches the value
written at this location.

NOTE: This error code is considered to be a non-fatal error, since the
inclusion of a CRC is optional. The first entry on the application’s
stack after boot will indicate whether no-error has occurred (0x0) or
if a bad CRC has been discovered (0x7).

onsemi
RSL10 Firmware Reference

www.onsemi.com

49

5.5 FUNCTION TABLE

The Program ROM contains the implementation of a set of firmware functions that are exposed through a function
table. A list of functions provided by the ROM can be found in Table 26.

All program ROM functions are exposed through the system library’s ROM vector support (rsl10_romvect.h). For
more information on these functions and the rest of the system library, see Chapter 9, “System Library Reference” on
page 201.

All flash library functions are exposed through the flash library’s ROM implementation (rsl10_flash_rom.h). For
more information on the flash library, see Chapter 11, “Flash Library Reference” on page 395.

Table 26. Function Table Content

Source Function Address Reference

Program ROM Reset 0x00000020 Section 9.51, “Sys_BootROM_Reset” on page 252

System Delay 0x0000002C Section 9.70, “Sys_Delay_ProgramROM” on page 271

Read NVR4 0x00000058 Section 9.157, “Sys_ReadNVR4” on page 359

Program ROM (Initialization) Initialize (Base) 0x00000024 Section 9.101, “Sys_Initialize_Base” on page 303;
described in Section 5.3.1, “Base System Initialization”.

Initialize 0x00000028 Section 9.100, “Sys_Initialize” on page 302; described in
Section 5.3.2, “User-Defined System Initialization”.

Get Trim 0x00000054 N/A - Internal function used by
Sys_Clocks_Osc*CalibratedConfig(),
Sys_Power_*CalibratedConfig()

Unlock Debug 0x00000038 Section 9.151, “Sys_ProgramROM_UnlockDebug” on
page 353

Program ROM (Boot ROM) Validate Application 0x00000030 Section 9.55, “Sys_BootROM_ValidateApp” on page 256

Start Application 0x00000034 Section 9.52, “Sys_BootROM_StartApp” on page 253,
Section 9.54, “Sys_BootROM_StrictStartApp” on page 255

Flash Library Write Word Pair 0x0000003C Section 11.6, “Flash_WriteWordPair” on page 400

Write Buffer 0x00000040 Section 11.3, “Flash_WriteBuffer” on page 397

Erase Sector 0x0000005C Section 11.2, “Flash_EraseSector” on page 396

Erase All 0x00000048 Section 11.1, “Flash_EraseAll” on page 395

Write Command 0x0000004C Section 11.4, “Flash_WriteCommand” on page 398

Write Interface Control 0x00000050 Section 11.5, “Flash_WriteInterfaceControl” on page 399

IMPORTANT: We recommend that all functions provided by the flash library be executed from RAM or ROM,
as executing them from flash can result in hidden, flash-access-related failures. As such, the flash library is
provided as part of the ROM to allow erasing and writing to the flash without having to instantiate the flash
library functions in RAM.

www.onsemi.com

50

CHAPTER 6

6.Bluetooth Stack and Profiles
6.1 INTRODUCTION

This chapter explains how the Bluetooth stack, including the HCI, GATT and GAP, is implemented for RSL10.
This chapter also provides a description of the Bluetooth profile libraries that are provided with the RSL10 system to
support standard use cases.

6.1.1 Include and Object Files

In the include folder of the RSL10 installation directory, rsl10_bb.h and rsl10_ble.h list all the Bluetooth low
energy technology and Baseband support header files — refer to Table 27. The object files are described in Table 28 on
page 51 and Table 29 on page 53.

Table 27. RSL10 Bluetooth Low Energy and Baseband Support Files

Bluetooth Baseband

rsl10_ble.h rsl10_bb.h

#include
<ble\rwble_hl_config.h>

#include <bb\rwble_config.h> #include <bb\co_math.h>

#include
<ble\rwble_hl_error.h>

#include <bb\rwble.h> #include <bb\co_utils.h>

#include <ble\rwble_hl.h> #include <bb\rwip.h> #include <bb\dbg.h>

#include <ble\rwprf_config.h> #include <bb\rwip_config.h> #include <bb\dbg_task.h>

#include <ble\prf.h> #include <bb_reg_ble_em_cs.h> #include <bb\dbg_swdiag.h>

#include <ble\ahi.h> #include <bb_reg_ble_em_ral.h> #include <bb\dbg_mwsgen.h>

#include <ble\ahi_task.h> #include <bb_reg_ble_em_rx_buffer.h> #include <bb\ea.h>

#include <ble\att.h> #include <bb_reg_ble_em_rx_desc.h> #include <bb\em_buf.h>

#include <ble\attc.h> #include
<bb_reg_ble_em_tx_buffer_cntl.h>

#include <bb\em_map.h>

#include <ble\attm.h> #include
<bb_reg_ble_em_tx_buffer_data.h>

#include <bb\em_map_ble.h>

#include <ble\attm_db.h> #include
<bb_reg_ble_em_tx_buffer_data.h>

#include <bb\ll.h>

#include <ble\atts.h> #include <bb_reg_ble_em_tx_desc.h> #include <bb\llc.h>

#include <ble\ecc_p256.h> #include <bb_reg_ble_em_wpb.h> #include <bb\llc_ch_asses.h>

#include <ble\gap.h> #include <bb_reg_ble_em_wpv.h> #include <bb\llc_llcp.h>

#include <ble\gapc.h> #include <bb\reg_blecore.h> #include <bb\llc_task.h>

#include <ble\gapm_int.h> #include <bb\reg_access.h> #include <bb\llc_util.h>

#include <ble\gapc_task.h> #include <bb\reg_assert_mgr.h> #include <bb\lld.h>

#include <ble\gapm.h> #include <bb\reg_common_em_et.h> #include <bb\lld_pdu.h>

#include <ble\gapm_task.h> #include <bb\reg_ble_em_cs.h> #include <bb\lld_wlcoex.h>

#include <ble\gapm_util.h> #include <bb\reg_ble_em_ral.h> #include <bb\lld_evt.h>

#include <ble\gatt.h #include <bb\reg_ble_em_rx_buffer.h> #include <bb\lld_sleep.h>

#include <ble\gattc.h> #include <bb\reg_ble_em_rx_desc.h> #include <bb\lld_util.h>

#include <ble\gattc_task.h> #include
<bb\reg_ble_em_tx_buffer_cntl.h>

#include <bb\llm.h>

onsemi
RSL10 Firmware Reference

www.onsemi.com

51

#include <ble\gattm.h> #include
<bb\reg_ble_em_tx_buffer_data.h>

#include <bb\llm_task.h>

#include <ble\gattm_task.h> #include
<bb\reg_ble_em_tx_buffer_data.h>

#include <bb\llm_util.h>

#include <ble\h4tl.h> #include <bb\reg_ble_em_tx_desc.h> #include <bb\rf.h>

#include <ble\hci.h> #include <bb\reg_ble_em_wpb.h> #include <bb\rwip_task.h>

#include <ble\l2cc.h> #include <bb\reg_ble_em_wpv.h>

#include <ble\l2cc_pdu.h> #include <bb\compiler.h>

#include <ble\l2cc_task.h> #include <bb\arch.h>

#include <ble\l2cm.h> #include <bb\co_bt.h>

#include
<ble\smp_common.h>

#include <bb\co_bt_defines.h>

#include <ble\smpc.h> #include <bb\co_endian.h>

#include <ble\smpc_api.h> #include <bb\co_error.h>

#include <ble\smpc_crypto.h> #include <bb\co_hci.h>

#include <ble\smpc_util.h> #include <bb\co_list.h>

#include <ble\smpm_api.h> #include <bb\co_llcp.h>

#include <ble\prf_types.h> #include <bb\co_lmp.h>

#include <ble\prf_utils.h> #include <bb\co_version.h>

Table 28. Bluetooth GATT-Based Profile and Service Object Files

Profile Name Profile
Profile Library
Name

Profile Description

Alert Notification
Profile

ANP libanpc This profile enables a client device to receive different types of
alerts and event information, as well as information on the count of
new alerts and unread items, which exist in the server device.

Alert Notification
Service

ANS libanps Alert Notification service exposes: The different types of alerts with
the short text messages, The count of new alert messages, The
count of unread alerts.

Battery Service BAS libbasc

libbass

The Battery Service exposes the state of a battery within a device.

Blood Pressure
Profile

BLP libblpc This profile enables a device to connect and interact with a Blood
Pressure Sensor device for use in consumer and professional
health care applications.

Blood Pressure
Service

BLS libblps This service exposes blood pressure and other data from a blood
pressure monitor for use in consumer and professional healthcare
applications.

Cycling Power
Profile

CPP libcppc This profile enables a Collector device to connect and interact with
a Cycling Power Sensor for use in sports and fitness applications.

Cycling Power
Service

CPS libcpps This service exposes power- and force-related data and optionally
speed- and cadence-related data from a Cycling Power sensor
intended for sports and fitness applications.

Table 27. RSL10 Bluetooth Low Energy and Baseband Support Files (Continued)

Bluetooth Baseband

rsl10_ble.h rsl10_bb.h

onsemi
RSL10 Firmware Reference

www.onsemi.com

52

Cycling Speed and
Cadence Profile

CSCP libcscpc This profile enables a Collector device to connect and interact with
a Cycling Speed and Cadence Sensor for use in sports and fitness
applications.

Cycling Speed and
Cadence Service

CSCS libcscps This service exposes speed-related and cadence-related data
from a Cycling Speed and Cadence sensor intended for fitness
applications.

Current Time
Service

CTS libtipc This Bluetooth® service defines how the current time can be
exposed using the Generic Attribute Profile (GATT).

Device Information
Service

DIS libdisc

libdiss

This service exposes manufacturer and/or vendor information
about a device.

Find me Profile FMP libfindl

libfindt

The Find Me profile defines the behavior when a button is pressed
on one device to cause an alerting signal on a peer device.

Glucose Profile GLP libglpc This profile enables a device to connect and interact with a
glucose sensor for use in consumer healthcare applications.

Glucose Service GLS libglps This service exposes glucose and other data from a personal
glucose sensor for use in consumer healthcare applications.

HID over GATT
Profile

HOGP libhogpd

libhogpbh

libhogprh

This profile defines how a device with Bluetooth low energy
wireless communications can support HID services over the
Bluetooth low energy protocol stack using the Generic Attribute
Profile.

Heart Rate Profile HRP libhrpc This profile enables a Collector device to connect and interact with
a Heart Rate Sensor for use in fitness applications.

Heart Rate Service HRS libhrps This service exposes heart rate and other data from a Heart Rate
Sensor intended for fitness applications.

Health Thermometer
Profile

HTP libhtpc This profile enables a Collector device to connect and interact with
a Thermometer sensor for use in healthcare applications.

Health Thermometer
Service

HTS libhtpt This service exposes temperature and other data from a
Thermometer intended for healthcare and fitness applications.

Immediate Alert
Service

IAS libproxm

libproxr

This service exposes a control point to allow a peer device to
cause the device to immediately alert.

Link Loss Service LLS libproxm

libproxr

This service defines behavior when a link is lost between two
devices.

Location and
Navigation Profile

LNP liblanc This profile enables a Collector device to connect and interact with
a Location and Navigation Sensor for use in outdoor activity
applications.

Location and
Navigation Service

LNS liblans This service exposes location and navigation-related data from a
Location and Navigation sensor intended for outdoor activity
applications.

Next DST Change
Service

NDCS libtipc

libtips

This service defines how the information about an upcoming DST
change can be exposed using the Generic Attribute Profile (GATT)

Phone Alert Status
Profile

PASP libpaspc This profile enables a PUID device to alert its user about the alert
status of a phone connected to the PUID device.

Phone Alert Status
Service

PASS libpasps This service exposes the phone alert status when in a connection.

Proximity Profile PXP libproxm

libproxr

The Proximity profile enables proximity monitoring between two
devices.

Table 28. Bluetooth GATT-Based Profile and Service Object Files (Continued)

Profile Name Profile
Profile Library
Name

Profile Description

onsemi
RSL10 Firmware Reference

www.onsemi.com

53

All of the individual profile libraries use the Bluetooth low energy stack through the profile’s specified interfaces.
These interfaces are documented in the interface specifications. Because the Bluetooth low energy stack itself requires a
reciprocal link in order to find all of the profile components, the stack library has been built with an object factory that
instantiates calls to each of the profiles. If a profile is used by an application, the Bluetooth stack should use the
specified profile library. If a profile is not used by an application, an empty templated version of the necessary functions
that the Bluetooth stack’s factory is looking for is provided by the weak profile (weakprf.a) library.

6.1.2 Bluetooth Stack

The RSL10 device supports a Bluetooth stack through a combination of hardware and firmware resources. The
hardware components of the Bluetooth stack are described in the RSL10 Hardware Reference. The firmware
components of the Bluetooth stack are accessible through a Bluetooth library and associated header files.

The Bluetooth stack is accessible at three layers:

Running Speed and
Cadence Profile

RSCP librscpc This profile enables a Collector device to connect and interact with
a Running Speed and Cadence Sensor for use in sports and
fitness applications.

Running Speed and
Cadence Service

RSCS librscps This service exposes speed, cadence and other data from a
Running Speed and Cadence sensor intended for fitness
applications.

Reference Time
Update Service

RTUS libtipc

libtips

This service defines how a client can request an update from a
reference time source from a time server using the Generic
Attribute Profile (GATT).

Scan Parameters
Profile

SCPP libscppc This profile defines how a Scan Client device with Bluetooth low
energy wireless communications can write its scanning behavior to
a Scan Server, and how a Scan Server can request updates of a
Scan Client scanning behavior.

Scan Parameters
Service

SCPS libscpps This service enables a GATT Client to store the LE scan
parameters it is using on a GATT Server device so that the GATT
Server can utilize the information to adjust behavior to optimize
power consumption and/or reconnection latency.

Time Profile TIP libtipc

libtips

The Time profile enables the device to get the date, time, time
zone, and DST information and control the functions related the
time.

Table 29. Wireless Power Transfer Profiles

Profile Name Profile
Profile Library
Name

Profile Description

Wireless Power
Transfer Profile

WPTC

WPTS

libwptc

libwpts

This profile implements the Alliance for Wireless Power (A4WP)
wireless power transfer system for transferring power from a
single Power Transmitter Unit (PTU) to one or more Power
Receiver Units (PRUs).

CAUTION: The weak profile library must be the last library linked into an application, to prevent the weakly-defined
function definitions provided by this library from overriding the complete function definitions provided by the
individual profile libraries.

Table 28. Bluetooth GATT-Based Profile and Service Object Files (Continued)

Profile Name Profile
Profile Library
Name

Profile Description

onsemi
RSL10 Firmware Reference

www.onsemi.com

54

• The Host-Controller Interface (HCI)
• The Generic Attribute Protocol (GATT)
• The Generic Access Profile (GAP)

Table 30 describes the Bluetooth stacks provided with RSL10 and their associated object files.

6.1.3 Stack Support Functions

The Bluetooth stack library includes a set of support functions that augment the stack firmware, as described in
Table 31. All other stack APIs are described in their reference documentation, with support for specific Bluetooth layers
described in the following documents:

GAP RW-BLE-GAP-IS_2mbps.pdf

GATT RW-BLE-GATT-IS.pdf

L2CAP RW-BLE-L2C-IS.pdf

Profiles RW-BLE-PRF-*-IS.pdf

Host (errors) RW-BLE-HOST-ERR-CODE-IS.pdf

Table 30. Bluetooth Stack and Kernel Object Files

Kernel and Stack Type Library Name Description

Full-featured Release\libblelib

Release\libkelib

These libraries can be used by any application that wants to implement a full
stack of Bluetooth 5 with all RSL10 supported features.

This stack version supports up to four instances of the GAP state machine
(four peripheral or central devices), supporting transmission of a maximum of
eight packets per connection interval.

Full-featured with HCI
support

Release_HCI\libblelib

Release_HCI\libkelib

These libraries can be used when an HCI interface over UART or an external
application over UART implementation is required with RSL10 supported
features of Bluetooth 5.

Table 31. Bluetooth Stack Support Functions

Function Description Reference

BLE_ADV_Flags_Set Enable the modification of the upper bytes of an advertising
packet

6.1.3.1 on p. 55

BLE_Init Initialize the Bluetooth stack for use within an application. 6.1.3.2 on p. 55

BLE_InitNoTL Initialize the Bluetooth stack for use within an application. 6.1.3.3 on p. 56

BLE_Power_Mode_Enter Safely enter into a non-running power mode, maintaining the
existing Bluetooth stack state and adhering to required Bluetooth
low energy timing.

6.1.3.4 on p. 56

BLE_Reset Reset the underlying Bluetooth hardware. 6.1.3.5 on p. 57

BLE_Set_EventPriority Bluetooth Low Energy event priorities can be used to set the
priority of Bluetooth Low Energy events based on applications'
requirements.

6.1.3.6 on p. 57

BLE_Sleep_MaxDuration_Set A desired maximum sleep duration time can be set after the
BLE_Init() function.

6.1.3.7 on p. 58

onsemi
RSL10 Firmware Reference

www.onsemi.com

55

6.1.3.1 BLE_ADV_Flags_Set

Enable the modification of the upper bytes of an advertising packet.

6.1.3.2 BLE_Init

Initialize the Bluetooth stack for use within an application.

BLE_Sleep_ReductionTime_Set This function can be used to reduce the sleep duration set. 6.1.3.8 on p. 58

BLE_Set_RxWinSize_Max This function sets the maximum Rx window size to avoid
consuming more power in case of a poor radio link budget.
Otherwise the default is followed as per the Bluetooth Low
Energy standard.

6.1.3.9 on p. 59

BLE_Set_RxWinSize_Disconnect This function can be used for applications to set a desired Rx
window size, so that when the Rx window is widened up to a size
equal to or greater than this value, the link is lost by the stack.

6.1.3.10 on p. 59

BLE_Set_AnchorPointMoveReq This function can disable an anchor point move request, when a
peer device sends a connection parameters update with
suggested anchor point movement values. This is preformed
when the device starts a link layer control procedure when its
timing and calculated bandwidth is not matched with the device
timing.

6.1.3.11 on p. 59

BLE_Set_ScanConIndStatusCallB
ack

This function allows an application to register a callback (after
Bluetooth Low Energy initialization), such that when a scan
request or connection indication is received, the application can
be notified of the RSSI and the channel of the received packet.

Platform_Reset This function is used to re-boot the firmware. 6.1.3.14 on p. 61

SecurityKeys_Read This feature allows the user application to provide the public and
private keys, to save start up time (~5 sec at system clock of 8
MHz) in a case where security is configured for the stack at
Bluetooth Low Energy initialization.

6.1.3.15 on p. 62

Type Function

Include File #include <rsl10_bb.h>
#include <rsl10_ble.h>

Template void BLE_ADV_Flags_Set(uint8_t exclude)

Description Enable the modification of the upper bytes of an advertising packet. Call this after the BLE_Init or
BLE_InitNoTL functions.

Inputs exclude = If the input argument is set to 1, you control all 31 bytes of advertising data from
the application. If the input argument is set to 0, the first three bytes of
advertising data are controlled by the Bluetooth Low Energy stack.

Outputs None

Assumptions None

Example /* Initialize the kernel and Bluetooth stack, allowing upper 3 bytes
 * to be used in advertising packet */
Kernel_Init(0);
BLE_InitNoTL(0);
BLE_ADV_Flags_Set(1);

Table 31. Bluetooth Stack Support Functions

Function Description Reference

onsemi
RSL10 Firmware Reference

www.onsemi.com

56

6.1.3.3 BLE_InitNoTL

Initialize the Bluetooth stack for use within an application.

6.1.3.4 BLE_Power_Mode_Enter

Safely enter into a non-running power mode, maintaining the existing Bluetooth stack state and adhering to
required Bluetooth low energy timing.

Type Function

Include File #include <rsl10_bb.h>
#include <rsl10_ble.h>

Template void BLE_Init(uint32_t error)

Description Initialize the Bluetooth stack for use within an application. If the stack is being re-initialized due to an error,
raise a message to the local Bluetooth host to help ensure that error recovery is handled well.

NOTE: This initialization function also initializes the custom application host interface (AHI)
and the related required transport layer hooks. If not using this interface, use
BLE_InitNoTL() (see Section 6.1.3.3, “BLE_InitNoTL”).

Inputs error = Indicate why the Bluetooth stack is being re-initialized; should be set to 0
(RESET_NO_ERROR) if no error had occurred, and otherwise should use one
of the defined reset errors from the bb\arch.h include file.

Outputs None

Assumptions None

Example /* Initialize the kernel and Bluetooth stack */
Kernel_Init(0);
BLE_Init(0);
BLE_Reset();

Type Function

Include File #include <rsl10_bb.h>
#include <rsl10_ble.h>

Template void BLE_InitNoTL(uint32_t error)

Description Initialize the Bluetooth stack for use within an application. If the stack is being re-initialized due to an error,
raise a message to the local Bluetooth host to help ensure that error recovery is handled well.

Inputs error = Indicate why the Bluetooth stack is being re-initialized; should be set to 0
(RESET_NO_ERROR) if no error had occurred, and otherwise should use one
of the defined reset errors from the bb\arch.h include file.

Outputs None

Assumptions None

Example /* Initialize the kernel and Bluetooth stack */
Kernel_Init(0);
BLE_InitNoTL(0);
BLE_Reset();

Type Function

Include File #include <rsl10_bb.h>
#include <rsl10_ble.h>

Template bool BLE_Power_Mode_Enter(void *power_mode_env, uint8_t power_mode)

onsemi
RSL10 Firmware Reference

www.onsemi.com

57

6.1.3.5 BLE_Reset

Reset the underlying Bluetooth hardware.

6.1.3.6 BLE_Set_EventPriority

Bluetooth Low Energy event priorities can be used to set the priority of Bluetooth Low Energy events based on the
application's requirement. We suggest that you do not change the priority unless required, and you ensure that the
changed priority is validated in your tests.

Description Safely enter into a non-running power mode, maintaining the existing Bluetooth stack state and adhering to
required Bluetooth low energy timing.

Inputs power_mode_env = Parameters and configurations for the desired power mode
power_mode = Desired power mode; use POWER_MODE_[SLEEP | STANDBY]

Outputs return value = Returns true if it was safe to switch to the desired power mode, false otherwise.

Assumptions None

Example /* Main application loop:
 * - Run the kernel scheduler
 * - Refresh the watchdog, switch to sleep mode until the next event
 * should occur, and wait for an interrupt after waking up before
 * continuing */
while (1)
{
 Kernel_Schedule();

 /* Refresh the watchdog timer */
 Sys_Watchdog_Refresh();

 /* Sleep until the next event needs to be processed */
 GLOBAL_INT_DISABLE();
 BLE_Power_Mode_Enter(&sleep_mode_env, POWER_MODE_SLEEP);
 GLOBAL_INT_RESTORE();

 /* Wait for an event before executing the scheduler again */
 SYS_WAIT_FOR_EVENT;

}

Type Function

Include File #include <rsl10_bb.h>
#include <rsl10_ble.h>

Template void BLE_Reset(void)

Description Reset the underlying Bluetooth hardware. Ensures that the Bluetooth stack firmware is synchronized to the
hardware.

Inputs None

Outputs None

Assumptions None

Example /* Initialize the kernel and Bluetooth stack */
Kernel_Init(0);
BLE_Init(0);
BLE_Reset();

onsemi
RSL10 Firmware Reference

www.onsemi.com

58

6.1.3.7 BLE_Sleep_MaxDuration_Set

A desired maximum sleep duration time can be set after the BLE_Init() function.

6.1.3.8 BLE_Sleep_ReductionTime_Set

This function can be used to reduce the sleep duration set.

Type Function

Include File #include <rsl10_ble.h>

Template uint8_t BLE_Set_EventPriority(uint8_t eventIndex, uint8_t priorityValue,
uint8_t incrementValue)

Description Any Bluetooth Low Energy event has a priority set by default, which can be found in enum
rwip_prio_dft in file rwip_config.h. If an event cannot be programmed because of conflict or overlap with
another higher priority event, then the event’s priority is incremented based on the default priority increment
per event type, which can be found in enum rwip_incr_dft in rwip_config.h. This API adds the capability
to prioritize Bluetooth Low Energy events in such a way that priority and increment values can be set for an
event, and its event index is specified through eventIndex as found in enum rwip_prio_idx defined
in file rwip_config.h.

255 represents the highest possible priority, 0 the lowest.

Call it after the BLE_Initialize function in which default values are set by the stack.

Inputs eventIndex = Index of the event
priorityValue = Priority of event desired
incrementValue = Increment value to be set for the event

Outputs None

Assumptions None

Example uint8_t BLE_Set_EventPriority(5, 1, 1)

Type Function

Include File #include <rsl10_bb.h>
#include <rsl10_ble.h>

Template void BLE_Sleep_MaxDuration_Set(int32_t maximum_value)

Description This desired maximum sleep duration time can be used if the default maximum sleep duration is not desired by
the user.

Inputs maximum_value = Desired maximum sleep value needs to be entered (sleep function accepts
input arguments in units of 625 s)

Outputs None

Assumptions Maximum sleep duration value can not be set to a value where its equivalent number of low power clocks
overflows a 32-bit limit.

Example BLE_Sleep_MaxDuration_Set(70);

Type Function

Include File #include <rsl10_bb.h>
#include <rsl10_ble.h>

Template void BLE_Sleep_ReductionTime_set(uint32_t reduction_value)

Description This function can be used to reduce the sleep duration that was set earlier. Its value is zero by default.

Inputs reduction_value = Desired sleep reduction time value needs to be entered (the sleep function
accepts input arguments in units of 625 s)

onsemi
RSL10 Firmware Reference

www.onsemi.com

59

6.1.3.9 BLE_Set_RxWinSize_Max

This function sets the maximum Rx window size to avoid consuming more power in case of a poor radio link
budget. Otherwise the default is followed as per the Bluetooth Low Energy standard.

6.1.3.10 BLE_Set_RxWinSize_Disconnect

This function can be used for applications to set a desired Rx window size, so that when the Rx window is widened
up to a size equal to or greater than this value, the link is lost by the stack.

6.1.3.11 BLE_Set_AnchorPointMoveReq

This function can disable an anchor point move request when a peer device sends a connection parameters update
with suggested anchor point movement values. This is preformed when the device starts a link layer control procedure
when its timing and calculated bandwidth is not matched with the device timing.

Outputs None

Assumptions Sleep reduction duration value can not be set to a value where its equivalent number of low power clocks
overflows a 32-bit limit.

Example BLE_Sleep_ReductionTime_set(10);

Type Function

Include File #include <rsl10_bb.h>
#include <rsl10_ble.h>

Template void BLE_Set_RxWinSize_Max(uint32_t max_rxWin, uint8_t
instant_change_include)

Description This function can be called at any time in an application, but it affects all Bluetooth Low Energy links connected
to the device.

Inputs Max_rxWin = in microseconds, a zero input means an invalid parameter and it follows default
behavior.

instant_change_include = setting to 1 results in the function being applied to both anchor point change
procedures and non-anchor point change connection events; otherwise, the
function is only applied to connection RX windows not corresponding to anchor
point connection events.

Outputs None

Assumptions None

Example BLE_Set_RxWinSize_Max(1000, 1);

Type Function

Include File #include <rsl10_bb.h>
#include <rsl10_ble.h>

Template void BLE_Set_RxWinSizeDisconnect(uint32_t rx_win_size_disconnect)

Description By default this feature is disabled, to enable passing of a non-zero. This function is then applied on all
Bluetooth Low Energy links.

Inputs rxwin_size_disconnect = set a desired Rx window size.

Outputs None

Assumptions None

Example BLE_Set_RxWinSizeDisconnect(5000);

onsemi
RSL10 Firmware Reference

www.onsemi.com

60

6.1.3.12 BLE_Set_ParmUpdtReqOffsets

Some smartphone models start ASHA stereo streaming with left and right anchor points programmed close
together, causing audio artifact issues for one side. This function allows an application to set offset values of 0 to 5, sent
in a connection parameters update request over the air to its own desired values, triggering smart devices to change the
anchor points in such a way that events are programmed with longer time spaces between them.

6.1.3.13 BLE_Set_ScanConIndStatusCallBack

This function allows an application to register a callback function (after Bluetooth Low Energy initialization), such
that when a scan request or connection indication is received, the application can be notified of the RSSI and the
channel of the received packet.

Type Function

Include File #include <rsl10_bb.h>
#include <rsl10_ble.h>

Template void BLE_Set_AnchorPointMoveReq(uint8_t anchorPoint_move)

Description Call this function to disable an anchor point move request.

Inputs anchorPoint_move = If the input argument is zero, the feature will be disabled.
If it is set to one, the feature will be enabled.
By default it is enabled.
It can be called anytime dynamically after BLE_Initialize() function.

Outputs None

Assumptions None

Example BLE_Set_AnchorPointMoveReq(0);

Type Function

Include File #include <rsl10_bb.h>
#include <rsl10_ble.h>

Template BLE_Set_ParmUpdtReqOffsets(bool enable, uint16_t *desired_offsets)

Description This function triggers smart device anchor point changes using programmable offsets, allowing longer times
between events, to eliminate audio artifact issues.

Inputs true, desired_offsets

Outputs None

Assumptions None

Example By default, this function is disabled. To enable it, an application can call this API any time after Bluetooth Low
Energy initialization, as follows:

uint16_t offsets[6] = {2,4,7,0xffff, 0xffff,0xffff};

BLE_Set_ParmUpdtReqOffsets(true, desired_offsets);

Type Function

Include File #include <rsl10_bb.h>
#include <rsl10_ble.h>

Template void BLE_Set_ScanConIndStatusCallBack(void *callBack)

Description This function retrieves RSSI and received packet channel information on scan request/connection indication.

Inputs *type, *rssi, *chnl

Outputs None

onsemi
RSL10 Firmware Reference

www.onsemi.com

61

6.1.3.14 Platform_Reset

This function is used to reboot the firmware.

Assumptions None

Example void App_ScanConIndStatus_Callback(uint8_t *type, uint8_t *rssi, uint8_t
* chnl)
{
int8_t calculated_rssi = ((0.32 * (*rssi)) - 108);
if(*type == LL_SCAN_REQ)
{ PRINTF("\n\r SCAN_REQ, rssi = %d, chnl= %d", calculated_rssi,
*chnl); }
else
{ PRINTF("\n\r CONNECT_IND, rssi = %d, chnl= %d", calculated_rssi,
*chnl); }
}

/* while /*
/* BLE_Set_ScanConIndStatusCallBack(App_ScanConIndStatus_Callback); /*
/* is called in the application at the desired state. /*

/* To disable at any time, set the callback function to NULL: */

BLE_Set_ScanConIndStatusCallBack(NULL);

Type Function

Include File #include <rsl10.h>
#include <arch.h>

Template void __attribute((weak)) platform_reset(uint32_t error)

Description This function is defined as a weak function, so you can redefine it in your application for your purposes and
also to catch the BLE stack platform reset calls. You can choose to send the arguments based on the
requirement, as demonstrated in the example below.

Inputs uint32_t error (or) RESET_AND_LOAD_FW (or) RESET_MEM_ALLOC_FAIL

Outputs None

Assumptions None

Example /* Re-boot the firmware when error has been detected*/

void platform_reset(uint32_t error);

/* Reset the platform for Bluetooth Low Energy reset with operation
GAPM_PLF_RESET */

platform_reset(RESET_AND_LOAD_FW);

/* Reboot platform if no more empty space available in kernel heap when
allocating memory */

platform_reset(RESET_MEM_ALLOC_FAIL);

onsemi
RSL10 Firmware Reference

www.onsemi.com

62

6.1.3.15 SecurityKeys_Read

This feature allows the user application to provide the public and private keys, to save start up time (~5 sec at
system clock of 8 MHz) in a case where security is configured for the stack at Bluetooth Low Energy initialization.

6.2 HCI

The role of the HCI is to provide a uniform interface method of accessing a Bluetooth low energy controller’s
capabilities from the host. The HCI layer is part of the Bluetooth low energy 4.2 protocol stack, as shown in Figure 6 on
page 63.

Type Function

Include File #include <rsl10_bb.h>
#include <rsl10_ble.h>

Template void SecurityKeys_Read(uint8_t *privateKey, uint8_t *publicKey_x,
uint8_t *publicKey_y)

Description This function, when called by application, configures whether the keys are other parameters in struct
app_device_param provided by application, or by default/FLASH (NVR3). When this function is not
defined, the Flash/default option is used.

Inputs privateKey and publicKey = These are security keys i.e the calculated Eliptic Curve Diffie-Hellman(ECDH) in
public key exchange, since each device generates its own ECDH public-private
key pair and the public-private key pair contains a private key and a public key.

Outputs None

Assumptions None

Example /*In peripheral_server_bond, a pair key example has been provided as
mentioned below*/
#define APP_BLE_DEV_PARAM_SOURCE
FLASH_PROVIDED_or_DFLT /* or APP_PROVIDED */

SecurityKeys_Read(&private_Key, &public_Key_x, &public_Key_y);

onsemi
RSL10 Firmware Reference

www.onsemi.com

63

Figure 6. Bluetooth Low Energy Protocol Stack

The HCI layer can be included in three kinds of systems: a full stack system, a host, or a controller. The full stack
system contains both host and controller layers. In this case, the role of the HCI is to convey the information from one
part to the other by following the rules defined in the HCI standard. For a host or controller only system, the HCI will
need to interface with a transport layer that manages the reception and transmission of messages over a physical
interface, such as USB or UART.

As shown in Figure 7 on page 64, the two main configurations are supported by the HCI software.

Lower Layers

HCI (optional)

L2CAP

GATT

ATT

GAP

SMP

Profiles

Application

Host

Allowed communication between tasks

onsemi
RSL10 Firmware Reference

www.onsemi.com

64

Figure 7. HCI Working Modes

The HCI software supports the two working modes as illustrated in Figure 7. RSL10 has both a full stack system,
and compatibility with an external system.

6.2.1 HCI Software Architecture

The HCI software is an interface communication block (depicted in Figure 8 on page 65) that can be used for 3
main purposes:

1. Communication between internal host and external controller
2. Communication between internal controller and external host
3. Communication between internal controller and internal host

onsemi
RSL10 Firmware Reference

www.onsemi.com

65

Figure 8. HCI Software Interfaces

Figure 9. HCI Software Architecture

HCI UART

GAPM GAPC L2CC

LLM LLC LM LC

Controller Tasks

kernel message

function call

Host Tasks

onsemi
RSL10 Firmware Reference

www.onsemi.com

66

As described in Figure 9 on page 65, the HCI provides two main processing blocks for RSL10: routing, and
external interface packet management. When both host and controller stack parts are present (full stack mode), the
external interface feature is optional and the routing system auto-detects whether the lower layers are used by the
internal or the external host. The first main challenge of the HCI software is to route the messages to/from the internal
task and to/from the external interface. Several types of messages are used to carry the information. These messages
might carry some basic control information for the Bluetooth low energy technology operations, in which case they will
be conveyed to the main management tasks (LLM/GAPM - Link Layer Manager/ Generic Access Profile Manager).
But the messages can also carry link dedicated information, and in that case they will need to be conveyed to the link
specific tasks (LLC/GAPC/L2CC - Link Layer Controller/ Generic Access Profile Controller/ Logical Link Protocol).

For RSL10, the communication blocks do not have communication with external controllers; however, the
capability of communication with an external host is possible. During reception from the external interface, the HCI
also manages the buffer allocation with the kernel memory heap. This is so that after unpacking, an internal kernel
message is ready for processing by an internal task.

The huge number of control messages means that the HCI software defines descriptor tables, so that each
message’s descriptor is referred to during processing. The data packets need a specific buffer allocation policy managed
by the IP software. More details are given in the following sections.

6.2.1.1 HCI Control Messages Descriptors

Each HCI command is associated with a command descriptor. The command descriptor is a structure (illustrated in
Figure 10) that contains complete information to:

• Route the message or its response within internal stack tasks
• Manipulate the message’s parameters or return parameters when dealing with an external interface (only if an

external interface is supported)

Table 32 describes each of the fields in the command descriptor.

Figure 10. HCI Commands Descriptor Format

Table 32. Command Descriptor Field Definitions

Field Name Sub-field Name Size Description

Opcode 2 bytes Command opcode

3:0 5:4 6 7
Opcode LL ID HL ID SpU SpP Size PARAM FORMAT RET PAR FORMAT

Routing Packing/Unpacking

2 bytes
1 byte

1 byte 4 bytes 4 bytes

onsemi
RSL10 Firmware Reference

www.onsemi.com

67

For instance, Figure 11 on page 68 shows some examples of HCI command descriptors within the Link Control
commands group.

Destination ID LL ID 4 bits Identifier of the task that receives the
command

HL ID 2 bits Identifier of the task that receives the
response event

(Command Complete or Command
Status)

Special Return

Params packing

1 bit Flag indicating that the return
parameters are packed/unpacked via a
special function

Special Params

packing

1 bit Flag indicating that the parameters are
packed/unpacked via a special function

Maximum parameters size 1 bytes Maximum size of the command
parameters

Parameters Format 4 bytes String representing the parameters
format (NULL if no parameter), used by
the generic parameter unpacker.

In case of special parameter
unpacking, this field points to the
dedicated unpacker function.

Return Parameters Format 4 bytes String representing the return
parameters format (NULL if no
parameter), used by the generic
parameter packer.

In case of special return parameter
packing, this field points to the
dedicated packer function.

IMPORTANT: For standard commands, all fields used for parameter packing or unpacking relate directly to
the Bluetooth standard specification.

The fields for parameter packing or unpacking are present only if an external interface is supported. In a
full stack system that does not support an external interface, only the routing fields are present in the command
descriptors. The command group (OGF) allows classifying the descriptors in separate tables.

Table 32. Command Descriptor Field Definitions (Continued)

Field Name Sub-field Name Size Description

onsemi
RSL10 Firmware Reference

www.onsemi.com

68

Figure 11. Link Control Group Descriptor Table

Another example of HCI command descriptors within the controller and baseband command group is shown in
Figure 12.

Figure 12. Controller and Baseband Group Descriptor Table

At any time, the HCI software can obtain a descriptor associated with a command by using a unique common table
referencing all the groups present in the HCI software, as shown in Figure 13 on page 69.

OGF 1 Opcode LL ID HL ID SpU SpP Size
0 0x0401 LM N/A N N 5
1 0x0402 LM N/A N N 0
2 0x0403 LM N/A N N 9

… … … … …

N 0x043E LM N/A N N 46

"B"

"3BBB"
PARAM FORMAT RET PAR FORMAT

"6BLL5B5BHHLL5B5B NULL

… …

"HH3BBB"

NULL
NULL "B"

OGF 3 OCF LL ID HL ID SpU SpP Size
0 0x0C01 LM/LLM GAPM N N 8
1 0x0C02 LM N/A N N 0
2 0x0C03 LM/LLM GAPM Y N 9

… … … … …

N 0x0C6D LM N/A N N 2

RET PAR FORMATPARAM FORMAT

… …

"BB" "B"

NULL "B"
pointer to function "B"

"8B" "B"

onsemi
RSL10 Firmware Reference

www.onsemi.com

69

Figure 13. Top Level Table Pointing to Group Descriptor Tables

6.2.1.2 Event Descriptors

Each HCI event is associated with an event descriptor. The event descriptor is a structure (illustrated in Figure 14)
that contains complete information that could be used for:

• Routing the message within internal stack tasks
• Manipulating the message’s parameters when dealing with an external interface

Table 33 describes each of the fields in the event descriptor.

Figure 14. HCI Event Descriptor Format

Table 33. Event Descriptor Fields Description

Name Size Description

Code 1 byte Event code or event subcode

HL ID 1 byte Identifier of the task that receives the event

Special Parameters Packing 1 byte Flag indicating that the parameters are
packed/unpacked via a special function

Parameters Format 4 bytes String representing the parameters format
(NULL if no parameter), used by the generic
parameter packer

OGF

0 Link Control

1 Link Policy

2 Controller & Baseband

3 Informational Parameters

4 Status Parameters

5 Testing

6 LE Controller

… …

N Vendor Specific desc_vendor_spec

Pointer to cmd desc tables

desc_link_ctrl

desc_link_pol

desc_ctrl_bb

desc_info_par

desc_stat_par

desc_testing

desc_le_ctrl

…

OGF 1 Opcode LL ID HL ID SpU SpP Size
0 0x0401 LM N/A N N 5
1 0x0402 LM N/A N N 0
2 0x0403 LM N/A N N 9

… … … … …

N 0x043E LM N/A N N 46

"B"

"3BBB"
PARAM FORMAT RET PAR FORMAT

"6BLL5B5BHHLL5B5B NULL

… …

"HH3BBB"

NULL
NULL "B"

OGF x OCF LL ID HL ID SpU SpP Size
0
1

… … … … …

N

PARAM FORMAT RET PAR FORMAT

… …

OGF x OCF LL ID HL ID SpU SpP Size
0
1

… … … … …

N

PARAM FORMAT RET PAR FORMAT

… …

OGF 3 OCF LL ID HL ID SpU SpP Size
0 0x0C01 LM/LLM GAPM N N 8
1 0x0C02 LM N/A N N 0
2 0x0C03 LM/LLM GAPM Y N 9

… … … … …

N 0x0C6D LM N/A N N 2

RET PAR FORMATPARAM FORMAT

… …

"BB" "B"

NULL "B"
pointer to function "B"

"8B" "B"

Routing
1 byte 1 byte 1 byte
CODE HL ID SpP

4 bytes
PARAM FORMAT (ptr)

Parameters packing

onsemi
RSL10 Firmware Reference

www.onsemi.com

70

The HCI software assigns one event descriptor to each of these sub-events, called LE events. As a result, a second
table is present with all LE events described and indexed by their LE event subcodes, as shown in Figure 15.

Figure 15. LE Events Descriptors Table

NOTE: The fields for parameter packing or unpacking are present only if an external interface is
supported. In a full stack system that does not support an external interface, only the routing
fields are present in the event descriptors.

6.2.1.3 Internal Messages Definition

A kernel message is a basic exchange element used by software tasks to communicate with each other. The
information carried by each HCI message is processed internally using a kernel message. However, the kernel message
carrying an HCI message is not sent directly between two internal tasks. The HCI software can thus reuse some of the
fields normally reserved for kernel use to organize an efficient routing and manipulation of the HCI messages. The
following sections describe how the HCI software, and the blocks of user software, use the kernel message to transfer
HCI messages in RSL10.

All HCI commands are internally carried through a unique kernel message filled with the following data shown in
Figure 16:

Figure 16. Kernel Message for Carrying HCI Commands

CODE HL ID SpP
0 0x01 GAPM N
1 0x02 GAPM Y
2 0x03 GAPC N
… … … …
N 0x06 GAPC N

"BBHHHH"
…

"BHHHHH"

PARAM FORMAT (ptr)
"BBHBB6BHHHB"

pointer to function

CMD Con Idx Opcode Param Length PARAMS unpk
MSG ID DEST ID SRC ID MSG LENGTH N + padding

onsemi
RSL10 Firmware Reference

www.onsemi.com

71

Table 34 shows the kernel message contents. Thanks to the information contained in the kernel messages, each task
receiving such messages can retrieve the HCI command information.

NOTE: Each lower layer task that might receive HCI commands must implement one HCI command
message handler as a unique entry point. The HCI command message is responsible for
processing and freeing the kernel message, and is also responsible for replying to each HCI
command it receives.

6.2.1.4 Events

The controller stack can send an event to the host at any moment. It sends a kernel message that can be one of four
types:

• Command Status event: in response to a procedure start
• Command Complete event: in response to a completed action
• LE event: message from Bluetooth low energy LL to host
• Legacy event: message from Bluetooth low energy LL to host

6.2.1.4.1 Legacy Events

The default container for HCI legacy events is a kernel message filled with the following data shown in Figure 17
and Table 35:

Figure 17. Kernel Message for Carrying HCI Events

Table 34. Kernel Message Content

KE Message Field Values

Message ID HCI Command Message ID

Destination Task Connection Index (only for connection
oriented commands)

Source Task Opcode

Parameters Length Unpacked parameters length (0 for
parameter-less commands)

Parameters Unpacked parameters

Table 35. Legacy Events Kernel Message Content

KE message field Values

Message ID HCI Event Message ID

Destination Task Connection Index (only for connection
oriented events)

Source Task Event Code

Parameters Length Unpacked parameters length (0 for
parameter-less events)

Parameters Unpacked parameters

EVT Con Idx Event Code Param Length PARAMS unpk
MSG ID DEST ID SRC ID MSG LENGTH N + padding

onsemi
RSL10 Firmware Reference

www.onsemi.com

72

6.2.1.4.2 LE Event

All HCI meta events are internally carried through a unique kernel message filled with the following data shown in
Figure 18, and in Table 36:

Figure 18. Kernel Message for Carrying HCI LE Events

6.2.1.4.3 Command Complete Event

The HCI command complete event is internally carried through a kernel message filled with the following data
shown in Figure 19 and Table 37:

Figure 19. Kernel Message for Carrying HCI Command Complete Events

6.2.1.4.4 Command Status Event

The HCI command status event is internally carried through a kernel message filled with the following data shown
in Figure 20 on page 73, and in Table 38 on page 73:

Table 36. LE Event Kernel Message Content

KE message field Values

Message ID HCI LE Event Message ID

Destination Task Connection Index (only for connection
oriented events)

Source Task Not filled

Parameters Length Unpacked parameters length (1 for
parameter-less LE events)

Parameters Unpacked parameters

Table 37. Command Complete Event Kernel Message

KE message field Values

Message ID HCI CC Event Message ID

Destination Task Connection Index (only for connection
oriented events)

Source Task Original Command Opcode

Parameters Length Unpacked parameters length

Parameters Unpacked parameters

1
SUBLE EVT Con Idx - Param Length PARAMS unpk

MSG ID DEST ID SRC ID MSG LENGTH N + padding - 1

CC EVT Con Idx Opcode Param Length RET PARAMS unpk
MSG ID DEST ID SRC ID MSG LENGTH N + padding

onsemi
RSL10 Firmware Reference

www.onsemi.com

73

Figure 20. Kernel Message for Carrying HCI Command Status Events

6.2.1.4.5 LE ACL RX Data

The information related to HCI LE ACL RX data (received from the peer device on the Bluetooth low energy link)
is carried through a unique message filled with the following data shown in Figure 21 and in Table 39:

Figure 21. Kernel Message for Carrying HCI LE ACL RX Data Information

6.2.1.4.6 LE ACL TX Data

The information related to HCI LE ACL TX data (sent to the peer device on the Bluetooth low energy link) is
carried through a unique message filled with the following data shown in Figure 22 on page 74, and in Table 40 on
page 74:

Table 38. Command Status Event Kernel Message

KE message field Values

Message ID HCI CS Event Message ID

Destination Task Connection Index (only for connection
oriented events)

Source Task Original Command Opcode

Parameters Length 1 (Length of the parameter Status)

Parameters Status of the command processing

Table 39. LE ACL RX Data Kernel Message

KE message field Values

Message ID HCI CS Event Message ID

Destination Task Connection Index (only for connection
oriented events)

Source Task Original Command Opcode

Parameters Length 1 (Length of the parameter Status)

Parameters

Connection handle

Packet boundary and packet broadcast
flags

Reserved

Data Length

Handle of the RX buffer containing the
data

1
STAT

MSG ID DEST ID SRC ID MSG LENGTH
CS EVT Con Idx Opcode 1

1 1 1
F Res HDL

MSG LENGTH 2 2
ACL DATA RX Con Idx - LEN CONHDL LEN

MSG ID DEST ID SRC ID

onsemi
RSL10 Firmware Reference

www.onsemi.com

74

Figure 22. Kernel Message for Carrying HCI LE ACL TX Data Information

6.2.1.5 Internal Messages Routing

For each HCI message transferred, the HCI software decides whether to route the message internally (software
task) or externally (through the transport layer). The features related to communication with external systems (host or
controller), such as the reception state machine, packet TX queuing, and packet packing or unpacking, are described in
Section 6.2.4, “Communication with External Host” on page 77. This section focuses on finding the internal destination
of HCI messages within the internal host or controller.

Table 40. LE ACL TX Data Kernel Message

KE message field Values

Message ID HCI CS Event Message ID

Destination Task Connection Index

Source Task Not filled

Parameters Length Length of the parameters

Parameters

Connection handle

Packet boundary and packet broadcast
flags

Reserved

Data Length

TX descriptor of the data to send

1 1
F Res

4
TX descriptor

MSG ID DEST ID SRC ID MSG LENGTH 2 2
ACL DATA TX Con Idx - LEN CONHDL LEN

onsemi
RSL10 Firmware Reference

www.onsemi.com

75

Figure 23. Message Transferring through the HCI

As seen in Figure 23, for each message transiting through the HCI (command, event, RX data, TX data), the HCI
software needs to find the destination task within lower or higher layers. For example, UART Transport Layer sends the
state machine to be unpacked and then rerouted to its respective task.

6.2.1.5.1 For External Host to Internal Controller

The HCI retrieves the command opcode from the HCI packet, which is used for retrieving its associated command
descriptor. The descriptor contains the internal identifier that allows the HCI to associate a destination task with the
message.

Control messages that are not dedicated to a specific Bluetooth low energy connection are sent to the main LL
manager task (LM/LLM), which is a single instantiated task. Bluetooth low energy technology implements a manager
task and is able to handle the messages specific to its own protocol. The messages related to common management of
the device (e.g. HCI_Reset_Cmd, HCI_Read_Local_Version_Information_Cmd) are sent to the Bluetooth low
energy controller task in Bluetooth low energy technology stand-alone configuration.

When a message is specific to a Bluetooth low energy connection (ACL data or link-specific control messages), the
HCI needs to find the associated instance of the Bluetooth low energy controller task. The mechanism is mainly based
on a per-connection value named “connection handle”, which is allocated by the controller at link establishment, and
freed at link disconnection. Link-specific messages generally include the connection handle as part of their parameters.

The connection handle is indicated to the host by the controller when the connection has been established, thanks to
the HCI LE Connection Complete event (Bluetooth low energy asynchronous connection).

A connection is considered closed by the HCI when the HCI Disconnection Complete event is transferred.

H4 TL

HCI

TASK X

cmd1_handler

cmd2_handler

rx_state_machine

cmd desc
table

ROUTING HCI handlers
table

cmd_handler

cmdN_handler

TASK Y

cmd1_handler

cmd2_handler

HCI handlers
table

cmd_handler

cmdN_handler

UNPK

TASK Z

transmit message

onsemi
RSL10 Firmware Reference

www.onsemi.com

76

This section assumes that the connection handle is chosen by the internal controller so that it is possible for a link
identifier to derive a connection handle.

To be able to route all link-oriented messages to the right Bluetooth low energy controller task instance, the HCI
maintains internal data organized as shown in Figure 24.

Figure 24. Table for Link Identification (Messages Received from External Host)

The purpose of associating a status with each link is to filter the potential wrong connection handles received from
the host. A message is transferred to a Bluetooth low energy controller task instance if and only if the connection handle
is in the possible range and the associated link exists.

The filling of these tables is accomplished by the controller tasks themselves at link establishment or
disconnection, as shown in Figure 25.

Figure 25. Bluetooth Low Energy Connection-Oriented Message Routing

As seen in Figure 25, when a link-oriented command is transferred through the HCI, the HCI checks whether there
is an active link that could match on the based “State” flag and the connection handle or BD address. If no link identifier
matches, a command complete event or command status is sent back to the host with the error code Unknown Link
Identifier. If a matching link identifier is found, the destination task instance is built from the associated link
identifier.

idx State
0 …
1 …
… …

M-1 …

BLE links

HCI TLGAPMGAPC

Register (linkID)

HCI event (Conhdl)HCI command (Conhdl)

Unregister (linkID)

HCI event (Conhdl)discarded

HCI event (Conhdl)discarded

function call
OS message

linkID <-> Conhdl

onsemi
RSL10 Firmware Reference

www.onsemi.com

77

6.2.2 Between Internal Host and Controller

Communication between the internal host and the controller implies that the device is in full stack configuration,
and then in Bluetooth low energy single mode, as the full stack mode is supported in Bluetooth low energy single mode
only. In both directions, the HCI retrieves the command opcode or event code from the kernel message, and translates it
to a higher layers or lower layers destination type. The manager task just depends on the direction (LLM task in
controller, or GAPM task in host).

As aforementioned, the full stack configuration involves an internal controller only, where the connection handle
allocation rules are considered known (see Section 6.2.3, “Proprietary Rules for Connection Handle Allocation” on
page 77). Then, the connection handle can be directly associated with a link identifier without the need of any
association table, and it is assumed that the internal host or controller never tries to transmit a message with an incorrect
connection handle. Therefore, when composing the controller task destination (LLC task in controller, or GAPC task in
host), the instance selection is the link ID derived from the connection handle.

6.2.3 Proprietary Rules for Connection Handle Allocation

The Bluetooth low energy controller IP internally allocates a link identifier in the range [0 : M-1], where M is the
number of Bluetooth low energy links supported. The proprietary rule to create a connection handle from the link ID is:

Bluetooth low energy conhdl = Bluetooth low energy link ID

For example, 0x02 refers to Bluetooth low energy link number 2.

These rules are given as information; they are not standard. To be compatible with third-party systems, the HCI
software stores any connection handle in the link identification table as described above.

6.2.4 Communication with External Host

The HCI software handles the message routing of any message received by the transport layer to a destination
block within the controller layers. Additionally, it handles command parameter unpacking, depending on the receiving
system structure padding and endianness policies.

When receiving an HCI command from an external system, the transport might proceed in one or several steps.
After a complete packet has been received, packet management is delegated to the HCI layer. For example, to receive a
command over UART, TL gets a packet in two steps for commands with no parameters, or three steps for commands
with parameters, as shown in Figure 26 on page 78.

onsemi
RSL10 Firmware Reference

www.onsemi.com

78

Figure 26. HCI Command Reception Flow Over UART (Command with Parameters)

As seen in Figure 23 on page 75, the UART transport layer generally works under interrupt. The command header
and payload reception triggers an OS event for background processing. In background, the TL calls the HCI software to
delegate the header and payload reception. Then it restarts the reception over the physical interface. A packet is
considered fully received at header reception for parameter-less commands, otherwise it is considered received once the
payload is received. For each command which has parameters and is checked as valid by the HCI, the transport Layer
must allocate a memory with the appropriate space for receiving the payload.

The processing performed by the HCI at packet reception is based on the HCI command opcode. For each known
packet, the HCI builds a kernel message and sends it to the right task within the Bluetooth low energy controller stack.

Figure 27. Data Manipulation During HCI Commands Reception

 HCI LL

CMD ID

- start reception of the header

CMD HEADER

Set an OS event

interruption

function call

OS message/event

- check the parameter size with HCI
-allocate memory buffer for payload

check param size
- start reception of the payload (returns a status) - check size

CMD PAYLOAD

- indicate the reception to HCI
- free payload buffer

Set an OS event

command received
-decrement nb free cmd

- start reception of next packet ID

- transmit packet

TX DONE

send packet

- allocate command kernel message
- unpack parameters
- find the destination task (LLM/LLC)
- send message

- push to HCI TX queue
-increment nb free cmd
- pack parameters / build packet
- give to H4TL

CMD

CC / CS EVT

Process the command
allocate event Kernel message(response)
free command Kernel message
send message

- inform HCI
Set an OS event

TX done
- pop HCI TX queue
- free event Kernel message

Transport Layer

N
PARAMS pk

2 2 2 2 N + padding
MSGID LM/LC HCI LEN PARAMS unpk

2 2 2 2 N + padding
MSGID LM/LC HCI LEN kernel message parameters buffer (empty)

parameters buffer from TL

message allocation by HCI

parameters unpacking and
copy into Kernel message

onsemi
RSL10 Firmware Reference

www.onsemi.com

79

NOTE: the kernel message parameters size handles the space needed by the parameters on a C structure
basis. This means that for any compiler, the space reserved is the size of the final structure. Some
compilers include padding between structure fields. For that reason, the allocated size is based on
the parameters format string available in the descriptor rather than the received parameters size.

Each HCI command will be replied to with an HCI command status or command complete event. These two events
are particularly selected responses to HCI commands. Then their transmission through the HCI increments the current
number of HCI commands the system can handle. Their special parameters manipulation is explained in the following
section.

6.2.5 HCI Events

In the case of external routing, the HCI pushes the message in a transmission queue. Once a transport layer TX
channel is available, the HCI builds the HCI packet and transmits the buffer to the TL. The kernel message buffer is
used by the HCI to build the HCI event packet, to transmit over the transport layer. It is not freed right after being posted
to the HCI, but only after the TL has confirmed the transmission (HCI TX Done), as shown in Figure 28.

Figure 28. HCI Event Transmission Flow over UART

The events are classified in four different categories: Legacy, Command Complete, Command Status, and LE
events. Each has a specific packet format and potentially specific parameter manipulation.

The HCI manages a TX FIFO for queueing several events/data for transmission. When several events are queued,
the completion of one event transmission triggers the transmission of the next event. The HCI always works in OS
background. The end of transfer interrupt from the physical layer triggers an OS event. Then the TL calls the HCI
from the background.

6.2.5.1 Legacy Events

All legacy events are managed in a common way. The controller task that needs to send an event to the host uses
the legacy HCI event message. When receiving this message, the HCI software will proceed to the parameter packing
and sending to the transport layer, as shown in Figure 29 on page 80:

HCIH4TL LL

allocate event Kernel message(response)
send message

function call
OS message/event

interruption

EVT
- push to HCI TX queue
-pack parameters / build packet
- give to H4TL

- transmit packet

TX DONE

send packet

TX done- inform HCI
- pop HCI TX queue
- free event Kernel message

Set an OS event

onsemi
RSL10 Firmware Reference

www.onsemi.com

80

Figure 29. HCI Events Packet Building

The packet building is performed thanks to the legacy event descriptor table that contains descriptors for each
supported event.

6.2.5.2 Command Complete Events

The command complete (CC) event is managed separately as it is particularly intended to reply to an HCI
command (see Figure 30). It contains the original command opcode and the number of HCI commands that the
controller can receive, for HCI flow control. The command complete event also contains the return parameters of the
original command.

To send a CC event, a controller task composes a CC event message to the HCI. When receiving this message, the
HCI performs the following actions:

• Increments the number of free commands the HCI can receive (HCI flow control)
• Packs return parameters
• Fills other fields
• Pushes to the HCI TX queue

Data manipulation over the kernel message buffer is shown in Figure 27 on page 78.

Figure 30. HCI CC Event Packet Building

The packet parameter unpacking is performed thanks to the original command descriptor found in the command.

6.2.5.3 Command Status Events

The command status (CS) event is managed separately, as it is particularly intended to reply to an HCI command. It
contains the original command opcode, and the number of HCI commands that the controller can receive, for HCI flow
control.

To send a CS event, a controller task composes a CS event message to the HCI. When receiving this message, the
HCI performs the following actions:

• Increments the number of free commands the HCI can receive (HCI flow control)
• Builds the packet
• Pushes to the HCI TX queue

1 1
CODE L

PARAMS unpk

N
PARAMS pk

2 2 2 2 N + padding
EVT HCI EVT CODE LEN

Message from the sender
task

packet built by HCI

1 1 1
0x0E L NB

2 2 2 2 N + padding
CC EVT HCI OPCODE LEN RET PARAMS unpk

2 N
OPCODE RET PARAMS pk

Message from the sender
task

packet built by HCI

onsemi
RSL10 Firmware Reference

www.onsemi.com

81

HCI CS event packet building is shown below in Figure 31:

Figure 31. HCI CS Event Packet Building

6.2.5.4 LE Events

All LE events are managed in a common way. The controller task that needs to send an LE event to the host uses
the LE event message. When receiving this message, the HCI performs the following actions:

• Packs parameters
• Builds the packet
• Pushes to the HCI TX queue

Figure 32. HCI LE Events Packet Building

The packet building is performed thanks to the LE event descriptor table that contains descriptors for each
supported LE event. HCI LE events packet building is shown in Figure 32above.

6.2.5.5 HCI ACL TX Data

The data given by an external host to be transmitted over the air triggers the mechanism shown in Figure 33 on
page 82:

1
STAT

1 1 1 1
0x0F L STAT NB

2 2 2 2
CS EVT HCI OPCODE LEN

2
OPCODE

Message from the sender
task

packet built by HCI

1
SUB

1 1 1
0x3E L SUB

2 2 2 2 N + padding
LE EVT HCI LLM/LLC LEN PARAMS unpk

N
PARAMS pk

Message from the sender
task

packet built by HCI

onsemi
RSL10 Firmware Reference

www.onsemi.com

82

Figure 33. Reception of HCI ACL TX Data from External Host

Figure 30 on page 80 shows the behavior of the HCI in a normal case, when a correct packet is received from the
host, and buffers are available. However, two error cases are possible when the transport layer receives the HCI data
packet header:

1. Data length error:

If the field received in the HCI header exceeds the maximum buffer size, the reception over the physical
interface is considered erroneous. In this case, the HCI returns a NULL pointer, and the TL resets its reception
path.

2. Buffer overflow:

If there are no more available buffers within the stack, the HCI allocates a buffer from the RAM heaps. It frees
the buffer once the TL indicates the payload reception.

HCI LL

ACL ID

- start reception of the header

ACL HEADER

- request buffer to HCI
- start reception of the payload

acl alloc

(returns a buffer)

- allocate ACL TX buffer

interruption

function call

OS message/event

ACL PAYLOAD

- indicate the reception to HCI
- start reception of next packet ID

acl received

- allocate ACL TX kernel message
- find the destination task (LLCi)
- send message

ACL TX

free ACL TX Kernel message
Transmits data to peer device
free ACL TX buffer

Transport Layer

onsemi
RSL10 Firmware Reference

www.onsemi.com

83

Figure 34. HCI ACL TX Data Buffer Allocation Algorithm

Figure 34 shows the algorithm executed when trying to allocate a buffer for TX data. Possible results are:

• If the payload size is higher than expected, no buffer is allocated.
• If the connection handle does not match with any active connection, or there are no more Bluetooth low energy

buffers, a buffer is allocated from the heap.
• In normal cases, Bluetooth low energy technology’s respective buffer management systems provide a buffer

able to receive the packet payload.

Then, after reception of the payload through the TL, the action taken by the HCI follows the result of the buffer
allocation, as shown in Figure 35 on page 84:

• Bluetooth low energy buffer: sends a message to LLC
• Kernel heap buffer: frees the buffer

ALLOC

END

Allocate from BT buffers

conhdl ?

Allocate from BLE buffers

BT BLE

Allocate from Kernel Heap

NOT FOUND

size > size BT max ? size > size BLE max ?
size > size BT/BLE max ?

OK ?

NO

YES

END END

NO

YES

Report Buffer Overflow

OK ?
YESNOYES

YES

NO

NO

END

Allocate from Kernel Heap

onsemi
RSL10 Firmware Reference

www.onsemi.com

84

Figure 35. HCI ACL TX Data Received Algorithm

6.2.5.6 HCI ACL RX Data

The data received from the air is given to an external host, according to the following mechanism shown in
Figure 36:

Figure 36. Transmission of HCI ACL RX Data to External Host

The kernel message used for managing the ACL packet transmission and its associated data buffer is freed when
the packet has been confirmed by the physical interface.

6.2.6 Generic Parameter Packing - Unpacking

For several reasons, including portability, code size and flexibility, the HCI software preferentially uses a common
method of packing and unpacking the parameters according to the needs of both sides:

RECEIVED

BLE buffer?
YES

NO

BT buffer?

Create message and send to LLC

Create message and send to LC

Free buffer to Kernel Heap

END

YES

NO

HCIH4TL LL

allocate ACL RX buffer
receive data
allocate ACL RX Kernel message
send messageACL RX

- push to HCI TX queue
- build packet
- give to H4TL

TX done- inform HCI

- transmit packet

TX DONE

send packet

- pop HCI TX queue
- free ACL RX Kernel message
- free ACL RX buffer

Set an OS event

function call
OS message/event

interruption

onsemi
RSL10 Firmware Reference

www.onsemi.com

85

• The HCI interface, which deals with byte streams where the parameters are packed and the bytes are serialized
in a specific order

• The internal system, which has its own processor and memory constraints (endianness, data alignment,
structure padding)

An SW utility package is included within the HCI layer. It defines generic packer and unpacker functions explained
below.

6.2.6.1 Parameters Format Definition

Both the packer and unpacker take as input a string representing the parameters format. The string is a
concatenation of elements that describes the parameters one-by-one.

Table 41 lists the supported format elements:

6.2.6.2 Generic Packer

The generic packer takes a format string as input. It also takes the parameter buffer that initially contains unpacked
data. It is able to work directly within the unpacked parameter buffer.

It parses the input format string up to the end. For each element, it computes the read position (where the
unpacked data is located), taking into account the current compiler alignment constraint. Then it copies the data to the
write position within the restrictions of the processor endianness. The write location is incremented by the length of
the copied data. An example of data packing for an Arm processor is shown in Figure 37 on page 86.

NOTE: The generic unpacker can also be used to determine the size of the packed data. If no buffer is
given to the function, the algorithm performs a space computation without any data copy. This
can be useful to check packet consistency when the TL has received the header.

Table 41. Format Elements Definition

Element Packed format Unpacked format

B 1 byte 1 x 8-bits variable

H 2 bytes 1 x 16-bits variable

L 4 bytes 1 x 32-bits variable

nB n bytes table of n x 8-bits
values *

Example: “2B”,
“16B”, “128B”

nH n x 2 bytes table of n x 16-bits
values *

Example: “2H”,
“16H”, “124H”

nL n x 4 bytes table of n x 32-bits
values *

NOTE: Table sizes must respect the maximum buffer size

onsemi
RSL10 Firmware Reference

www.onsemi.com

86

Figure 37. Example of Data Packing for an Arm Processor

6.2.6.3 Generic Unpacker

The generic unpacker takes a format string as input. It also takes the input buffer containing packed data, and the
output buffer for delivering the unpacked data.

The unpacker parses the input format string up to the end. For each element, it computes the write position (where
the unpacked data has to be written), taking into account the current compiler alignment constraint. Then it copies the
data to the write position within the restrictions of the processor endianness. The read location is incremented by the
length of the copied data. An example of data unpacking for an Arm processor is shown in Figure 38.

NOTE: The generic unpacker can also be used to determine the size of the unpacked data. If no buffer is
given to the function, the algorithm performs a space computation without any data copy. This
can be useful at buffer allocation time before receiving the data from the TL.

Figure 38. Example of Data Unpacking for an Arm Processor

B B

A C

A CB D

B D

H L

aligned on 32-bits

aligned on 16-bits aligned on 32-bits

unpacked data

packed data

B B
A C

A C DB

H L
B D

aligned on 32-bits

aligned on 16-bits aligned on 32-bits

packed data

unpacked data

onsemi
RSL10 Firmware Reference

www.onsemi.com

87

6.2.6.4 Alignment and Data Copy Primitives

The primitives used for address alignment and data copy are located in a utility package common for all the FW
(common).

Here is a list of the primitives used for HCI packing-unpacking:

• CO_ALIGN2_HI(val) -> align address to the following 16-bit address
• CO_ALIGN4_HI(val) -> align address to the following 32-bit address
• co_read16p(ptr) -> return a 16-bit value read at ptr position
• co_read32p (ptr) -> return a 32-bit value read at ptr position
• co_write16p (ptr, val) -> write val as a 16-bit value to ptr position
• co_write32p (ptr, val) -> write val as a 32-bit value to ptr position

These macros or functions must be adapted to each compiler/processor on which they are used.

6.3 GATT

The GATT is the gateway used by the Attribute Protocol to discover, read, write and obtain indications of the
attributes present in the server attribute, and to configure the broadcasting of attributes. The GATT lies above the
Attribute Protocol and communicates with the Generic Access Profile (GAP), higher layer profiles, and applications.
The architecture of the GATT is shown in Figure 39.

Figure 39. GATT Architecture

6.3.1 GATT Fundamentals

6.3.1.1 Roles

The GATT client is the device that initiates commands and requests to the GATT server, and can receive responses,
indications and notifications from the GATT server. The GATT server is the device that accepts incoming commands
and requests from the GATT client, and sends responses, indications and notifications to the GATT client. These roles
are not fixed to the devices on which they run, and a device’s affiliation to the role is stopped as soon as the role-specific
procedure ends. A device can act in both roles simultaneously.

onsemi
RSL10 Firmware Reference

www.onsemi.com

88

6.3.1.2 Security Features

Encryption in the GATT depends on the type of physical link. On an LE physical link, security features are
optional, while it is the reverse on a BR/EDR physical link.

6.3.1.3 Attribute Grouping

The GATT defines groupings of attributes to improve attribute discovery and access manipulation. The three
groups are defined in Figure 40.

Figure 40. ATT Grouping

6.3.1.3.1 Service

The service definition contains a service declaration, and contains both include and characteristic definitions. The
service declaration is an attribute with the attribute type set to UUID for primary service (as shown in Figure 41), or
secondary service (as seen in Figure 42 on page 89).

Figure 41. Primary Service Declaration

Primary Service
Handle: 16-bit UUID
Type: 0x2800
Value: 16 or 128 bit UUID
Permission: Read Only, No Authen, No Author

onsemi
RSL10 Firmware Reference

www.onsemi.com

89

Figure 42. Secondary Service Declaration

When multiple services exist, definitions of the services must be grouped together, according to the Bluetooth
UUID type (2, 4 or 16 octets).

6.3.1.3.2 Included Service

Include definition contains only one include declaration, as shown in Figure 43.

Figure 43. Include Declaration

The Include declaration is an attribute with its attribute type set to 0x2802. This value is set to the attribute handle,
End group offset and UUID for the service (2, 4 or 16 octets). If the attribute client detects a circular reference or nested
include declarations to a greater level than it expects, it will terminate the ATT Bearer.

6.3.1.3.3 Characteristics

The characteristic definition contains a characteristic declaration, value, and might contain a characteristic
descriptor declaration, as seen in Figure 44.

Figure 44. Characteristic Declaration

The characteristic declaration is an attribute with the attribute UUID type set to 0x2803, and the attribute value set
to the characteristic properties, value attribute handle, and value UUID (2, 4 or 16 octets).

Secondary Service
Handle: 16-bit UUID
Type: 0x2801
Value: 16 or 128 bit UUID
Permission: Read Only, No Authen, No Author

Include
Handle: 16-bit UUID
Type: 0x2802
Value: Included Svc Hndl, End Grp Offset, Svc UUID
Permission: Read Only, No Authen, No Author

Characteristic
Handle: 16-bit UUID
Type: 0x2803
Value: Properties, Attr Hndl, Char UUID
Permission: Read Only, No Authen, No Author

onsemi
RSL10 Firmware Reference

www.onsemi.com

90

6.3.1.3.3.1 Characteristic Extended Properties (CEP)
Characteristic descriptors are used to contain related information about the characteristic value, identified by the

characteristic descriptor UUID. The access permissions are profile- or implementation-defined.

Figure 45. Characteristic Extended Properties Declaration

The characteristic extended properties declaration is a descriptor that gives more characteristic information, as
shown in Figure 45. The descriptor is an attribute with type set to 0x2900, and the attribute value equal to a set
characteristic extended properties bit field.

6.3.1.3.3.2 Characteristic User Description
The characteristic user description declaration is an optional characteristic descriptor of a UTF-8 string of variable

sized textual description of the characteristic value.

Figure 46. Characteristic User Description Declaration

The descriptor is an attribute with type set to 0x2901, and the value set to user description UTF-8 format, as seen
above in Figure 46.

6.3.1.3.3.3 Client Characteristic Configuration (CCC)
An attribute client can write a pre-configured descriptor to control the configuration of a characteristic on the server

for the client. The declaration of the client characteristic configuration is readable and writable.

Characteristic Extended Properties
Handle: 16-bit UUID
Type: 0x2900
Value: Reliable Write (0x0001), Writable Aux(0x0002)
Permission: Higher layer specified

Characteristic User Description
Handle: 16-bit UUID
Type: 0x2901
Value: UTF-8 Desc
Permission: Higher layer specified

onsemi
RSL10 Firmware Reference

www.onsemi.com

91

Figure 47. Client Characteristic Configuration Declaration

The descriptor is an attribute with type set to 0x2902, and the value set to characteristic descriptor value, as seen
above in Figure 47.

6.3.1.3.3.4 Server Characteristic Configuration (SCC)
An attribute client can write a pre-configured descriptor to control the configuration of a characteristic on the server

for all attribute clients.

The declaration of the server characteristic configuration is readable and writable.

Figure 48. Server Characteristic Configuration Declaration

The descriptor is an attribute with type set to 0x2903, and the value set to characteristic descriptor value, as shown
above in Figure 48.

NOTE: Service data in advertising data is managed by application using the GAP interface.

6.3.1.3.3.5 Characteristic Presentation Format
The characteristic presentation format declaration is an optional characteristic descriptor that describes the

characteristic value format. The value is composed of five parts: format, exponent, unit, name space and description, as
seen below in Figure 49 on page 92.

Client Characteristic Configuration
Handle: 16-bit UUID
Type: 0x2902
Value: List of Attribute Handles for Client
Characteristic Decl
Permission: Higher layer specified

Server Characteristic Configuration
Handle: 16-bit UUID
Type: 0x2903
Value: List of Attribute Handles for Server
Characteristic Decl
Permission: Higher layer specified

onsemi
RSL10 Firmware Reference

www.onsemi.com

92

Figure 49. Characteristic Format Declaration

The access permissions are profile- or implementation-defined. The bit ordering is little-endian. Format
components are shown below in Figure 50.

Figure 50. Format Components

6.3.1.3.3.6 Characteristic Aggregate Format
The characteristic aggregate format declaration is an optional characteristic descriptor that defines the format of an

aggregated characteristic value, composed of a list of attribute handles of characteristic format declarations, as seen in
Figure 51.

Figure 51. Characteristic Aggregate Format Declaration

The attribute value is a list of attribute handles, which is the concatenation of multiple 16-bit attribute handle
values. The list contains at least two attribute handles for characteristic presentation format declaration.

6.3.1.4 L2CAP

Table 42 on page 93 shows the GATT requirements for L2CAP.

Characteristic Format
Handle: 16-bit UUID
Type: 0x2904
Value: Format, Exponent, Unit, Name Space, Desc
Permission: Higher layer specified

Size Component Description

1 Format Format of the value

1 Exponent Another representation for integer format types

2 Unit Unit of the characteristic

1 Name Space Identify the organization

2 Description Depiction of the organization defined by Name space

Characteristic Aggregate Format
Handle: 16-bit UUID
Type: 0x2905
Value: List of Attribute Handles for Format Decl
Permission: Higher layer specified

onsemi
RSL10 Firmware Reference

www.onsemi.com

93

6.3.2 Attribute Protocol Toolbox

The attribute protocol is used to read and write values from the database of a peer device, called the attribute server.
To do this, first the list of attributes in the database on the server are discovered. Once the attributes have been found,
they can be read and written as required by the client.

Figure 52. Attribute Module Toolbox Overview

The Attribute Block is composed of three entities: attribute server, attribute client and attribute manager, as show
above in Figure 52.

The Attribute Server (ATTS) handles the server-based request messages and prepares responses for the received
requests.

The Attribute Client (ATTC) handles the client-related request messages for the attribute server.

The Attribute Manager (ATTM) is responsible for storing the attribute database of the device.

NOTE: The attribute toolbox is not task oriented, and can only be used by generic attribute tasks.

6.3.2.1 Basic Attribute Concepts

6.3.2.1.1 Attribute

An attribute is the basic block of the attribute protocol. It is composed of four items: attribute handle, type, value
and permission property, as shown in Table 43. The access permission of the attribute is defined by the higher layer, and
is not accessible through the attribute protocol.

Table 42. GATT Requirements for L2CAP

Parameter Value Description

L2CAP Channel ID 0x0004 Channel ID is fixed.

Maximum
Transmission Unit

Mini 23 GATT Client and Server is greater or
equal 23

Flush Time Out 0xFFFF (Infinite) Packet Data Units (PDUs) shall be
reliably sent and not flushed.

Flow Specification Best Effort No defined QOS

Mode Basic Mode Mode of the L2CAP, No retransmission

q y

onsemi
RSL10 Firmware Reference

www.onsemi.com

94

6.3.2.1.2 Protocol Methods

Examples of protocol methods are request, response, command, notification, indication and confirmation. These
are used by the attribute protocol to find, read, write, notify and indicate attributes, as shown in Figure 53 on page 94.

Figure 53. Overview of ATT Protocol Messages

Table 43. Attribute Description

Element Information

Handle The attribute handle is a 16-bit value that is assigned by
each server to its own attributes to allow a client to
reference those attributes. The attribute handle on any
given server shall have unique, non-zero values.

Type An attribute type identified by a UUID specifies what the
attribute represents. This is for the client to understand the
meaning of the attributes exposed by a server. The UUID
that identifies the attribute is considered unique over all
space and time.

UUID is 128-bits in size, and for efficiency’s sake, UUIDs
can be shortened to 16-bits or 32-bits.

NOTE: 16-bits and 32-bits UUIDs are
assigned by Bluetooth SIG. 32-bits
UUIDs are reserved for proprietary
profiles. 128-bits UUIDs can be
used for any proprietary profiles
without any fees.3

Value The attribute value is an octet array that can be either fixed-
or variable-length. This is the actual value of the attribute
and might contain a value that is too large to fit in a single
Packet Data Unit (PDU), which will be transmitted using
multiple PDUs.

Permission An attribute can have a set of permission values associated
with it.

1. Read, Write Access Permission
2. Indications or notifications permission
3. Security Access Requirement: Authentication

required or not

client server clientserver

request response

indication

notifications

command

confirmation

Unsolicited pdus

onsemi
RSL10 Firmware Reference

www.onsemi.com

95

6.3.2.2 Attribute Protocol Packet Data Unit Format

All attribute protocol messages in L2CAP are transmitted using a fixed channel ID (0x0004).

There are 6 types of attribute protocol PDUs (protocol data units):

1. Requests – PDUs which are sent to a server by a client and invoke responses
2. Responses – PDUs which are sent in reply to an attribute client’s requests
3. Commands – PDUs which are sent to a server by a client
4. Notifications – PDUs which are unsolicited sent to a client by a server
5. Indications – PDUs which are unsolicited sent to a client by a server, and invoke confirmations
6. Confirmation – PDUs which are sent to a server to confirm receipt of an indication to a client

Multi-octet fields within the attribute protocol are transmitted with the least significant octet first (little endian).
Attribute PDUs may or may not contain signatures, as shown in Figure 54 (without a signature), and in Figure 55 (with
a signature).

Figure 54. ATT PDU Without Signature

Figure 55. ATT PDU With Signature

L2CAP attribute protocol PDU messages are described in the Core Specification.

6.3.2.3 Attribute Protocol Operations

6.3.2.3.1 Atomic Operations

Each command sent by the client is atomic in nature, and is treated by the server as one command, unaffected by
another client sending a command simultaneously.

6.3.2.3.2 Flow Control

Once a command has been sent to an attribute server, no other commands are sent to the same attribute server until
a response message has been received.

It is possible for an attribute server to receive a command, send an indication back, and then the response to the
original command. The flow control of commands is not affected by the transmission of the indication.

6.3.2.3.3 Transaction

An Attribute Protocol command and response pair is considered a single transaction.

A transaction starts when the request is sent by the attribute client. A transaction is completed when the response is
received by the attribute client.

Opcode Parameters

1 octet Up to (MTU-1)

Opcode Parameters

1 octet Up to (MTU-13)

Signature

12 octets

onsemi
RSL10 Firmware Reference

www.onsemi.com

96

Similarly, a transaction starts when an indication is sent by the attribute server. A transaction is completed when the
confirmation is received by the attribute server. A transaction must be completed within 30 seconds, or else it is
considered to have timed out. If a transaction has not completed before it times out, then this transaction is considered to
have failed, and the local higher layers are informed of this failure. No more ATT transactions will be accepted for the
link.

6.3.2.4 Attribute Protocol Module Interfaces

6.3.2.4.1 Interface with Upper Layers

The Attribute Protocol module provides an API to the upper layers to allow them the following operations:

• Reading/writing attributes, and receive notifications and indications (client side)
• Sending notifications/indications, and being notified when a client reads or writes an attribute (server side)

This API is implemented as functions available for GATT Modules

6.3.2.4.2 Interface with L2CAP

The interface with L2CAP is handled by the GATT task. It then uses the attribute toolbox to process them.

6.3.2.5 Attribute Manager (Database Owner)

Managed by the Attribute Manager module, the attribute database is composed of a list of services dynamically
allocated. A service is a memory block allocated from the kernel attribute heap, and available for the attribute manager
as a list of services sorted by handles (see figure Figure 56 on page 96).The Attribute manager provides a function API
available for the GATTM to allocate new services with a specific start handle. If not set, the start handle is dynamically
allocated.

Figure 56. Service Description Block of ATT Database

This memory block contains a pointer to the next service (NEXT_SVC_PTR), its start handle, and the last handle
value, followed by an array of attribute definitions (Section 6.3.2.5.1, “Attribute Definition” on page 97). The first
attribute in the service memory block describes the services (see Section 6.3.2.5.3, “Service Permission Field” on
page 98). It is used to determine service permissions and the number of attributes present in the service. It is forbidden

onsemi
RSL10 Firmware Reference

www.onsemi.com

97

to have multiple services attributes in a service memory block. Finally, the end of memory block is used to retrieve
32-bit or 128-bit UUIDs and attribute values that can be read from the database.

NOTE: Attribute handles are unique; services handles have to be exclusive.

NOTE: Services handle mapping must be fixed to prevent the collector from performing discovery at
each connection.

6.3.2.5.1 Attribute Definition

An attribute is a 6-byte field used to describe UUID, permissions, and some extended information such as:

• Service task ID
• Pointed handle
• Maximum attribute length
• Value
• Value offset

NOTE: If the attribute UUID is a 32- or 128-bit UUID, the UUID value contains the offset where it can
be found in the service block.

NOTE: Figure 57 on page 97 describes the attribute types specified by the Core Specification.

Figure 57. Attributes Types

6.3.2.5.2 Service Definition

A service is described with a 6-byte field, as shown below in Figure 58:

onsemi
RSL10 Firmware Reference

www.onsemi.com

98

• Task handler
• Service permissions
• Number of attributes in service
• Service UUID

Figure 58. Service Definition

NOTE: If service UUID is a 32- or 128-bit UUID, the UUID value contains the offset where it can be
found in the service block.

6.3.2.5.3 Service Permission Field

Service permission is an 8-bit field used to describe service.

Figure 59. Service Permission Field

Service Permission Field Definitions, as seen above in Figure 59:

• SEC: used to know if the service is a primary or a secondary service
• UUID_LEN: get service UUID length (16, 32 or 128 bits)
• DIS: disables the service
• AUTH: force a level of authentication for attributes present in the service. Note, this has no impact on

attributes which are read-only mandatory.
• EKS: requires an encryption key of 16 bits for an attribute requiring an authentication level.
• MI: shows whether the task that manages a service is multi-instantiated or mono-instantiated

6.3.2.5.4 Attribute Permission Field

Attribute permission is a 16-bit field, as show below in Figure 60:

SVC_PERM NB_ATTTASK_ID UUID

6 Bytes

16 bits UUID or offset where 32 or
128 bits UUID could be found

UUID_LEN AUTH
00 - 16 bits
01 - 32 bits
10 - 128 bits
11 - RFU

00 - NO_AUTH
01 - UNAUTH
10 - AUTH
11 – SEC_CON

MISEC

Secondary
SVC

Target Task M
ulti

Instantiated

SVC PERM

EKSDIS

Encrypt
Key Size

Disable
Service

onsemi
RSL10 Firmware Reference

www.onsemi.com

99

Figure 60. Attribute Permission Field

The following field is used to generate the value of the characteristic declaration property:

• RD: Read attribute allowed
• WR: Write request allowed on current attribute
• WS: Write signed allowed on current attribute
• WC: Write without response allowed on current attribute
• N: Notification event allowed
• I: Indication event allowed
• B: Attribute value can be broadcast using advertising data (SCC descriptor shall follow)
• EXT: Extended property field present (CEP descriptor shall follow)

Attribute Authentication Requirements

• WP: Write permission allowed with a certain level of authentication
• RP: Read permission allowed with a certain level of authentication
• NP: Notification allowed with a specific level of authentication (CCC descriptor shall follow)
• IP: Indication allowed with a specific level of authentication (CCC descriptor shall follow)

NOTE: For an attribute value, permissions are used to generate the characteristic description property
value.

Extended Attribute Information

• RI: trigger a request to profile when a read is requested by a peer collector
• UUID_LEN: attribute UUID length (16, 32 or 128 bits). If length is 32 or 128 bits, the UUID field contains an

offset pointer.
• EKS: requires an encryption key of 16 bytes for an attribute requiring an authentication level.
• MAX_LEN: maximum length of the attribute that can be written (valid only if RI = 1)

OR

ATT PERM

WP RPWR WC

00 – NO_AUTH, 01 – UNAUTH, 10 – AUTH, 11 – SEC_CON

W
rite

Request

W
rite W

ithout
Response

I

Indicate

BRD

Read

Broadcast

Authentication requirements

N
otify

N NP IP

Notify
Perm

Indicate
Perm

Write
Perm

Read
Perm

Attribute Property

WS

Authenticated
Signed W

rites

Extended
Properties

EXT

Trigger Read
Indication
TIn

RI MAX_LEN if RI = 1
DATA_OFFSET if RI = 0

12 bits of maximum length or data offset
(4095 bytes max)

EKS

Encrypt
Key Size

UUID_LEN

00 - 16 bits
01 - 32 bits
10 - 128 bits
11 - RFU

ATT EXT INFO

onsemi
RSL10 Firmware Reference

www.onsemi.com

100

• DATA_OFFSET: data offset of the attribute value in the service memory block (valid only if RI = 0)

6.3.2.5.5 Data Caching

To ease database browsing, since several searches can be performed on the same service, keeping the pointer to the
last search service in the environment variable speeds up the service and attribute discovery.

6.3.2.5.6 Attribute Database Example

Figure 61. Attribute Database Example

6.3.2.6 Attribute Server

The attribute server has direct (function call) interface with the attribute database present in the attribute manager.
It uses this interface to browse services and read characteristic values. (An example of the attribute database is shown in
Figure 61.)

6.3.2.6.1 Attribute Discovery / Read

Attribute discovery procedures, or reading procedures, can encounter these issues:

• Total length of the response exceeds MTU
• Attribute to read is not present in the database

The discovery procedure is rescheduled in the kernel several times before completion. An incomplete response is
kept in a cache variable and is fulfilled at the end of the search, or if the MTU is exceed.

This procedure also uses data caching of the ATTS to accelerate the read (6.3.2.6.1.4).

onsemi
RSL10 Firmware Reference

www.onsemi.com

101

The search algorithm is described in Figure 62 on page 101.

Figure 62. Attribute Discovery State Machine

6.3.2.6.2 Attribute Write

Figure 63, Figure 64 on page 102, Figure 65 on page 102, Figure 66 on page 103, and Figure 67 on page 104
describe different types of write procedures in ATT.

• Write Request

Figure 63. Write Request MSC

• Write Command

onsemi
RSL10 Firmware Reference

www.onsemi.com

102

Figure 64. Write Request MSC

• Write Signed

Figure 65. Write Signed MSC

• Write Long/Multiple

onsemi
RSL10 Firmware Reference

www.onsemi.com

103

Figure 66. Multiple Prepare Write MSC

onsemi
RSL10 Firmware Reference

www.onsemi.com

104

Figure 67. Execute Write MSC

NOTE: The write request is always send to the profile that manages the handle. It requires a confirmation
of write event whether a message is triggered to a peer device or not.

6.3.2.6.3 Server Initiated Events

The attribute server can be used to trigger some indications or notifications, as shown in Figure 68, and in
Figure 69 on page 105:

Figure 68. Trigger Notification MSC

onsemi
RSL10 Firmware Reference

www.onsemi.com

105

Figure 69. Trigger Indication MSC

NOTE: Notification/Indication data is present in the event message. This event message can be used to
update the database value (if the attribute value is present in the database).

6.3.2.6.4 Data Caching

Ongoing procedure: The ongoing procedure pointer (L2CAP message) is kept to be rescheduled by the kernel until
the operation is finished, and to perform flow control on the requests.

Response cache: Until the executed procedure is finished, a partial procedure response is stored in the attribute
server environment.

 Prepare write cache: For a non-atomic write, a cache is required. This cache is fed by the prepare write and flushed
during the execute write requests.

Read attribute cache: In the attribute database, to speed up read procedures, the value of the latest attribute read is
kept until:

• A write request is accepted for this attribute
• Notification/indication is triggered for this attribute
• The attribute is fully read by a peer device
• Disconnection

(See figure Figure 70 on page 106.)

NOTE: The attribute value is put in the cache if the value is not present in the attribute database.

onsemi
RSL10 Firmware Reference

www.onsemi.com

106

Figure 70. Data Caching of Latest Read Attribute MSC

onsemi
RSL10 Firmware Reference

www.onsemi.com

107

6.3.2.7 Attribute Client

The attribute client role is very simple; it conveys requests from the GATT client to the L2CAP, managing
transaction atomicity and maximum duration using a timer.

NOTE: Discovery and read procedures, using UUID as input, support 16-, 32- and 128-bit UUIDs.

6.3.2.7.1 Discovery Command

Discovery of peer services, peer characteristics, and peer descriptions is illustrated in Figure 71, Figure 72 on
page 108, Figure 73 on page 109, Figure 74 on page 110, and Figure 75 on page 111.

Figure 71. Discover All Peer Services MSC

Profile
APP GATTC ATTC

L2CC_DATA_SEND_REQ(ATT_READ_BY_GRP_TYPE_REQ)

L2CC
GATTC_DISC_CMD(ALL_SVC)

Start 30s Timer

L2CC_DATA_SEND_RSP(status)

GATT_CMP_EVT(status)

Nothing To Do
L2CC_PDU_RECV_IND(ATT_READ_BY_GRP_TYPE_RSP)

attc_rcv_pdu_handler(pdu)
Stop 30s Timer

attc_send_pdu_handler(pdu)

�Generate read by group type
req PDU

Check received pdu – OK
Check status = Not Found – KO
�Generate read by group type
req PDU
attc_send_pdu_handler(pdu)

N Times

GATT_SVC_IND(UUID, shdl, ehdl)

Start 30s Timer
L2CC_DATA_SEND_REQ(ATT_READ_BY_GRP_TYPE_REQ)

L2CC_DATA_SEND_RSP(status)
Nothing To Do

L2CC_PDU_RECV_IND(ATT_READ_BY_GRP_TYPE_RSP)

attc_rcv_pdu_handler(pdu)
Stop 30s Timer

Check received pdu – OK
Check status = Not Found – OK

onsemi
RSL10 Firmware Reference

www.onsemi.com

108

Figure 72. Discover Peer Services with Specific UUID MSC

Profile
APP GATTC ATTC

L2CC_DATA_SEND_REQ(ATT_FIND_BY_TYPE_REQ)

L2CC
GATTC_DISC_CMD(SVC_UUID)

Start 30s Timer

L2CC_DATA_SEND_RSP(status)

GATT_CMP_EVT(status)

Nothing To Do
L2CC_PDU_RECV_IND(ATT_FIND_BY_TYPE_RSP)

attc_rcv_pdu_handler(pdu)
Stop 30s Timer

attc_send_pdu_handler(pdu)

�Generate find by type
Req PDU

Check received pdu – OK
Check status = Not Found – KO
�Generate find by type
req PDU
attc_send_pdu_handler(pdu)

N Times

GATT_SVC_IND(UUID, shdl, ehdl)

Start 30s Timer
L2CC_DATA_SEND_REQ(ATT_FIND_BY_TYPE_REQ)

L2CC_DATA_SEND_RSP(status)
Nothing To Do

L2CC_PDU_RECV_IND(ATT_FIND_BY_TYPE_RSP)

attc_rcv_pdu_handler(pdu)
Stop 30s Timer

Check received pdu – OK
Check status = Not Found – OK

onsemi
RSL10 Firmware Reference

www.onsemi.com

109

Figure 73. Discover Peer Included Services UUID MSC

Profile
APP GATTC ATTC

L2CC_DATA_SEND_REQ(ATT_READ_BY_TYPE_REQ)

L2CC
GATTC_DISC_CMD(INC_SVC)

Start 30s Timer

L2CC_DATA_SEND_RSP(status)

GATT_CMP_EVT(status)

Nothing To Do
L2CC_PDU_RECV_IND(ATT_READ_BY_TYPE_RSP)

attc_rcv_pdu_handler(pdu)
Stop 30s Timer

attc_send_pdu_handler(pdu)

�Generate read by type
Req PDU

Check received pdu – OK
Check status = Not Found – KO
Check len < MTU – KO
�Generate read request
attc_send_pdu_handler(pdu)

N Times

GATT_INC_SVC_IND(hdl, uuid)

Start 30s Timer
L2CC_DATA_SEND_REQ(ATT_READ_REQ)

L2CC_DATA_SEND_RSP(status)
Nothing To Do

L2CC_PDU_RECV_IND(ATT_READ_RSP)

attc_rcv_pdu_handler(pdu)
Stop 30s Timer

Check received pdu – OK
Check status = Not Found – OK

onsemi
RSL10 Firmware Reference

www.onsemi.com

110

Figure 74. Discover Peer Characteristics (All or With Specific UUID) MSC

NOTE: The same procedure is used both when discovering all characteristics, and with a specific UUID.
The filtering of the UUID is performed by the client side and not by the service side.

Profile
APP GATTC ATTC

L2CC_DATA_SEND_REQ(ATT_READ_BY_TYPE_REQ)

L2CC
GATTC_DISC_CMD(CHAR)

Start 30s Timer

L2CC_DATA_SEND_RSP(status)

GATT_CMP_EVT(status)

Nothing To Do
L2CC_PDU_RECV_IND(ATT_READ_BY_TYPE_RSP)

attc_rcv_pdu_handler(pdu)
Stop 30s Timer

attc_send_pdu_handler(pdu)

�Generate read by type
Req PDU

Check received pdu – OK
Check status = Not Found – KO
Generate read by type
Req PDU
attc_send_pdu_handler(pdu)

N Times

GATT_CHAR_IND(hdl, prop, uuid)

Start 30s Timer
L2CC_DATA_SEND_REQ(ATT_READ_BY_TYPE_REQ)

L2CC_DATA_SEND_RSP(status)
Nothing To Do

L2CC_PDU_RECV_IND(ATT_READ_BY_TYPE_RSP)

attc_rcv_pdu_handler(pdu)
Stop 30s Timer

Check received pdu – OK
Check status = Not Found – OK

onsemi
RSL10 Firmware Reference

www.onsemi.com

111

Figure 75. Discover Peer Descriptors MSC

6.3.2.7.2 Read Command

Read of a simple request, and read of a UUID request, are show in Figure 76 on page 112, and Figure 77 on
page 113.

Profile
APP GATTC ATTC

L2CC_DATA_SEND_REQ(ATT_FIND_INFO_REQ)

L2CC
GATTC_DISC_CMD(DESC)

Start 30s Timer

L2CC_DATA_SEND_RSP(status)

GATT_CMP_EVT(status)

Nothing To Do
L2CC_PDU_RECV_IND(ATT_FIND_INFO_RSP)

attc_rcv_pdu_handler(pdu)
Stop 30s Timer

attc_send_pdu_handler(pdu)

�Generate find info Req PDU

Check received pdu – OK
Check status = Not Found – KO
�Generate find info Req PDU

attc_send_pdu_handler(pdu)

N Times

GATT_DESC_IND(hdl, uuid)

Start 30s Timer
L2CC_DATA_SEND_REQ(ATT_FIND_INFO_REQ)

L2CC_DATA_SEND_RSP(status)
Nothing To Do

L2CC_PDU_RECV_IND(ATT_FIND_INFO_RSP)

attc_rcv_pdu_handler(pdu)
Stop 30s Timer

Check received pdu – OK
Check status = Not Found – OK

onsemi
RSL10 Firmware Reference

www.onsemi.com

112

Figure 76. Read Simple Request MSC

onsemi
RSL10 Firmware Reference

www.onsemi.com

113

Figure 77. Read By UUID Request MSC

6.3.2.7.3 Write Command

The write command, write request, write of a long/multiple, and write signed are shown in Figure 78, Figure 79 on
page 114, Figure 80 on page 115, and Figure 81 on page 116.

Figure 78. Write Command MSC

onsemi
RSL10 Firmware Reference

www.onsemi.com

114

Figure 79. Write Request MSC

onsemi
RSL10 Firmware Reference

www.onsemi.com

115

Figure 80. Write Long/Multiple MSC

onsemi
RSL10 Firmware Reference

www.onsemi.com

116

Figure 81. Write Signed MSC

6.3.2.7.4 Reception of Notification or Indications

To allow a profile to receive notification or indication of a peer device, the profile must be registered to service
events. This can be accomplished with the provided peer service handle range (see Figure 82, Figure 83, and Figure 84
on page 117).

NOTE: By default the application is informed of any received events if no registration has been
performed.

Figure 82. Event Handle Range Registration MSC

Figure 83. Reception of a Notification from Peer Device MSC

GAPC
Profile

APP GATTC ATTC

L2CC_DATA_SEND_REQ(ATT_WRITE_SIGNED_CMD)

L2CC

GATT_CMP_EVT(status)

GATTC_WRITE_CMD(WRITE_SIGNED, handle, value)

attc_send_pdu_handler(pdu)
Generate PDU

L2CC_DATA_SEND_RSP(status)

Request GAP to sign packet
No Timer started

Calculate Signature

GAP_SIGN_CMD(pdu)

Profile GATTC
GATTC_REG_TO_PEER_EVT_CMD(shdl, ehdl)

GATT_CMP_EVT(status)

� Check if range not already registered
�Allocate new registration structure
� Put it in registration list

Profile
APP GATTC L2CC

L2CC_PDU_RECV_IND(ATT_HDL_VAL_NTF)

� Retrieve registered task
GATTC_EVENT_IND(handle, value)

onsemi
RSL10 Firmware Reference

www.onsemi.com

117

Figure 84. Reception of an Indication from Peer Device MSC

6.3.3 Features and Functions

6.3.3.1 Attribute Packet Size Negotiation

Figure 85. MTU Exchange Procedure

The MTU exchange procedure, shown above in Figure 85, is a sub-procedure of the server configuration. This is
launched by the attribute client to configure the attribute protocol. At the end of the exchanges, both the attribute client
and server will have a common set MTU, which is the minimum value exchanged.

6.3.3.2 Primary Service Discovery

The primary service discovery procedure is used by an attribute client to discovery primary services on a server.
Once these services are discovered, additional information like characteristics and secondary services can be retrieved.
There are two sub-procedures for primary service discovery, as shown in Table 44 on page 118.

Profile
APP GATTC L2CC

L2CC_PDU_RECV_IND(ATT_HDL_VAL_IND)

� Retrieve registered task
GATTC_EVENT_REQ_IND(handle, value)

GATTC_EVENT_CFM()
L2CC_PDU_SEND_REQ(ATT_HDL_VAL_CFM)

ATT SERVER ATT CLIENT

MTU REQUEST

MTU RESPONSE

Set MTU to minimum
of Client MTU and
Received MTU Value.

Set MTU to minimum
of Server MTU and
Received MTU Value.

onsemi
RSL10 Firmware Reference

www.onsemi.com

118

The “Discover All Primary Services” sub-procedure is used by the client to discover all the primary services on a
server. The “Discover Primary Services by Service UUID” sub-procedure is used by the client to discover a specific
primary service on a server when only the service UUID is identified. The functions are completed in two ways: either
the application receives an error code (Attribute Not Found) or the application cancels the search (in case the
desired primary service is already found).Insufficient Authentication errors and Read Not Permitted errors
shall not occur (service declaration is readable and requires no authentication or authorization).

6.3.3.3 Relationship Discovery

This procedure is used by an attribute client to discover service relationships to other services.

The “Find Included Services” sub-procedure is used by the client to find include service declarations in the
attribute server database, as shown in Table 45. The function is completed in two ways: either the application receives
an error code (Attribute Not Found) or the read by type response has enough unused data to contain another result
indicating that no further results exist.Insufficient Authentication errors and Read Not Permitted errors
shall not occur (Include declaration is readable and requires no authentication or authorization).

6.3.3.4 Characteristic Discovery

The characteristic discovery procedure is used by an attribute client to discover service characteristics present on
the attribute server (see Table 46 on page 118).

Table 44. Primary Service Discovery Sub-Procedures

Sub-Procedure ATT Operation Code

Discover All Primary
Services

Read By Group Type
Request

Read By Group Type
Response

Error Response

Discover Primary
Services By Service
UUID

Find By Type Request

Find By Type Response

Error Response

Table 45. Relationship Discovery Sub-Procedure

Sub-Procedure ATT Operation Code

Find Included
Services

Read By Type Request

Read By Type Response

Error Response

Table 46. Characteristic Discovery Sub-Procedures

Sub-Procedure ATT Operation Code

Discover All
Characteristic of a
Service

Read By Type Request

Read By Type Response

Error Response

onsemi
RSL10 Firmware Reference

www.onsemi.com

119

The “Discover All Characteristic of a Service” sub-procedure is used to find all the characteristic declarations
within a service definition on a server, when only the service handle range is known. The “Discover Characteristic by
UUID” sub-procedure is used to discover service characteristics on the attribute server, when only the service handle
range and characteristic UUID are known. The functions are completed in two ways: either the application receives an
error code (Attribute Not Found) or the application cancels the search (in case the desired characteristic is already
found). Insufficient Authentication errors and Read Not Permitted errors shall not occur (characteristic
declaration is readable and requires no authentication or authorization).

6.3.3.5 Characteristic Descriptor Discovery

The characteristic descriptor discovery procedure is used by an attribute client to discover the characteristic
descriptors of a characteristic.

The “Discover All Characteristic Descriptors” sub-procedure is used by a client to find all the attribute handles and
types of the characteristic descriptor within the characteristic definition, and only when the handle range is known. (See
Table 47, above.) The function is completed in two ways: either the application receives an error code (Attribute
Not Found) or the application cancels the search (in case the desired characteristic descriptor is already found).

6.3.3.6 Characteristic Value Read

The characteristic value read procedure is used by an attribute client to read a characteristic value from a server.
See Table 48 on page 119.

Discover
Characteristic by
UUID

Read By Type Request

Read By Type Response

Error Response

Table 47. Characteristic Descriptor Discovery Sub-Procedure

Sub-Procedure ATT Operation Code

Discover All
Characteristic
Descriptors

Find Information
Request

Find Information
Response

Error Response

Table 48. Characteristic Value Read Sub-Procedures

Sub-Procedure ATT Operation Code

Read Characteristic
Value

Read Request

Read Response

Error Response

Read Using
Characteristic UUID

Read By Type Request

Read By Type Response

Error Response

Table 46. Characteristic Discovery Sub-Procedures

Sub-Procedure ATT Operation Code

onsemi
RSL10 Firmware Reference

www.onsemi.com

120

The “Read Characteristic Value” sub-procedure is used to read a characteristic value from a server when the client
knows the Characteristic Value Handle. The “Read Using Characteristic UUID” sub-procedure is used to read a
Characteristic Value from a server when the client only knows the characteristic UUID and does not know the handle of
the characteristic. The “Read Long Characteristic values” sub-procedure is used to read a characteristic value from a
server when the client knows the Characteristic Value Handle, and the length of the characteristic value is longer than
can be sent in a single read response attribute protocol message. The “Read Multiple Characteristic values”
sub-procedure is used to read multiple characteristic values from an attribute server when the client knows the
Characteristic Value Handles.

NOTE: Read Blob means reading a specific part of an attribute, starting from an offset and the end of the
attribute value or MTU size.

6.3.3.7 Characteristic Value Write

The characteristic value write procedure is used by the client to write a characteristic value to an attribute server.
See Table 49 on page 120.

Read Long
Characteristic
Values

Read Blob Request

Read Blob Response

Error Response

Read Multiple
Characteristic Value

Read Multiple Request

Read Multiple Response

Error Response

Table 49. Characteristic Value Write Sub-Procedures

Sub-Procedure ATT Operation Code

Write Without
Response

Write Command

Signed Write
Without Response

Write Command

Write Characteristic
Value

Write Request

Write Response

Error Response

Write Long
Characteristic
Values

Prepare Write Request

Prepare Write Response

Execute Write Request

Execute Write Response

Error Response

Table 48. Characteristic Value Read Sub-Procedures

Sub-Procedure ATT Operation Code

onsemi
RSL10 Firmware Reference

www.onsemi.com

121

The “Write Without Response” sub-procedure is used to write a Characteristic value to a server when the client
knows the Characteristic Value Handle and the client does not need an acknowledgement that the write was successfully
done. The “Signed Write without Response” sub-procedure is used to write a Characteristic value to a server when the
client knows the Characteristic Value Handle and the ATT Bearer is not encrypted. The “Write Characteristic Value”
sub-procedure is used to write a Characteristic value to a server when the client knows the Characteristic Value Handle.
The “Write Long Characteristic Values” sub-procedure is used to write a Characteristic value to a server when the client
knows the Characteristic Value Handle, but the length of the Characteristic value is longer than can be sent in a single
write request attribute protocol message. The “Characteristic Value Reliable Writes” sub-procedure is used to write a
characteristic value to an attribute server when the client knows the Characteristic Value Handle, and assurance is
required that the correct characteristic value is going to be written by transferring the characteristic value to be written
in both directions before the write is performed.

6.3.3.8 Characteristic Value Notification

The characteristic value notification procedure is used to notify a client of the value of a characteristic value from a
server, as shown in Table 50.

The “Notifications” sub-procedure is used when a server is configured to notify a characteristic value to a client
without expecting any attribute protocol layer acknowledgement that the notification was successfully received.

6.3.3.9 Characteristic Value Indication

The characteristic value indication procedure is used to indicate the characteristic value from a server to a client as
shown in Table 51.

The “Indications” sub-procedure is used when a server is configured to indicate a characteristic value to a client
and expects an attribute protocol layer acknowledgement that the indication was successfully received.

Characteristic Value
Reliable Writes

Prepare Write Request

Prepare Write Response

Execute Write Request

Execute Write Response

Error Response

Table 50. Characteristic Value Notification Sub-Procedure

Sub-Procedure ATT Operation Code

Notifications Handle Value Notification

Table 51. Characteristic Value Indication Sub-Procedure

Sub-Procedure ATT Operation Code

Indications Handle Value
Indication

Handle Value
Confirmation

Table 49. Characteristic Value Write Sub-Procedures (Continued)

Sub-Procedure ATT Operation Code

onsemi
RSL10 Firmware Reference

www.onsemi.com

122

6.3.3.10 Characteristic Descriptor Value Read

The characteristic descriptor value read procedure is used to read a characteristic descriptor on a server, as shown in
Table 52.

The “Read Characteristic Descriptor Value Read” sub-procedure is to read a characteristic descriptor from a server
when the client knows the attribute handle of the characteristic declaration. The “Read Long Characteristic Descriptors”
sub-procedure is used to read a characteristic descriptor from a server when the client knows the attribute handle of the
characteristic descriptor declaration, and the length of the characteristic value is more than will fit in a single read
response attribute protocol message.

6.3.3.11 Characteristic Descriptor Value Write

The characteristic descriptor value write procedure is used to write a characteristic descriptor on a server, as shown
in Table 53.

The “Write Characteristic Descriptors” sub-procedure is used to write a characteristic descriptor value to a server
when the client knows the characteristic descriptor handle.

The “Write Long Characteristic Descriptors” sub-procedure is used to write a characteristic descriptor value to a
server when the clients knows the characteristic descriptor handle of the characteristic descriptor declaration, and the
length of the characteristic value is more than will fit in a single write response attribute protocol message.

6.3.4 Service Discovery Procedure

The service discovery must be a generic feature used by client profiles to discover a peer device database,
illustrated in Figure 86 on page 123. By using a generic method of service discovery, it prevents code duplication in

Table 52. Characteristic Descriptor Value Read Sub-Procedures

Sub-Procedure ATT Operation Code

Read Characteristic
Descriptors

Read Request

Read Response

Error Response

Read Long
Characteristic
Descriptors

Read Blob Request

Read Blob Response

Error Response

Table 53. Characteristic Descriptor Value Write Sub-Procedures

Sub-Procedure ATT Operation Code

Write Characteristic
Descriptors

Read Request

Read Response

Error Response

Write Long
Characteristic
Descriptors

Read Blob Request

Read Blob Response

Error Response

onsemi
RSL10 Firmware Reference

www.onsemi.com

123

client profiles. This discovery will be able to be performed for all services types, or for only some of them. With this
feature, an application can decide if discovery is performed by the client profiles or by the application itself.

NOTE: The client profile verifies whether the peer device service can be used by its implementation.

For each discovered service, this procedure is in charge of finding included services, characteristics and
descriptors. (See Figure 87 on page 124.) When a full service is discovered, this operation triggers a message
containing all the information.

NOTE: Since this procedure can be very long, it can be aborted by the application through a Cancel
API.

Figure 86. Service Discovery Procedure

Profile
APP GAPC GATTC

GATTC_SDP_SVC_DISC_CMD(svc_uuid)

GAPC_CMP_EVT(status)

GATTC_DISC_CMD(svc, svc_uuid)

GATTC_DISC_SVC_IND(shdl, ehdl)

GATTC_CMP_EVT(status)

GATTC_DISC_CMD(inc_svc, shdl, ehdl)

GATTC_CMP_EVT(status)

GATTC_DISC_CMD(char, shdl, ehdl)

GATTC_CMP_EVT(status)

GATTC_DISC_CHAR_IND(hdl, uuid, prop)

GATTC_DISC_CHAR_IND(hdl, uuid, prop)

…

GATTC_DISC_CMD(desc, shdl, ehdl)

GATTC_CMP_EVT(status)

GATTC_DISC_CHAR_DESC_IND(hdl, uuid)

GATTC_DISC_CHAR_DESC_IND(hdl, uuid)

…

� With all received message retrieve service information

GATTC_SDP_SVC_IND(svc_info…)

onsemi
RSL10 Firmware Reference

www.onsemi.com

124

Figure 87. Overview of Information Present in Discovered Service

6.3.5 GATT Profile Service

The GATT profile service, shown in Figure 88 below, is a single-instantiated primary service which is exposed on a
GATT server. The profile service has a service changed characteristic.

Figure 88. GATT Profile Service

The “Service Changed” characteristic is a control point attribute that is used to notify connected devices that GATT
services have been changed. The value cannot be read nor written but can be notified at any time.

6.3.6 GATT Environment Variables

Table 54 and Table 55 explain the environment variables associated with both the GATT manager and controller
respectively. By accessing these values, you can make modifications to the structure as needed.

6.3.6.1 GATT Manager Environment

GATT Manager environment variables are shown in Table 54, below.

Table 54. GATTM Environment Variables

Type Value Comment

uint16_t svc_start_hdl GATT service start handle

uint16_t max_mtu Maximum device MTU size

onsemi
RSL10 Firmware Reference

www.onsemi.com

125

6.3.6.2 GATT Controller Environment

GATT Controller environment variables are shown in Table 55 on page 125.

6.4 GAP FUNCTIONALITY

This profile states the requirements on names, values and coding schemes used for names of parameters and
procedures experienced on the user interface level. This profile describes the general procedures that can be used for
establishing connections to other Bluetooth low energy technology devices that are able to accept connections and
service requests.

GAP defines two parties (A and B) in establishing Bluetooth low energy technology communication:

• A-Party: the device that is either scanning in the link layer scanning state, or initiating in the link layer
initiating state

• B-Party: the device that is either advertising in the link layer advertising state, or accepting the link request

The GAP allows minimal functionality in absence of other profiles and provides an API when other profiles are
present.

attm_svc_db* db Attribute database pointer

attm_svc_db* last_svc Last attribute service searched

Table 55. GATTC Environment Variables

Type Value Comment

ke_msg * Client Operation Client Initiated operation

ke_msg * Service Operation Service Initiated operation (notification indication)

ke_msg * SDP Operation Operation used for Service Discovery Procedure

uint16_t mtu_size Size of attribute protocol MTU

co_list cli_reg_evt List that contains task to inform when an event is triggered on a specific
attribute handle range

co_list cli_rsp_list List of messages received used to generate response indication

l2cc_pdu * srv_req Request that service is currently processing

co_list srv_prep_wr_list List of prepare write messages received from peer client

gattc_read_cfm * srv_read_cache Structure is used to store in cache latest attribute read value

co_list srv_rsp_list List of values used to create response

co_list SDP Data List that contains service discovery procedure data

IMPORTANT: The Bluetooth standard for Bluetooth Low Energy provides several pairing schemes that can be
used. Use of legacy pairing is not recommended due to known security concerns. We recommend that
applications use secure connections for pairing, as per the Bluetooth® Security and Privacy Best Practices
Guide, due to secure connection’s improved overall security including substantially better MITM protection.

Table 54. GATTM Environment Variables

Type Value Comment

onsemi
RSL10 Firmware Reference

www.onsemi.com

126

6.4.1 Modes and Profile Roles

GAP introduces three device types based on supported Core Configurations, as shown below in Figure 89.

Figure 89. Devices Types

Devices of type LE-only and BR/EDR/LE are capable of operating over an LE physical channel.

NOTE: Our implementation of GAP supports only LE only mode.

Moreover, GAP defines different modes of operation which are generic and can be used by profiles and by devices
implementing multiple profiles (see Table 56 on page 126).

In addition to functions shown in Figure 90, a peripheral is able to broadcast data, and a central is able to enter in
observable mode. A device can support all roles at the same time, so that it can act both as a central (scan + master of a
link) and peripheral (advertise + slave of a link).

Table 56. Discoverability and Connectability Modes to Advertising Capability

Non Discoverable Discoverable

Limited
Discoverable

General
Discoverable

Non Connectable Not advertising Non connectable
limited advertising

Non connectable
general advertising

Connectable Connectable
directed advertising

Connectable limited
advertising

Connectable
general advertising

LE onlyBR/EDR BR/EDR
and LE

Stand-alone
Low Energy

DUAL ModeLegacy Bluetooth :
BR/EDR/HS

onsemi
RSL10 Firmware Reference

www.onsemi.com

127

Figure 90. GAP Roles

A device supporting all modes cannot start two non-connected operations (such as advertising, scanning or
connection init) at the same time.

6.4.2 General LE Procedures

Figure 91. LE Operational Modes

GAP defines the general procedures that can be used for discovering identities, names, and basic capabilities of
other Bluetooth low energy technology devices that are discoverable. It also describes the ability of a device to be
connected and discovered by another device. See Figure 91 on page 127 for low energy operational modes.

6.4.2.1 Broadcasting and Observing

The broadcast and observe modes allow two devices to communicate in a unidirectional and connection-less
manner using advertising events.

6.4.2.1.1 Conditions

A broadcaster is a device operating in broadcast mode. It sends data in either non-connectable undirected or
discoverable undirected advertising events. All data sent by a broadcaster is considered unreliable since there is no
acknowledgement from any device that might have received data. No support for encryption.

An observer is a device operating in scan mode. It uses either passive or active scanning in receiving advertising
events. No support for encryption.

Device that sends
advertising
events to
broadcast data
and can operate
without a receiver

Device that accepts a
physical connection from a
device, and becomes the
slave in LL connection
state. Must have receiver
and transmitter.

Device that creates the
physical connection to a
device, and becomes the
master in LL connection state.
Must have receiver and
transmitter.

Device that receives
advertising events
from broadcasters and
can operate with
transmitter.

GAP Modes and Procedures

Broadcasting
and Observing Discovery Connection Bonding

onsemi
RSL10 Firmware Reference

www.onsemi.com

128

6.4.2.2 Advertising Modes

A device can perform an advertising procedure in a connectable or non-connectable mode. A whitelist can be used
to filter a device that can receive scan responses and initiate a connection. See Figure 92 on page 128.

NOTE: When this operation is on-going, an application can modify advertise and scan response data to
update ongoing broadcast data.

Figure 92. Advertise Air Operation State Machine

6.4.2.2.1 Broadcast Mode

The broadcast mode is like non-discoverable mode. In the AD_TYPE flag of advertising data, LE General and the
LE Limited Discoverable flag are set to zero.

onsemi
RSL10 Firmware Reference

www.onsemi.com

129

NOTE: This is the only mode that can be used by a broadcaster device.

6.4.2.2.2 Non-Discoverable Mode

Non-discoverable mode is a connectable or non-connectable procedure without duration limitation. In the
AD_TYPE flag of advertising data, LE General and the LE Limited Discoverable flag are set to zero.

6.4.2.2.3 General Discoverable

General discoverable mode is a connectable or non-connectable procedure without duration limitation. In the
AD_TYPE flag of advertising data, LE General is set to 1 and the LE Limited Discoverable flag is set to zero.

6.4.2.2.4 Limited Discoverable

Limited discoverable mode is a connectable or non-connectable procedure with a limited duration. In the AD_TYPE
flag of advertising data, LE General is set to zero and the LE Limited discoverable flag is set to 1.

6.4.2.2.5 Direct Mode

Direct mode is used to perform a direct connection. Advertising data contains only the targeted device. Advertising
data cannot be dynamically changed in this mode.

6.4.2.3 Scan Modes

6.4.2.3.1 Device Discovery

The device discovery has two parts: procedures and modes. (See Figure 93 on page 130) A device that is searching
for other devices performs one of the discovery procedures. A device that is the target of the search is operating in one
of the discoverable modes. A device in the non-discoverable mode is configured to not be discovered. All devices are in
either non-discoverable mode or one of the discoverable modes (general and limited). A typical example of a device
that need not be in discoverable mode is an observer. A device that operates in an observer profile role requires no
transmitter.

onsemi
RSL10 Firmware Reference

www.onsemi.com

130

Figure 93. Scan Air Operation State Machine

6.4.2.3.2 Observer Mode

The observer mode is a passive or an active scan procedure with non-limited duration. In this mode, an application
is notified of any type of advertising data.

NOTE: This is the only mode that can be used by an observer device.

6.4.2.3.3 General Discovery

General discovery is a passive or an active scan procedure with a limited duration. In this mode, a device is able to
discover advertisers that broadcast data in limited or general discoverable mode.

onsemi
RSL10 Firmware Reference

www.onsemi.com

131

6.4.2.3.4 Limited Discovery

Limited discovery is a passive or an active scan procedure with a limited duration. In this mode, a device is able to
discover advertisers that broadcast data in limited discoverable mode.

6.4.2.3.5 Name Discovery

Another aspect of discoverability is device name discovery, wherein the user-friendly name of the remote device is
retrieved. This is performed by a device that can scan remote connectable devices – a central (illustrated in Figure 94).
The discovery procedure involves three fundamental steps:

1. Search and connect to a connectable device (advertising device).
2. Perform read by characteristic UUID (Device Name: 0x2A00).
3. Terminate the link.

Figure 94. Name Request Procedure

6.4.2.4 Connection

There are two modes for LE connections defined in GAP (see Figure 95).

• Connectable: permits a device to make connections to or accept connections from another device.
• Non-connectable: prohibits a device from accepting connections from another device.

onsemi
RSL10 Firmware Reference

www.onsemi.com

132

Figure 95. Connection Establishment Overview

onsemi
RSL10 Firmware Reference

www.onsemi.com

133

Figure 96. Connection Establishment State Machine

6.4.2.4.1 Direct Connection Establishment

To be able to establish a link between two devices, one device must be in connectable mode, and the other device
would be performing the connection establishment procedure, as shown in Figure 96.

onsemi
RSL10 Firmware Reference

www.onsemi.com

134

6.4.2.4.2 General Connection Establishment

Use the general discovery procedure and then the direct connection establishment procedure to perform a general
connection establishment, as shown in Figure 97.

Figure 97. General Connection Procedure

6.4.2.4.3 Automatic Connection Establishment

The automatic connection establishment procedure uses a whitelist in connection mode to find any known device.
As soon as a known device is found, it uses a direct connection to connect to the peer device, as shown in Figure 98 on
page 135.

onsemi
RSL10 Firmware Reference

www.onsemi.com

135

Figure 98. Automatic Connection Procedure

NOTE: When device is in this mode, it is not possible to modify the whitelist.

6.4.2.4.4 Selective Connection Establishment

The automatic connection establishment procedure uses a whitelist and observer mode to find any known device.
As soon as a known device is found, the application is notified, and must reply with some connection parameters to use
with this device. Finally, it uses a direct connection to connect to the peer device. (See Figure 99 on page 136.)

onsemi
RSL10 Firmware Reference

www.onsemi.com

136

Figure 99. Selective Connection Procedure

NOTE: When device is in this mode, it is not possible to modify the whitelist.

6.4.2.4.5 Update Connection Parameters

The parameter update procedure, an operation that can be started over an LE link, is used to update link parameters.
If the operation is initiated by a master on a 4.0 (Legacy) device (see Figure 100 on page 137), there is no link
negotiation, and new link parameters are automatically applied.

onsemi
RSL10 Firmware Reference

www.onsemi.com

137

Figure 100. Parameter Update Initiated by Master

When a slave initiates a connection parameter update without knowing the remote features, a parameter update
must first be started through the HCI. If it fails due to any of the following reasons, legacy negotiation over L2CAP
must be used instead (see Figure 101 on page 138):

• Unknown HCI Command
• Command Disallowed
• Unsupported Command
• Unknown LMP PDU
• Unsupported Remote Feature

• LMP PDU Not Allowed

NOTE: Operation completion messages for a legacy parameter update initiated by a slave (on a slave
device) have to be triggered before GAPM_PARAM_UPDATE_IND, to ensure that the master device
did not use the connection param request.

onsemi
RSL10 Firmware Reference

www.onsemi.com

138

Figure 101. Legacy Parameter Update Initiated By Slave

Figure 102 shows legacy parameter update negotiation initiated by a slave and rejected by a master.

Figure 102. Legacy Parameter Update Initiated By Slave, Rejected By Master

If a parameter update request is supported by a peer device, the connection parameter initiated by a master or a
slave is a little bit different. It is requested for the peer device to accept or reject new parameters. This parameter update
is only performed through LLCP even if it is initiated by a slave or a master of the link. Figure 103 on page 139 shows
a parameter update with remote update request support accepted by the responder. In Figure 104 on page 139, the
update is rejected by the responder.

onsemi
RSL10 Firmware Reference

www.onsemi.com

139

Figure 103. Parameter Update with Remote Update Request Support Accepted by Responder

Figure 104. Parameter Update with Remote Update Request Support Rejected by Responder

6.4.2.5 Bonding

Bonding is the function where devices exchange and store security and identity information to create a secure
relationship. It occurs at the first connection between devices or the first service that requires security or authorization.
(See Figure 105 on page 140, and Figure 106 on page 140.) Two types of bonding procedures are defined:

• Dedicated bonding occurs when the user initiates SM pairing with the explicit purpose of creating a bond (i.e.,
a secure relationship) between two devices.

• General bonding occurs when the user is requested to pair before accessing a service, since the devices did not
share a bond beforehand.

onsemi
RSL10 Firmware Reference

www.onsemi.com

140

Figure 105. Connection Establishment With a Known Device (Recover Bond Data)

Figure 106. Recover Bond Data of a Peer Device with a Random Address

6.4.3 Low Energy Security

Security mode and level defines the safety requirements of a device, or of access to services offered by the device.

6.4.3.1 Security Modes

The LE security is expressed in modes and levels. There are two security modes: Sec 1 (encryption) and Sec 2
(signing), as shown in Figure 107 on page 141.

i 8 C i bli h i h k d i (b d d)

onsemi
RSL10 Firmware Reference

www.onsemi.com

141

Figure 107. LE Security Modes

6.4.3.2 Authentication Procedure

The authentication procedure pertains to satisfying the security requirements of the connecting devices when a
service request is initiated on either side. The authentication procedure is only valid after establishing an LE link.

There are two types of pairing:

• Authenticated pairing: Perform pairing procedure with authentication set to MITM protection
• Unauthenticated pairing: Perform pairing procedure with authentication set to No MITM protection

6.4.3.3 Authorization Procedure

The authorization procedure allows the continuation of service access by a remote device. This is a confirmation by
the user for continuance of the procedure. Authorization might be granted after successful authentication.

6.4.3.4 Data Signing

The data signing procedure is used to transfer authenticated data between two devices in an unencrypted
connection, as shown in Figure 108. This is used by services that require fast connection setup and data transfer. If data
signing is used, security mode 2 is a must.

Figure 108. Packet Signature

Level 2: Unauthenticated
pairing with encryption

Level 1: No Security

Level 3: Authenticated
pairing with encryption

Level 4: Authenticated LE
Secure Connections pairing
with encryption

Level 2: Authenticated
pairing with encryption

Level 1: Unauthenticated
pairing with data signing

onsemi
RSL10 Firmware Reference

www.onsemi.com

142

6.4.3.5 Privacy

6.4.3.5.1 Host Managed Privacy (1.1)

The host managed privacy feature provides a specific level of security from attackers, to keep them from tracking
an LE device over a certain period of time. This is an optional feature for all GAP roles. (See Table 57.)

NOTE: For passive scans, the Privacy feature is ignored

NOTE: If a device has all roles, it cannot use both Resolvable address for an air activity and
Non-Resolvable address for another air activity. A privacy error will be triggered in that case.

6.4.3.5.2 Controller Managed Privacy (1.2)

With controller managed privacy, the application will set the resolving address list (RAL) using the
GAPM_RAL_MGMT_CMD command. This resolving address list can be managed like a whitelist, and is used as a
complement to the whitelist. When controller managed privacy is enabled, the scan, advertise and initiating parameters
are set to use the resolving list. If this feature is enabled when setting device configuration (see Section 6.4.5.11.2,
“Device Configuration” on page 180), then the central address resolution characteristic becomes present in the GAP
service (see Section 6.4.5.9, “GAP service database” on page 178). (See Figure 109 on page 143, Figure 110 on
page 143, Figure 111 on page 143, and Figure 112 on page 144.)

6.4.3.5.3 LE Address

There are two types of Bluetooth low energy addresses:

1. Static Address
• Two most significant bits are equal to 1
• All the other bits are neither “all 0s” nor “all 1s”

2. Private Address
a. Non-resolvable Address

• Two most significant bits are equal to 0
• All the other bits are neither “all 0s” nor “all 1s”

a. Resolvable Address
• Two most significant bits are equal to 01
• 22 remaining bits of prand are neither “all 0s” nor “all 1s”
• 24-bit hash section is derived from IRK, prand and ah func

Table 57. Device address type according to privacy configuration

Broadcast Observer Central Peripheral

Privacy Off Public or Static Public or Static Public or Static Public or Static

Privacy On

- Connectable

N/A N/A Resolvable Resolvable

Privacy On

- Non Connectable

Resolvable or
Non-Resolvable

Resolvable or
Non-Resolvable

Resolvable or
Non-Resolvable

Resolvable or
Non-Resolvable

onsemi
RSL10 Firmware Reference

www.onsemi.com

143

Figure 109. LE Address

Figure 110. Initialize Device Address FW State Machine

Figure 111. Air Operation Address Management FW State Machine

onsemi
RSL10 Firmware Reference

www.onsemi.com

144

Figure 112. Privacy Address Management FW State Machine

6.4.4 Security Manager Toolbox

The Bluetooth low energy security manager allows two devices to set up a secure relationship, either by encrypting
a link, by bonding (exchanging information about each other), or by signature use over a plain link. (See Figure 113,
below.) Refer to the Bluetooth Core Specification v5.0 for the SM requirements and protocol methods.

Figure 113. SMP Block Overview

A few key concepts must be presented for a clearer understanding of the SM:

• Pairing: this procedure allows two devices to agree upon features that will allow them to establish a certain
level of security.

GAPM

SMPC

Application

Link Layer

SMPCSMPC

GAPC

Control
Control

L2CAP

PDU

SMPM

AES Toolbox
e : c1, s1, d1,

dm, ah
AES-CMAC

f4, f5, f6, g2,
h6

SMPC
Signature
- Sign packets
- resolve

Pairing Methods
- Secure Connection
- Just Works
- PassKey Entry
- OOB

Encrypt Link

SMPCSMPCSMPC

GATTC

Profiles

ATTC/S

PDU

onsemi
RSL10 Firmware Reference

www.onsemi.com

145

• Bonding: this procedure involves at least one device sending some sort of identification or security
information to the other device, to be used in future connections. This can be an encryption key, signature key,
or identification resolution key. If both devices are bondable, the transport key distribution phase following
pairing will occur. Otherwise no bonding information will be exchanged, and if any is sent, it is a violation of
protocol. Pairing might occur without necessarily bonding, but the features exchanged during pairing are
essential to the existence of a bonding stage. If one of the devices is not bondable, no information about the
peer should be stored (not even the BD address or other non-security related information).

• Unauthentication/authentication: unauthentication is NOT lack of any security, but an intermediary level
between no security and the authenticated security level. The relationship between two devices is said to be
(un)authenticated when the key(s) being used for their link encryption/signing/etc. have a security property
that confirms (un)authentication. This security property is bestowed on a key during pairing, as a function of
the STK method generation used. For both Passkey Entry and OOB Methods, all keys generated and
exchanged afterwards have the authenticated (MITM) property (a pin key/ larger OOB key was used, which
enforces security). If the Just Works method was used, all keys will have the unauthenticated (NO MITM)
property. There can also be the no security property, which applies when the link is plain.

• LE secure connection: This pairing method allows a greater security level than the normal pairing method. It
uses the private/public keys (P-256 elliptic curve) security algorithm to prevent any man-in-the-middle attack.
This secure connection is a fully new pairing method that can be used for Just Works pairing, OOB or pin code
entry. With this method, except Just Works pairing, the security level of the link is considered a “secure
connection authenticated” link.

The Security Manager (SM) toolbox is in charge of Bluetooth secure communication issues: encrypted links,
identity or private address resolution, and signed unencrypted messages. The functionalities of the SM are enforced by
clearly specified pairing and key distribution methods, and the protocol that is to be respected for their correct
implementation. An additional cryptographic toolbox of functions based on the AES-128 algorithm supports key
generation, private address generation and resolution, and message signing and signature resolution.

The architecture decided for the implementation of the security manager is visible in Core Spec 4.1 Vol. 3 Part C,
Chap. 10. Since the different functionalities may be required simultaneously for several connections that a device might
have, those functionalities have been implemented in the toolbox called SMPC: the Security Manager Protocol
Controller. SMPC toolbox is only available using GAPC API.

However, certain higher and lower layer modules have a unique instance, handled by the GAPM task through its
API, SMPM toolbox – Security Manager Protocol Manager – which will monitor SMPC’s requests and responses
without overloading those modules.

The dialogue between SMPM and SMPCs through GAPM and GAPC’s API is limited to a few basic requests and
responses. The communication between SMPCs, higher and lower layers is much richer and also allows a device to
proceed with link encrypting procedures at different stages with the different peers it possesses.

6.4.4.1 Keys Definition

There are several important types of keys in Bluetooth security, as shown in Table 58 below.

onsemi
RSL10 Firmware Reference

www.onsemi.com

146

6.4.4.2 AES-CMAC Algorithm

RFC-44931 defines the Cipher-based Message Authentication Code (CMAC) that uses AES-128 as the block
cipher function, also known as AES-CMAC. The inputs to AES-CMAC are:

• m is the variable length data to be authenticated
• k is the 128-bit key

The 128-bit message authentication code (MAC) is generated as follows: MAC = AES-CMACk(m)

A device can implement AES functions in the Host or can use the HCI_LE_Encrypt command (see Bluetooth [Vol
2] Part E, Section 7.8.22) to use the AES function in the Controller.

6.4.4.3 Identity Root Generation

The Identity Root (IR) can be created in two ways. It can be assigned a value, or generated in random. If it is
generated by arbitrary creation, it will follow the requirements of random generation defined in Volume 2, Part H
Section 2 of the Bluetooth Core Specification.

Table 58. Bluetooth Keys

Key Type Description

Identity Root (IR) • 128-bit key generated for LE device
• Only for devices that support encryption or use

random addresses
• Device can have multiple IR keys, but will only

use one per connection
• Used to generate IRK and DHK

Encryption Root
(ER)

• 128-bit random generated
• Used to generate CSRK and LTK.

Identity Resolving
Key (IRK)

• 128-bit key
• Used to resolve random addresses

Diversifier Hiding
Key (DHK)

• 128-bit key
• Used to encrypt DIV during encryption

connection setup

Connection
Signature Resolving
Key (CSRK)

• 128-bit key
• Used to sign and verify signatures on the

receiving device

Long Term Key
(LTK)

• 128-bit key, used partially depending on agreed
key size

• Used to generate contributory session key for an
encrypted connection

Diversifier (DIV) • 128-bit stored value, used to calculate LTK
• A new DIV is generated each time a unique LTK

is distributed.
• The DIV value is masked to the 2 octet EDIV

distributed value.

Short Term Key
(STK)

• Generated at the end of Phase 2 using TK
• Used to encrypt link after Phase 2 (according to

agreed key size)

Temporary Key (TK) • Either 0, Pass Key or OOB depending on STK
generation method

• Used to calculate STK

onsemi
RSL10 Firmware Reference

www.onsemi.com

147

6.4.4.3.1 Identity Resolving Key Generation

The Identity Resolving Key (IRK) is used for random address construction and resolution. It is created through the
diversification function d1, using the IR as parameter k and 0x0001 as parameter d. In case a hierarchy method is not
used, IRK can be directly assigned as a random 16 octet value to the device (per connection).

6.4.4.3.2 Diversifier Hiding Key Generation

The Diversifier Hiding Key (DHK) is used to mask DIV during the encrypted session setup. It is created through
the diversification function d1, using the IR as parameter k and 0x0002 as parameter d. If the hierarchy method is not
used, it can also be randomly generated.

6.4.4.3.3 Connection Signature Resolving Key Generation

The Connection Signature Resolving Key (CSRK) is used to sign data and resolve signature of received messages.
It can be assigned or randomly generated. If generated by arbitrary creation, it will follow the requirements of random
generation defined in Volume 2, Part H Section 2 of the Bluetooth Core Specification.

6.4.4.3.4 Long Term Key and Diversifier Generation

Devices supporting encrypted links in the slave role are capable of generating unique LTK and DIV values. The
DIV is used by the slave device to regenerate a previously shared LTK to start an encrypted connection with a
previously paired master device. Any method of generation of LTK can be used as it is not visible outside the slave
device. New values of LTK and DIV are generated each time they are distributed.

6.4.4.3.5 Encrypted Session Setup

Establishing an encrypted link requires that both devices use the same key, which has either been generated on both
devices using the same base parameters (reference to STK) or previously distributed. Both devices always use the slave
distributed LTK if the link is to be encrypted using LTK. The host of the master provides the link layer with the long
term key to use when setting up the encrypted session, together with the EDIV and RAND numbers that correspond to
it. The EDIV and RAND are two ‘identifiers’ for the LTK and they allow retrieval of the same key on both devices
without actually exchanging it. During the encryption session setup the master device sends the EDIV and the random
number to the slave device. The host of the slave receives the EDIV and Rand values and provides the corresponding
long term key to the slave’s link layer to use when setting up the encrypted link. The encrypted session can be setup
either by using STK or LTK. The procedure is the same, the only difference being that when using STK,
EDIV=RAND=0.

6.4.4.3.6 Link Layer Encryption

As described in the Bluetooth Specification (Version 6.0, Vol 6, Part E), the Link Layer provides encryption and
authentication using Counter with Cipher Block Chaining-Message Authentication Code (CCM) Mode, which shall be
implemented consistent with the algorithm as defined in IETF RFC 3610 (http://www.ietf.org/rfc/rfc3610.txt) in
conjunction with the AES-128 block cipher as defined in NIST Publication FIPS-197 (http://csrc.nist.gov/publications/
fips/fips197/fips-197.pdf). A description of the CCM algorithm can also be found in the NIST Special Publication
800-38C (http://csrc.nist.gov/publications/PubsSPs.html).

This specification uses the same notation and terminology as the IETF RFC except for the Message Authentication
Code (MAC) that in this specification is called the Message Integrity Check (MIC) to avoid confusion with the term
Media Access Controller.

CCM has two size parameters, M and L. The Link Layer defines these to be:

• M = 4; indicating that the MIC (authentication field) is 4 octets
• L = 2; indicating that the Length field is 2 octets

onsemi
RSL10 Firmware Reference

www.onsemi.com

148

CCM requires a new temporal key whenever encryption is started. CCM also requires a unique nonce value for
each Data Channel PDU protected by a given temporal key. The CCM nonce shall be 13 octets.

6.4.4.3.7 Signing Algorithm

An LE device can send signed data without having to establish an encrypted session with a peer device. Data is
signed using CSRK. The signing algorithm is used in two situations:

• Signing own data with own CSRK in view of transmission to peer which is supposed to have received the
CSRK during phase 3, and would thus interpret the received message

• Verification of received signed messages, using CSRK received from peer during previous Phase 3. The same
algorithm is used to generate the signature of the received message and check it against the received signature.

6.4.4.3.8 Slave Initiated Security

There are three manners in which the master handles the security request from the slave:

• No LTK is available for this connection, or the existing security information does not have the requested
security properties => pairing must be initiated.

• An LTK is available for this connection, with security properties matching the request => start encrypting the
link directly without pairing.

• Send the slave a Pairing Failed PDU, advising that the master does not support pairing at that moment.

6.4.4.4 Procedure Details

This part presents the messages that are exchanged between the layers of the RW-BLE stack during the different
procedure that are supported by the SMP. The SMP API messages are described in the next part.

6.4.4.4.1 Random Address Generation

A device might use a random address. This random address can be of either of the following types:

• Static address
• Private address

A private address can be either of the following types:

• Non-resolvable private address
• Resolvable private address

The three figures below (Figure 114, Figure 115, and Figure 116) give the structure of each kind of private address:

Figure 114. Static Random Address Structure

Figure 115. Private Non-Resolvable Random Address Structure

onsemi
RSL10 Firmware Reference

www.onsemi.com

149

Figure 116. Private Resolvable Random Address Structure

The random address generation procedure, shown in Figure 117 on page 149, will be the same, whatever kind of
random address is requested. However, in the case of a resolvable private address, the IRK used to generate the address
shall be kept by the higher layers so that it can be distributed to a peer device.

Figure 117. Random Address Generation Procedure

1. If the address type is not valid, a GAPM_CMP_EVT message with a GAP_ERR_INVALID_PARM status error is
sent.

2. If an error status is returned by the controller, a GAPM_CMP_EVT message with a GAP_ERR_LL_ERROR status
error is sent.

3. prand = LSB22(randnb) || LSB2(addr_type)

4. prand’ = 0104 || prand

5. If an error status is returned by the controller, a GAPM_CMP_EVT message with a GAP_ERR_LL_ERROR status
error is sent, else the status will be GAP_ERR_NO_ERROR.

onsemi
RSL10 Firmware Reference

www.onsemi.com

150

6.4.4.4.2 Address Resolution

The address resolution procedure, as shown in Figure 118 on page 150, is used to identify a device which would
use a resolvable private random address. The structure of this kind of address is defined in Section Figure 116., “Private
Resolvable Random Address Structure” on page 149.

The GAP provides several IRKs for a same address. The hash part of this address is regenerated using the IRK and
the prand part of the address. If the generated hash part is the same as the hash part of the provided address, the address
is considered resolved, else another IRK shall be sent.

Figure 118. Address Resolution Procedure

1. prand’ = 0104 || prand = 0104 || addr[0:23]

2. If an error status is returned by the controller, a GAPM_CMP_EVT message with a GAP_ERR_LL_ERROR status
error is sent.

3. hash = value[0:23]

6.4.4.4.3 Encryption Toolbox Access

The encryption toolbox access provides a way for a host layer to use the hardware encryption block. This block can
be accessed using the LLM API, as shown in Figure 119.

onsemi
RSL10 Firmware Reference

www.onsemi.com

151

Figure 119. Encryption Toolbox Access

• If an error status is received from the controller, the GAPM_CMP_EVT message with a GAP_ERR_LL_ERROR
status is directly sent to the requested layer.

6.4.4.4.4 Pairing

• Phase 1 – pairing feature exchange: It is used to exchange IO capabilities, OOB authentication data,
authentication requirements and which keys to distribute.

• Legacy phase 2 – authentication and encryption: information exchanged during the phase 1 is used to
determine which method will be used to encrypt the link (Just Works, Passkey Entry, Out Of Band).

• LE secure connections Phase 2: – authentication and encryption: information exchanged during the phase 1 is
used to determine which method will be used to encrypt the link (Just Works, Numeric Comparison, Passkey
Entry, Out Of Band). The outcome of this pairing is Long Term Key (LTK) generation.

• Phase 3 – transport keys distribution: This phase is optional and depends on the key distribution features
shared during phase 1.

6.4.4.4.4.1 Phase 1: Pairing Feature Exchange (Initiated by Master)
The pairing is always initiated by the master device by sending a pairing request message, as shown in Figure 120.

onsemi
RSL10 Firmware Reference

www.onsemi.com

152

Figure 120. Pairing Phase 1: Pairing Features Exchange (Initiated by Master)

If the slave device doesn't support pairing, it responds using the pairing failed message with the error code
Pairing Not Supported upon reception of a pairing request message. If a device receives a command with invalid
parameters, it responds with a pairing failed command with the error code Invalid Parameters.

For Bluetooth Low Energy secure connection pairing/bonding: the link key must be 16 bytes long, Otherwise,
pairing is rejected.

For legacy paring/bonding: the maximum supported encryption key length parameter must be between 7 bytes and
16 bytes, in 1-byte steps. The smaller value of the initiating and the responding device's maximum supported encryption
key length is used as the encryption key size. If the resultant encryption key size is smaller than the minimum key size
of 7 bytes, the device responds using the pairing failed message, with the error code Encryption Key Size.

6.4.4.4.4.2 Phase 1: Pairing Feature Exchange (Initiated by Slave)
A slave device requires that the master initiates a pairing procedure by sending a security request, as shown in

Figure 121.

onsemi
RSL10 Firmware Reference

www.onsemi.com

153

Figure 121. Pairing Phase 1: Pairing Features Exchange (Initiated by Slave)

6.4.4.4.4.3 Legacy Phase 2: Authentication and Encryption
The information exchanged in Phase 1 is used to select which STK generation method is used in Phase 2, as shown

in Figure 122 on page 153.

Figure 122. Phase 2: Authentication and Encryption

onsemi
RSL10 Firmware Reference

www.onsemi.com

154

If the Just Works method is used, no TK will be required (0 is used) from the application. If a generated Sconfirm
or Mconfirm value doesn't match with the received confirm value from the peer device, the device aborts the pairing
procedure by sending a pairing failed message with a Confirm Value Failed error code.

6.4.4.4.4.4 LE Secure Connection Phase 2: Authentication and Encryption
Authentication Stage 1: Just Works Method

If it is not possible to enter a passkey or do a numeric comparison, this method applies, as seen in Figure 123 on
page 154:

Figure 123. Phase 2: LE Secure Connection Just Works Pairing

At the end of the pairing, the link is considered unauthenticated.

Authentication Stage 1: Numeric Comparison Method

If both devices have display capability, numeric comparison must be chosen, as seen in Figure 124 on page 155.

MASTER / CENTRAL SLAVE / PERIPHERAL
GAPC SMPC SMPC GAPC

Pairing Features Exchange

LLCP_SMP_CODE_PAIR_CFM(Cb)

LLCP_SMP_CODE_PAIR_RAND(Nb)

LLCP_SMP_CODE_PAIR_RAND(Na)

LLCP_SMP_PAIRING_PUB_KEY(PKa)

LLCP_SMP_PAIRING_PUB_KEY(PKb)

DHKey = P256(SKa, PKb)
Generate Na

ra = rb = 0

DHKey = P256(SKb, PKa)
Generate Nb

ra = rb = 0

Check if Cb = f4(PKa, Pka, Nb, 0)

Cb = f4(PKa, Pka, Nb, 0)

onsemi
RSL10 Firmware Reference

www.onsemi.com

155

Figure 124. Phase 2: LE Secure Connection Numeric Comparison Pairing

At the end of the pairing, the link is considered secure connection authenticated.

Authentication Stage 1: Passkey Entry Method

If both devices have pin code entry possible, passkey entry is chosen, as shown in Figure 125 on page 156:

MASTER / CENTRAL SLAVE / PERIPHERAL
GAPC SMPC SMPC GAPC

Pairing Features Exchange

GAPC_BOND_REQ_IND(NUM_VAL, Vb) GAPC_BOND_REQ_IND(NUM_VAL, Vb)

GAPC_BOND_CFM
(NUM_VAL, OK) smpc_paring_cfm(NUM_VAL, OK)

GAPC_BOND_CFM
(NUM_VAL, OK)

LLCP_SMP_CODE_PAIR_CFM(Cb)

LLCP_SMP_CODE_PAIR_RAND(Nb)

LLCP_SMP_CODE_PAIR_RAND(Na)

smpc_paring_cfm(NUM_VAL, OK)

LLCP_SMP_PAIRING_PUB_KEY(PKa)

LLCP_SMP_PAIRING_PUB_KEY(PKb)

DHKey = P256(SKa, PKb)
Generate Na

ra = rb = 0

DHKey = P256(SKb, PKa)
Generate Nb

ra = rb = 0

Check if Cb = f4(PKb, PKa, Nb, 0)

Cb = f4(PKb, Pka, Nb, 0)

Va = g2(PKa, PKb, Na, Nb) Vb = g2(PKa, PKb, Na, Nb)

Do Numeric
Comparison

onsemi
RSL10 Firmware Reference

www.onsemi.com

156

Figure 125. Phase 2: LE Secure Connection Passkey Entry Pairing

During Passkey entry, LLCP_SMP_PASS_KEY_ENTRY message can be sent to a peer device using a
GAPC_BOND_CFM(PASSKEY_ENTRY) message to inform the peer device that the user is entering the password.

At the end of the pairing, the link is considered secure connection authenticated.

Authentication Stage 1: Out of Band Method

If OOB Data can be sent by one or both devices, the Out Of Band pairing method is chosen, as seen in Figure 126
on page 157:

MASTER / CENTRAL SLAVE / PERIPHERAL
GAPC SMPC SMPC GAPC

Pairing Features Exchange

GAPC_BOND_REQ_IND(TK_EXCH) GAPC_BOND_REQ_IND(TK_EXCH)

GAPC_BOND_CFM (TK)
smpc_paring_cfm(TK_EXCH, TK)

GAPC_BOND_CFM (TK)

LLCP_SMP_CODE_PAIR_CFM(Cbi)

LLCP_SMP_CODE_PAIR_RAND(Nbi)

LLCP_SMP_CODE_PAIR_RAND(Nai)

smpc_paring_cfm(TK_EXCH, TK)

LLCP_SMP_PAIRING_PUB_KEY(PKa)

LLCP_SMP_PAIRING_PUB_KEY(PKb)

DHKey = P256(SKa, PKb) DHKey = P256(SKb, PKa)

Check if Cbi = f4(PKb, PKa, Nbi, rbi)

Generate Nbi

ra = rb = TK ra = rb = TK

ra = ra1|ra2|…|ra20
rb = rb1|rb2|…|rb20

Generate Nai

Cai = f4(PKa, PKb, Nai, rai) Cbi = f4(PKb, PKa, Nbi, rbi)

LLCP_SMP_CODE_PAIR_CFM(Cai)

Check if Cai = f4(PKa, PKb, Nai, rai)

Loop
For i = 1 to 20

Get Pin Code

onsemi
RSL10 Firmware Reference

www.onsemi.com

157

Figure 126. Phase 2: LE Secure Connection Out of Band Pairing

At the end of the pairing, the link is considered secure connection authenticated.

Authentication Stage 2: Generation of LTK

After the LE secure connection authentication Stage 2, the LTK is generated according to pairing information, as
seen in Figure 127 on page 158. Then the link is encrypted. If encryption succeeds and the BOND bit is present in the
pairing feature exchange, the generated LTK is provided to the upper application.

MASTER / CENTRAL SLAVE / PERIPHERAL
GAPC SMPC SMPC GAPC

Pairing Features Exchange

GAPC_BOND_REQ_IND(OOB_EXCH, Ca, ra) GAPC_BOND_REQ_IND(OOB_EXCH, Cb, rb)

GAPC_BOND_CFM (Cb, rb)
smpc_paring_cfm(OOB_EXCH,

Cb, rb)

GAPC_BOND_CFM (Ca, ra)

LLCP_SMP_CODE_PAIR_RAND(Nb)

LLCP_SMP_CODE_PAIR_RAND(Na)

smpc_paring_cfm(OOB_EXCH,
Ca, ra)

LLCP_SMP_PAIRING_PUB_KEY(PKa)

LLCP_SMP_PAIRING_PUB_KEY(PKb)

DHKey = P256(SKa, PKb) DHKey = P256(SKb, PKa)

Generate ra, rb=0
Ca = f4(PKa, PKa, ra, 0)

If no oob present: Ca = ra = 0

If rb != 0:
Check if Cb = f4(PKb, PKb, rb, 0)

Exchange
OOB Data

Generate Na

Generate rb, ra=0
Cb = f4(PKb, PKb, rb, 0)

If no oob present: Cb = rb = 0

If ra != 0:
Check if Ca = f4(PKa, PKa, ra, 0)

Generate Nb

onsemi
RSL10 Firmware Reference

www.onsemi.com

158

Figure 127. Phase 2: LE Secure Connection LTK Generation

MASTER / CENTRAL SLAVE / PERIPHERAL
GAPC SMPC SMPC GAPC

Pairing Features Exchange

LLCP_SMP_CHECK_DHKEY(Eb)

LLCP_SMP_CHECK_DHKEY(Ea)

MacKey || LTK =
f5(DHKey, Na, Nb, A, B)

MacKey || LTK =
f5(DHKey, Na, Nb, A, B)

Check if Eb = f6(MacKey, Nb, Na,
ra, IOCapB, B, A)

Eb = f6(MacKey, Nb, Na, ra,
IOCapB, B, A)

Authentication Phase 2 Stage 1
IOCapA from Initiator
IOCapB from responder
A = BD_ADDR Initiator
B = BD_ADDR responder

Ea = f6(MacKey, Na, Nb, rb,
IOCapA, A, B)

Check if Ea = f6(MacKey, Na, Nb,
rb, IOCapA, A, B)

Encrypt Link Using Generated LTK
GAPC_BOND_IND(LTK_EXCH, LTK, 0, 0)GAPC_BOND_IND(LTK_EXCH, LTK, 0, 0) If Bondable

onsemi
RSL10 Firmware Reference

www.onsemi.com

159

6.4.4.4.4.5 Phase 3: Transport Keys Distribution

Figure 128. Phase 3: Transport Keys Distribution

When Privacy is managed by the host (privacy 1.1), the IRK value is already set in the GAP environment. But for a
controller managed privacy (privacy 1.2), the IRK will be unique for each bonded device, and so the new IRK will be
generated and retrieved from the application. The LTK and the CSRK need to be retrieved from the application. On
legacy paring, the application is responsible for generating the transport keys (CSRK, IRK, LTK, Ediv, Rand) by any
means. Figure 128 shows the distribution of the transport keys. The GAPM_USE_ENC_BLOCK_CMD message can be used
through the GAP API. On secure connection pairing, the application is responsible for generating only CSRK and IRK;
the LTK is generated by the pairing algorithm.

MASTER / CENTRAL SLAVE / PERIPHERAL
GAPCx SMPCx SMPCx GAPCx

Pairing Phase 1
Pairing Phase 2

Encrypt Link Using Generated STK or LTK

GAPC_BOND_REQ_IND(LTK_EXCH, LTK LENGTH)

GAPC_BOND_REQ_CFM
(LTK, Ediv, Rand) smpc_paring_cfm_handler

(LTK, Ediv, Rand) LLCP_SMP_CODE_ENC_INFO(LTK)

LLCP_SMP_CODE_MST_ID(Ediv, Rand)

GAPC_BOND_IND(LTK, Ediv, Rand)

LLCP_SMP_CODE_ID_ADDR_INFO(BD_ADDR)

LLCP_SMP_CODE_ID_INFO(IRK)

GAPC_BOND_IND(IRK, BD_ADDR)

LLCP_SMP_CODE_SIGN_INFO(CSRK)

GAPC_BOND_IND(CSRK)

Transport Specific Key Distribution – Slave->Master

GAPC_BOND_REQ_IND(CSRK_EXCH)

GAPC_BOND_REQ_CFM
(CSRK) smpc_paring_cfm_handler(CSRK)

GAPC_BOND_REQ_IND(LTK_EXCH, LTK LENGTH)E

GAPC_BOND_REQ_CFM
(LTK, Ediv, Rand) smpc_paring_cfm_handler

(LTK, Ediv, Rand) LLCP_SMP_CODE_ENC_INFO(LTK)

LLCP_SMP_CODE_MST_ID(Ediv, Rand)

GAPC_BOND_IND(LTK, Ediv, Rand))

Only on Legacy Pairing

GAPC_BOND_REQ_IND(IRK_EXCH)

GAPC_BOND_REQ_CFM
(IRK) smpc_paring_cfm_handler(IRK)

Application provides new IRK only for
Controller Managed Privacy

onsemi
RSL10 Firmware Reference

www.onsemi.com

160

6.4.4.4.4.6 End of Pairing Procedure

Figure 129. End of Pairing Procedure

The pairing procedure is considered to be over in the following cases, as shown in Figure 129:

• A pairing failed message has been received or generated.
• Phase 2 is over and no keys need to be distributed.
• All required keys have been distributed during Phase 3.

6.4.4.4.5 Encryption

The master device must have the security information (LTK, EDIV, and Rand) distributed by the slave device to set
up an encrypted session. An encrypted session is always initiated by the master.

6.4.4.4.5.1 Case 1: Both devices have LTK
If a master already knows the encryption keys of the slave device it is connected with, it can initiate the creation of

an encrypted link, as shown in Figure 130 on page 161.

GAPC_BOND_IND (Bondable, Auth)

MASTER / CENTRAL SLAVE / PERIPHERAL
GAPCx SMPCx SMPCx GAPCx

Transport Specific Key Distribution – Slave->Master

Transport Specific Key Distribution – Master->Slave

GAPC_CMP_EVT(status)

GAPC_BOND_IND(Bondable, Auth)

Pairing Phase 1
Pairing Phase 2

Encrypt Link Using Generated STK or LTK

onsemi
RSL10 Firmware Reference

www.onsemi.com

161

Figure 130. Start Encryption Procedure (Both Devices Have Keys)

The slave requires establishment of an encrypted session by sending a security request. Upon reception of this
request, the master device will check whether it can retrieve the LTK distributed by the device. If a key is found, the
master will start the encryption procedure, else it will start a pairing procedure.

6.4.4.4.5.2 Case 2: Slave forgot the LTK
If the slave forgot the LTK distributed by the master device during a previous bonding procedure, it will reject the

encryption request with a Pin Key Missing error, as shown below in Figure 131. Upon reception of this error, the
master can initiate a new pairing procedure with the slave device.

Figure 131. Start Encryption Procedure (Slave Forgot Keys)

6.4.4.4.5.3 Case 3: Slave doesn't support encryption
This case is illustrated in Figure 132 on page 162.

onsemi
RSL10 Firmware Reference

www.onsemi.com

162

Figure 132. Start Encryption Procedure (Slave Does not Support Encryption)

6.4.4.4.6 Data Signing

The data signing procedure is used to authenticate a data PDU sent over a non-encrypted link. More details about
the generation of the signature can be found in 6.4.4.2.6.

6.4.4.4.6.1 Subkeys Generation
An illustration of subkeys generation can be found in Figure 133, below.

Figure 133. Data Signing: Subkeys Generation

6.4.4.4.6.2 MAC Generation
This refers to the data to be signed in the concatenation of the data PDU and the SignCounter value, as shown in

Figure 134 on page 163.

onsemi
RSL10 Firmware Reference

www.onsemi.com

163

Figure 134. Data Signing: MAC Generation

1. SMPC module receive a PDU message to sign from the GATTC, it uses the SMPM encryption block through
the GAPM API.

2. After using the encryption block several times, it generates the MAC signature and appends it to the PDU.
3. The signed PDU message is conveyed to L2CC with the GATTC task as source ID to prevent a kernel

reschedule. The application is also informed that the sign counter has been increased.

6.4.4.4.6.3 MAC Verification
The verification of the received MAC is done by generating a MAC value based on the received data PDU and

SignCounter values. If the generated MAC value matches with the received one, the signature is accepted, as seen in
Figure 135 on page 164.

onsemi
RSL10 Firmware Reference

www.onsemi.com

164

Figure 135. Data Signing: MAC Verification

1. The SMPC module receives a GATTC_WRITE_REQ_IND message with as signature to verify from the GATTC;
it uses the SMPM encryption block through the GAPM API.

2. After using the encryption block several times, it generates the MAC signature and compares it to the provided
signature.

3. The GATTC_WRITE_REQ_IND message is sent to the targeted profile GATTC task as the source ID to prevent a
kernel reschedule. The application is also informed that the remote sign counter has been increased. If an error
occurs during signature, the GATTC_WRITE_REQ_IND message is dropped and the GATTC is informed that
signature verification has failed.

onsemi
RSL10 Firmware Reference

www.onsemi.com

165

6.4.4.4.7 Pairing Repeated Attempts

Figure 136. Repeated Attempts Protection

The Bluetooth specification [1] requires the implementation of a mechanism: “When a pairing procedure fails a
waiting interval shall pass before the verifier will initiate a new Pairing Request command or Security Request
command to the same claimant, or before it will respond to a Pairing Request command or Security Request command
initiated by a device claiming the same identity as the failed device. For each subsequent failure, the waiting interval
shall be increased exponentially.” Figure 136 presents the mechanism implemented to rapidly detect an attack from a
malicious device. The minimal interval value is set to 2 s and the maximal interval value is set to 30 s. Thus, according
to the procedure described in Figure 136, a repeated attempt attack will be detected after five attempts.

6.4.4.5 Security Manager Protocol Data Unit Format

All SMP commands are transmitted over L2CAP using fixed channel with CID 0x0006 in Basic L2CAP mode.
SMP has a fixed L2CAP MTU size of 23 octets. Only a single SMP command is sent per L2CAP frame. (See
Figure 137 on page 165.)

Figure 137. SMP Command PDU

Code Data

LSB
1 byte

MSB
Up to 22 bytes

onsemi
RSL10 Firmware Reference

www.onsemi.com

166

6.4.4.5.1 SMP PDU Codes

Table 59 below specifies the SMP codes. A packet with a code not included in the list below is ignored.

To ensure there is no lag during the procedure, an SM Timer is implemented allowing maximum 30 seconds of
delay between PDU transmissions on a device. This timer is reset and started upon transmission or reception of a
pairing request command. It is reset every time a command is queued for transmission. If the timer expires, failure is
indicated to the host and no more SMP exchanges are allowed. A new SM procedure starts once the physical link has
been re-established.

6.4.5 LE Credit Based Channel

The LE credit based connection, also called the connection oriented channel (COC), is an L2CAP feature managed
by GAP. It allows an LE service to create a dedicated channel on a specific link. The Peer service client must connect to
this LE credit based connection before exchanging any packets.

The GAPM manages the list of LE credit based channels created by a profile service. (A peer device cannot
connect to an LE credit based channel if it does not exist on manager.)

NOTE: The maximum number of LECB connection that can be established for a device is configurable
for the device (see Section 6.4.5.11.2, “Device Configuration” on page 180).

Table 59. SMP Codes

Code Description

0x00 Reserved

0x01 Pairing Request

0x02 Pairing Response

0x03 Pairing Confirm

0x04 Pairing Random

0x05 Pairing Failed

0x06 Encryption
Information

0x07 Master Identification

0x08 Identity Information

0x09 Identity Address
Information

0x0A Signing Information

0x0B Security Request

0x0C Public Key

0x0D DHKey Check

0x0E Keypress
Notification

onsemi
RSL10 Firmware Reference

www.onsemi.com

167

Figure 138. LE Credit Manager Environment Structure

The manager environment of variables that manages an LE credit based channel is allocated in ATT_DB heap. (See
Figure 138.) It contains:

• LE_PSM (LE Protocol/Service Multiplexer)
• TASK identifier that manages the channel
• Security level requirement (authentication level and encryption key size) - see Figure 139, below

Figure 139. LE Credit Connection Security Bit Field

GAPC manages the LE credit based channels connection using a list.

Figure 140. LE Credit Connection Environment Structure

The environment of variables that manages an LE credit based connection is allocated in the ATT_DB heap. (See
Figure 140.) It contains:

• LE_PSM (LE Protocol/Service Multiplexer)
• TASK identifier that manages reception of packet from peer device

Next List PTR

TASK_IDLE_PSM SEC_LVL

AUTH

00 – NO_AUTH
01 – UNAUTH
10 - AUTH
11 – SEC_CON

EKS

Encrypt
Key Size

SEC_LVL

MI

Target Task M
ulti

Instantiated

Reserved (4 bits)

onsemi
RSL10 Firmware Reference

www.onsemi.com

168

• Status of the current connection
• Source and destination:

• Channel identifier
• Number of available credits for the channel
• Maximum Transmit Unit (MTIU)
• Maximum Packet Size (MPS)

6.4.5.1 Channel Registration

Registration of the LE Protocol/Service Multiplexer, as shown in Figure 141 on page 168, will be performed just
after device configuration (see Section 6.4.5.11.2, “Device Configuration” on page 180). This registration ensures that
no LE credit based channel will be created on an unregistered LE_PSM, and also ensures the same security level for all
Bluetooth links.

Figure 141. Registration of an LE_PSM Identifier

NOTE: The LE_PSMs are automatically unregistered when the application requests one of the device
initialization procedures (see Section 6.4.5.11, “Device initialization” on page 180).

If no links are using a specified LE_PSM (no LECB connection established), the application or profile can
de-register it (see Figure 142).

Figure 142. De-registration of an LE_PSM Identifier

onsemi
RSL10 Firmware Reference

www.onsemi.com

169

6.4.5.2 Connection Creation

Figure 143. Service View of LE Credit Connection

Figure 143 shows different steps of LE credit based connection creation on the service side.

• LE_PSM has already been registered at GAPM Level
• Peer client then establishes the LE credit based connection using the same LE PSM, its channel ID, credit

count, MTU and MPS.
• Device receives connection request and has to confirm connection with a specific result code:

• Accept

• Reject Insufficient Resources

• Reject Not Authorized

• The initial number of credits for the local device must be at least . This is for

receiving at least an SDU with max packet size.
• If the local CID is set to zero, the GAPC module will find and allocate the first available LECB channel

identifier.

NOTE: When the LE credit based connection is established, the application is informed about the
maximum SDU size allowed (MTU - 2).

NOTE: Several connections can be opened on the same LE_PSM, but the local and peer channel
identifier has to be different each time. This is the role of the application to accept or reject an
incoming connection if one already exists for specific LE_PSM.

NOTE: Channel local MTU and MPS sizes for a connection cannot exceed Maximum MTU and MPS
sizes configured for the device (see Section 6.4.5.11, “Device initialization” on page 180).

Profile
APP GAPC L2CC

GAPM_LE_CREDIT_CON_CREATE_CMD(LE_PSM, SEC_LVL, TASK_ID)
�Allocate new LE Credit Base Channel Manager
structure

GAPM_CMP_EVT(status)

L2CC_RECV_IND(SIG_LE_CREDIT_CHAN_CONNECTION_REQ
(LE_PSM, DST_CID, Credit, MTU))

� Check LE_PSM – OK
� Check Auth – OK
� Check EKS – OK
� Allocate new LE Credit Base Channel Controller structure
� Register channel
� Register the lowest MTU of both devices
� Store dest_id and dest _creditGAPC_LE_CREDIT_CON_CONNECT_REQ_IND(LE_PSM, max_sdu_size)

L2CC_SEND_REQ(SIG_LE_CREDIT_CHAN_CONNECTION_RSP
(LE_PSM, SRC_CID, Credit, MTU, result)

GAPC_LE_CREDIT_CON_CONNECT_CFM(LE_PSM, CID, Credit, result)
� Check CID, LE_PSM and Credit
� Update status to connected

GAPC_LE_CREDIT_CON_CONNECT_IND(LE_PSM, dst_cid, dst_credit,
max_sdu_size)

GAPM

floor
MTU MPS 1– +

MPS

 1+

onsemi
RSL10 Firmware Reference

www.onsemi.com

170

Figure 144. Service Reject Connection Creation

Figure 144 shows possible connection creation errors on the service side:

1. LE PSM is unknown.
2. Security level is set to unauthenticated, or set to authenticated but the link is not encrypted.
3. Link is encrypted with insufficient authentication level.
4. Link is encrypted with LTK key < 16 bytes but connection requires a 16-byte LTK.
5. Application cannot accept link connection due to insufficient resources.
6. Application cannot accept link connection because peer device is not authorized.

L2CC_RECV_IND(SIG_LE_CREDIT_CHAN_CONNECTION_REQ
(LE_PSM, DST_CID, Credit, MTU))

�Check LE_PSM – KO (Unknown LE PSM)
L2CC_SEND_REQ(SIG_LE_CREDIT_CHAN_CONNECTION_RSP

(LE_PSM, SRC_CID, Credit, MTU, LE_PSM not supported)

Profile
APP GAPC L2CC

�Check LE_PSM – OK
�Check Auth – KO (Link UNAUTH, sec_lvl = AUTH)
L2CC_SEND_REQ(SIG_LE_CREDIT_CHAN_CONNECTION_RSP

(LE_PSM, SRC_CID, Credit, MTU, insufficient authentication)

�Check LE_PSM – OK
�Check Auth – OK
�Check EKS – KO (12 bytes instead of 16 LTK)
L2CC_SEND_REQ(SIG_LE_CREDIT_CHAN_CONNECTION_RSP

(LE_PSM, SRC_CID, Credit, MTU, insufficient encryption key size)

�Check LE_PSM – OK
�Check Auth – KO (link not encrypted, sec_lvl >= UNAUTH)

L2CC_SEND_REQ(SIG_LE_CREDIT_CHAN_CONNECTION_RSP
(LE_PSM, SRC_CID, Credit, MTU, insufficient encryption)

�Check LE_PSM – OK
�Check Auth – OK
�Check EKS - OK

GAPC_LE_CREDIT_CON_CONNECT_REQ_IND(LE_PSM, dst_credit)

L2CC_SEND_REQ(SIG_LE_CREDIT_CHAN_CONNECTION_RSP
(LE_PSM, SRC_CID, Credit, MTU, No resources or not authorized)

GAPC_LE_CREDIT_CON_CONNECT_CFM(LE_PSM, reject
No resources or not authorized)

1

2

3

4

5/6

onsemi
RSL10 Firmware Reference

www.onsemi.com

171

Figure 145. Client View of LE Credit Connection

Figure 145 shows the different steps of LE credit based connection creation on the client side.

• Using LE PSM, its channel ID, credit count, MTU and MPS, a client establishes an LE credit based connection
created by a peer service device.

• The initial number of credits for the local device must be at least . This is for

receiving at least an SDU with max packet size.
• If the local CID is set to zero, the GAPC module will find and allocate the first available LECB channel

identifier.

Figure 146, below, shows a client LE credit connection rejected by a peer device:

Figure 146. Client LE Credit Connection Rejected By Peer Device

Profile
APP GAPC L2CC

GAPC_LE_CREDIT_CON_CONNECT_CMD(LE_PSM, CID, Credit)

GAPC_CMP_EVT(SUCCESS)

L2CC_SEND_REQ(SIG_LE_CREDIT_CHAN_CONNECTION_REQ
(LE_PSM, SRC_CID, Credit, MTU))

�Allocate new LE Credit Base Channel structure
�Register channel
�Register the lower MTU of both devicesGAPC_LE_CREDIT_CON_CONNECT_IND(LE_PSM, dst_cid,

dst_credit, max_sdu_size)

L2CC_RECV_IND (SIG_LE_CREDIT_CHAN_CONNECTION_RSP
(LE_PSM, DST_CID, Credit, MTU, OK))

floor
MTU MPS 1– +

MPS

 1+

Profile
APP GAPC L2CC

GAPC_LE_CREDIT_CON_CONNECT_CMD(LE_PSM, CID, Credit)

GAPC_CMP_EVT(reject status)

L2CC_SEND_REQ(SIG_LE_CREDIT_CHAN_CONNECTION_REQ
(LE_PSM, SRC_CID, Credit, MTU))

L2CC_RECV_IND (SIG_LE_CREDIT_CHAN_CONNECTION_RSP
(LE_PSM, DST_CID, Credit, MTU, REJECTED))

onsemi
RSL10 Firmware Reference

www.onsemi.com

172

6.4.5.3 Disconnection

Figure 147. Disconnection Overview

Figure 147 shows how the LE credit based connection can be stopped from any device. When disconnection is
performed, the corresponding environment variables are free and no more data can be sent or received on this channel.

NOTE: Reason for disconnection is provided to the upper layer, such as:

• Local device initiates disconnection (no error)
• Remote device initiates disconnection
• No more credit available
• Invalid MTU (MTU exceeded)
• Invalid packet size (MPS exceeded)
• Link connection is terminated by local or peer device

6.4.5.4 Data Exchange

Data exchange over an LE credit based channel is performed directly over an L2CC task.

• Packet transmission

Profile
APP GAPC L2CC

GAPC_LE_CREDIT_CON_DISCONNECT_CMD(LE_PSM)

GAPC_CMP_EVT(status)

L2CC_SEND_REQ(SIG_DISCONNECT_REQ(DST_CID, SRC_CID))

L2CC_RECV_IND(SIG_DISCONNECT_RESP(DST_CID, SRC_CID))

�Free LE Credit Base Channel structure
GAPC_LE_CREDIT_CON_DISCONNECT_IND(LE_PSM, reason)

L2CC_SEND_REQ(SIG_DISCONNECT_RESP(SRC_CID, DST_CID))

L2CC_RECV_IND(SIG_DISCONNECT_REQ(SRC_CID, DST_CID))

�Free LE Credit Base Channel structure

GAPC_LE_CREDIT_CON_DISCONNECT_IND(LE_PSM , reason)

Initiated by peer device

Initiated by local device

onsemi
RSL10 Firmware Reference

www.onsemi.com

173

When sending a packet, an L2CC Send procedure verifies with the GAPC module (using native functions)
whether there is still available credit on the destination device, and whether the negotiated MTU is not
exceeded. If not enough credit is available on the peer device, the packet is put into a wait queue until new
credit is provided for the peer CID. When the message is in the wait queue, L2CC can send other messages
(ATT, SIG, SMP, or other CID) to the peer. (See Figure 148, below.) When the full packet is transmitted, a
confirmation message is sent to the application with the status of transmission and number of credits used.
Until confirmation is sent, any message to send to the same CID will be rejected.

Figure 148. Transmission of an SDU to Peer Device

• Packet reception

When receiving a packet, the L2CC receive procedure verifies with the GAPC module (using native functions)
whether the CID is available. LE frame (segment) per LE frame, the number of local credits is decremented
(see Figure 149 on page 174). At end of the LE frame reception, a mechanism verifies (according to local
MPS) whether some credit can be automatically incremented. Condition: (total number of credits
decremented) < (data length received / MPS).

onsemi
RSL10 Firmware Reference

www.onsemi.com

174

Between each LE Frame received, the L2CC task can receive messages for other channels (ATT, SMP, SIG or
other CID) Finally, the L2CC task informs the destination task (which registers the LE credit based channel)
that a packet has been received, and how many credits have been used.

Figure 149. SDU Reception from Peer Device

onsemi
RSL10 Firmware Reference

www.onsemi.com

175

6.4.5.5 Credit Management

Figure 150. LE Credit Management

Figure 150 shows how to manage credit on an LE credit based connection:

• One of the devices can increase its local number of credits; when this is done, the peer device will be informed
that the credit number has been updated.

• When the peer device updates its credit count, the local device increases the destination credit count, and the
task that manages the LE credit based connection is informed about the number of relative credits added.

6.4.5.6 LE Ping

The LE ping feature is handled by the lower layers (see Figure 151 on page 175). The application can configure or
retrieve the authenticated payload timeout (10 ms step) through the GAP interface (see Figure 152 on page 176).

Figure 151. Retrieve LE Ping Authenticated Payload Timeout from LL

APP GAPC LL

GAPC_GET_INFO_CMD(GAPC_GET_LE_PING_TO)

HCI_Read_Authenticated_ Payload_Timeout(conhdl)

GAPC_CMP_EVT(GAPC_GET_LE_PING_TO, OK)

GAPC_LE_PING_IND(timeout)
HCI_command_comnplete(Read_Authenticated_
Payload_Timeout, status, conhdl, timeout)

onsemi
RSL10 Firmware Reference

www.onsemi.com

176

Figure 152. Inform Application about LE Ping Authenticated Payload Timeout Expiration

6.4.5.7 LE Data Packet Length Extension

The size of LE data packets can be negotiated over the Bluetooth low energy technology link. The preferred LE
data packet size is set by the application when setting the device configuration (see Section 6.4.5.11.2, “Device
Configuration” on page 180). When the link is established, the application can try to (re)negotiate the LE data packet
size using GAPC_SET_LE_PKT_SIZE_CMD.

When the Link size is updated, GAPC_LE_PKT_SIZE_IND is triggered. It does not change the fragmentation
mechanism in L2CAP since it preferentially uses the fragmentation mechanism provided by the lower layers.

6.4.5.8 Profile Management

Our stack implementation supports a large number of profiles; for each profile, a minimum of two tasks are
implemented: one for the profile, and one for the client. Those tasks will support multiple connections. In a normal use
case, an application will not support all profiles and services at the same time; the number of profiles must be limited to
a certain number of profile tasks. To do so, an array in the generic access profile environment variable is used to manage
profile tasks. This array contains the task descriptors and a pointer to the environment heap. At start-up, the application
decides on the profiles that can be started (both client and services tasks). For services tasks, this means that the
corresponding attribute database will be loaded, and a minimum authentication level is selected.

• No authentication required
• Unauthenticated link required
• Authenticated link required
• Secure connection link required

The profile manages allocation of its task state array, and its environment memory (static and for each links). The
number of profile tasks managed by the generic access profile is managed by a compilation flag. An overview of a
profile task descriptor is shown in Figure 153.

NOTE: For integration purposes, the customer must allow this to be runtime configurable.

APP GAPC LL

GAPC_LE_PING_TO_IND

HCI_event(Authenticated Payload Timeout Expired,
conhdl)

onsemi
RSL10 Firmware Reference

www.onsemi.com

177

Figure 153. Overview of a Profile Task Descriptor in GAP Profile Task Array

NOTE: When all profile tasks has been affected, an application requesting to use another profile will
receive an Out Of Memory error.

To fix the profile API, instead of using a task number, a profile id (statically set) is used. This ID will be unique and
not be used by another task. Profile task registration is illustrated in Figure 154 on page 177.

Figure 154. Profile Task Registration

For the GTL, in the GAP environment, a specific array is used to retrieve correspondence between the profile
identifier and the corresponding task id. GAP also provides a native API to retrieve the profile id from the task id, or the

APP GAPM
GAPM_PROFILE_TASK_ADD_CMD(PRF_ID, app_task)

GAPM_CMP_EVT(status)

�check if a task can be registered
�Allocate client heap and state array task
� Initialize task descriptor with profile handled

GAPM_PROFILE_TASK_ADD_CMD(PRF_ID, sec_lvl, app_task,
start_hdl, att_db_cfg)

GAPM_CMP_EVT(status)

�check if a task can be registered
�Allocate service heap and state array task
�Allocate attribute DB
� Initialize task descriptor with profile handled

Cl
ie

nt
Se

rv
ic

e

GAPM_PROFILE_ADDED_IND(PRF_ID, PRF_TASK)

GAPM_PROFILE_ADDED_IND(PRF_ID, PRF_TASK, start_hdl)

onsemi
RSL10 Firmware Reference

www.onsemi.com

178

task id from the profile id. When a profile is registered, it is natively informed about link establishment (to allocate
environment) and termination. An example of profile task registration is shown in Figure 155 on page 178.

NOTE: When the system is reset, all registered tasks are remove and profiles are cleaned up.

By default, profile task descriptors are initialized without any handler and without any task id. This ensures that
when a task is not registered, any message kernel to this task will be ignored.

NOTE: If GTL receives a message on a non-registered profile identifier, it will answer with a generic
error message.

Figure 155. Example of Profile Task Registration

When an application has to communicate with a profile task, it has to request its task identifier to GAP through its
native API.

6.4.5.9 GAP service database

GAP service (UUID = 0x1800) will be represented as an attribute service in the attribute database. Depending on
the role of the device, certain attribute characteristics are required in the service definition, as seen in Table 60.

diss_handler PTR

BLE idx MAXdiss state MAX

diss_handler PTR

BLEMAX

state PTR
DISS Task state

DISS Heap PTR

Profile 0 – DISS

DISS_ENV allocated in ATT_DB Heap

DISS data

DISS IDX0 ptr

DISS IDXN ptr

Pointer to data
allocated for each
connections

glps_handler PTR

BLE idx MAXglps state MAX

glps_handler PTR

BLEMAX

state PTR
GLPS Task state

GLPS Heap PTR

Profile 1 – GLPS

GLPS_ENV allocated in ATT_DB Heap

GLPS data

GLPS IDX0 ptr

GLPS IDXN ptr

Pointer to data
allocated for each
connections

tipc_handler PTR

BLE idx MAXtipc state MAX

tipc_handler PTR

BLEMAX

state PTR
TIPC Task state

TIPC Heap PTR

Profile 1 – TIPC

TIPC_ENV allocated in ATT_DB Heap

TIPC data

TIPC IDX0 ptr

TIPC IDXN ptr

Pointer to data
allocated for each
connections

onsemi
RSL10 Firmware Reference

www.onsemi.com

179

Those characteristics values are not present in the database. If a peer device tries to read or write those values, a
request will be sent to the application. It allows the application to manage the memory positions of those fields.

6.4.5.10 GAP Environment Variables

6.4.5.10.1 GAP Manager Environment

GAP Manager environment variables are shown in Table 61.

6.4.5.10.2 GAP Controller Environment

GAP Controller environment variables are shown in Table 62.

Table 60. GAP Characteristics

CHARACTERISTICS GAP Role DESCRIPTION

CT PH BC/OB

(0x2A00) Device name m m x Name of the device in UTF-8 format (write
optional)

(0x2A01) Appearance m m x Representation of the LE device (write optional)

(0x2A04) Preferred conn par x o x Set of conn parameters preferred by the device

(0x2A06) Central Addr Resolution o o x Central Address Resolution characteristic defines
whether the device supports privacy with address
resolution

Table 61. GAPM Environment variables

Type Value Comment

ke_msg* CFG operation Operation used to configure System, use encryption block,
get system information

ke_msg* AIR operation Operation used to perform advertising, scanning or
connection init activity

uint16_t Start_hdl GAP Service start handle

gap_sec_key IRK IRK used for resolvable random BD address generation

bd_addr addr Current BD address (private or public)

gap_bdaddr* scan_filter Scan filtering Array

co_list LECB channels List that contains list of LE Credit Based channels

uint8_t role Current device role

uint8_t nb_mst_con Number of master connections

uint8_t nb_slave_con Number of slave connections

uint16_t renew_dur Duration of resolvable address before regenerate it.

uint8_t Flags Flag field for:

• Addr is private or public
• Host Privacy Enabled
• Controller Privacy Enabled
• Use resolvable/non resolvable address
• Slave preferred param present
• Address Renew timer started

onsemi
RSL10 Firmware Reference

www.onsemi.com

180

6.4.5.10.3 GAP Profiles Environment

GAP Profile environment variables are shown in Table 63.

6.4.5.11 Device initialization

6.4.5.11.1 Software Reset

At system start-up, to initialize software state machines, a software reset command is sent. This command also
initializes the attribute database; after a software reset, the device attribute database is empty, and device configuration
and profile configuration are performed.

6.4.5.11.2 Device Configuration

At system start-up, after sending the software reset command, the device is set up using the set device
configuration command. Configuration of a device can be updated only if there is no on-going connection.

• Role: five roles allowed, as shown in Table 64 on page 181.

Table 62. GAPC Environment variables

Type Value Comment

ke_msg* Link Info operation Operation used to manage Link info (get link and peer info)

ke_msg* Link Param operation Operation used to manage Link parameters (update
parameters)

ke_msg* SMP operation Operation used to manage SMP

ke_msg* LECBC operation Operation used for LE credit based connection

ke_task_id_t disc_requester Task id requested disconnection

uint16_t conhdl Connection handle

gap_sec_key[] csrk CSRK values (Local and remote)

uint32_t[] sign_counter signature counter values (Local and remote)

uint8_t key_size Encryption key size

gap_bdaddr[] src BD Address used for the link that must be kept

smpc_pair_info/
smpc_sign_info

pair_info/
sign_info

Pairing Information or sign info according to ongoing SMP
procedure

uint8_t SMP state State of the current SMP procedure

co_list LECB connections List that contains list of LE credit based connections

uint8_t fields Configuration fields:

• Link Authorization level
• Encrypted Link
• Role
• Is SMP Timeout Timer running
• Is Repeated Attempt Timer running
• Has task reached a SMP Timeout

Table 63. GAP Profiles Environment variables

Type Value Comment

prf_tasks_env[] prf Array of Profile tasks environment descriptor

onsemi
RSL10 Firmware Reference

www.onsemi.com

181

NOTE: The device can support all GAP roles (advertising, scanning, initiating and connected)
simultaneously, sharing use of the RF front-end between the different application use cases. For
example, this allows a device to be a master of one connection and a slave of a different
connection, or to start scanning and advertising activity at the same time.

• Device Privacy:
• Device IRK: used to generate random address (only valid for host Privacy 1.1)
• Privacy managed by host (privacy 1.1), by controller (privacy 1.2) or disabled
• Renew address timer duration

• Device Address: (if privacy disabled or managed by controller)
• Device address type
• Device static address (if address type is random)

• Packet Size: Maximum MTU allowed by device (mini = 23 bytes, max = 2048)
• GAP DB configuration:

• GAP DB start handle (0x0000 – dynamically allocated)
• Appearance write permissions
• Device name write permissions + Device name max length
• Peripheral preferred connection parameters present + read permissions

• GATT DB Configuration:
• GATT DB start handle (0x0000 – dynamically allocated)
• Service changed characteristic present

• LE Credit Based Channel:
• Maximum number of LE credit based channel connections that can be established
• Maximum MTU and MPS size authorized on a local device. It also limits maximum MTU and MPS size

that can be transmitted to a peer device.

NOTE: The set device configuration command recreates the GAP and GATT databases.

6.4.6 Profile Functionalities

Bluetooth low energy profiles reside on top of the host protocols and generic profiles (GAP and GATT).

Support of an LE profile depends on its specification availability, from the Bluetooth Special Interest Group (SIG).
The FS of these profile implementations are beyond the scope of this document.

Some guidelines for profile implementation:

Table 64. Device Roles

Roles Scan Advertise Master Connect Slave Connect

Observer X X X

Broadcaster X X X

Peripheral X X

Central X X

All

onsemi
RSL10 Firmware Reference

www.onsemi.com

182

• Due to Bluetooth topology, client and server profiles are multi-instantiated tasks.
• Profiles have to manage environment memory by allocating it in an ATT Heap. Memory is used for dedicated

link and general configuration.
• If not enabled by GAP, the profile RAM footprint will equal zero.
• Service profile will be ready by default; enable message must be used to restore the bond data of a known

device.
• A profile is not aware of its task identifier, the in message handler; the destination id must be used to retrieve

its task identifier, or eventually request it to GAP through the native API.
• It is recommended to use the operation mechanism (see Section 6.4.8.2, “Operation Model” on page 183) to

optimize profile memory usage.

NOTE: Profile should be only on top of the GATT API. Management of connection and advertising data
should be handled by the application.

6.4.7 Message API naming requirements

To have a standard message interface between each task:

• The upper layer interface uses the API from the lower layer one (it is not allowed for a lower layer interface to
use an upper layer api).

• A request (_REQ suffix) or a command (_CMD suffix) from an API user needs to be answered by the task: a
command (_CMD suffix) is finished by sending a complete event (_CMP_EVT suffix) (see Figure 156), and a
request (_REQ suffix) is finished when a response message (_RSP suffix) is sent (see Figure 157).

Figure 156. Command Operation Finished with a Complete Event

TASK_XXXUSER

XXX_???_CMD(op, params)

XXX_CMP_EVT(op, status)

Procedure on-going
Put Task in busy
state

One message for
all commands
Please use
indication to
provide more
information

XXX_????_IND(info_data)

onsemi
RSL10 Firmware Reference

www.onsemi.com

183

Figure 157. Request Message which is Answered By Response Message

A task can inform an upper layer task using an indication message (_IND suffix); or when information is needed by
a task, a request indication message (_REQ_IND suffix) can be raised and shall be answered using a confirmation
message (_CFM suffix) (see Figure 158).

Figure 158. Message API use by a Task to Communicate with an Upper Layer

6.4.8 Memory Optimization

Bluetooth host software memory is optimized for allowing the system to shut down some memory blocks when
sleeping between Bluetooth events. This feature can be used thanks to the kernel memory heap segmentation.

6.4.8.1 Connection Oriented Task

The environment variables for tasks related to a connection are allocated at connection, and removed as soon as
connection is stopped. Those environment variables must not contain values used only during specific operations such
as pairing or connection update. These variables will be allocated in the kernel environment heap.

6.4.8.2 Operation Model

An operation is a command that will be executed by a task. This command contains parameters that must be used
during its execution. Instead of copying the parameter into the task environment, the command message is stored until
its execution is finished. See Figure 159 for the operation life cycle.

TASK_XXXUSER

XXX_???_REQ(params)

XXX_???_RSP(status, result)

Immediate request
Does not put task in
busy state

TASK_XXXUSER

XXX_???_REQ_IND(params)

XXX_???_CFM(result)

XXX_????_IND(info_data)

Message that
require response
from upper layer

Message that just
inform upper layer
task

onsemi
RSL10 Firmware Reference

www.onsemi.com

184

Thanks to this model:

• Command parameters can be easily reused.
• The operation pointer can be used for command flow control.
• The command message handler can be implemented as a state machine by rescheduling command in the

kernel.

Figure 159. Operation Life Cycle

www.onsemi.com

185

CHAPTER 7

7.Custom Protocols
7.1 OVERVIEW

In addition to standard RF protocol support, a number of custom protocols have been defined for the RSL10
ecosystem. These protocols are designed to handle use cases that are not typically easy to support using Bluetooth low
energy technology. These protocols are supported by header files, libraries, and sample applications that demonstrate
how the protocols can be used in a larger system.

Custom protocols supported include:

Audio Stream Broadcast (Remote Microphone Custom Protocol)
This is a custom audio transmission protocol that allows the broadcast of either a mono or a
stereo audio stream, where the transmitting device is responsible for the majority of the RF
traffic. This protocol is designed to limit the active RF time on any receiving devices, at the
expense of higher traffic handled by the transmitting device.

For more information on this custom protocol, see Section 7.2, “Audio Stream Broadcast
Custom Protocol”.

Low-Latency
This is a custom transmission protocol that is used to establish a low-latency bidirectional
connection to provide transfers of data between two devices that contain the RSL10 SoC, with
the minium feasible delay.

For more information on this custom protocol, see Section 7.3, “Low-Latency Custom
Protocol”.

7.2 AUDIO STREAM BROADCAST CUSTOM PROTOCOL

The audio stream broadcast custom protocol enables audio transmission that can carry either a mono or a stereo
audio stream to one or more devices. This protocol is supported by the firmware and sample code listed in Table 65.

Table 65. Audio Stream Broadcast Custom Protocol Objects

Object File Name or Project Description

Headers rm_pkt.h Header file that needs to be included to use this protocol

Source config_data.c, rm_event.c,
rm_pkt_hdl.c

Source files containing the implementation of this protocol

onsemi
RSL10 Firmware Reference

www.onsemi.com

186

7.2.1 AUDIO STREAM BROADCAST PACKET STRUCTURE

The audio stream broadcast custom protocol uses a simple packet structure, which limits the additional packet
transmission information to a minimum beyond what is necessary to transmit the packet payload information. The
packet structure is shown in Figure 160, with information on the included components provided in Table 66.

Figure 160. AUDIO STREAM BROADCAST PACKET STRUCTURE LAYOUT

Library remote_micLib.a Library file that a user application needs to link against if using this protocol.

The transmitting device side has two ways to access audio data using the
payloadFlowRequest parameter: through RM_APP_REQUEST or
RM_PRO_REQUEST. The corresponding delay parameter, preFetchDelay, is set
according to the audio path application. When using RM_APP_REQUEST, the
application can call an API function to provide data to the library. For
RM_PRO_REQUEST, the protocol calls a callback function from the application to
obtain its audio data.

Sample Code remote_mic_trx_coded,
remote_mic_rx_raw,
remote_mic_rx_coex,

remote_mic_tx_raw,

remote_mic_tx_coex

Demonstration code showing use of this protocol as a:

• Transmitter of a mono audio data channel
• Receiver of an audio data channel
• Transmitter of two pre-encoded audio data channels, typically for stereo

audio transmission

A number of data source and sink configurations (using both raw and pre-encoded
data) are available. Several examples that demonstrate coexistence of this protocol
with Bluetooth traffic are also provided.

TABLE 66. AUDIO STREAM BROADCAST PACKET STRUCTURE DETAILS

Field Length (bytes) Description

Preamble 1 Bit sequence used to synchronize the demodulator to the incoming bit stream
(0x55).

Address 4 Address information for the stream, used to differentiate between different stream
sources.

Table 65. Audio Stream Broadcast Custom Protocol Objects

Object File Name or Project Description

Pr
ea

m
bl

e
(1

)

Ad
dr

es
s(

4)

Tr
an

sm
iss

io
n

ID
(2

)

Ch
an

ne
lL

/R
(2

)

RF
U

(4
)

Pa
yl

oa
d

CR
C

(2
)

Header

onsemi
RSL10 Firmware Reference

www.onsemi.com

187

7.2.2 AUDIO STREAM BROADCAST TRANSMISSION STRUCTURE

7.2.2.1 Packet Sets

Data transmitted using the audio stream broadcast custom protocol is grouped into packets, with each sample sent
as part of a redundant packet set. For each channel to be transmitted, this packet set contains a packet carrying the
payload for the current transmission interval, and a packet carrying the payload for the previous transmission interval.

For a typical stereo audio transfer, the packet set will consist of four packets:

1. The left-channel’s audio data for the current transmission interval
2. The left-channel’s audio data for the previous transmission interval
3. The right-channel’s audio data for the current transmission interval
4. The right-channel’s audio data for the previous transmission interval

The left or right channel can be selected through the audioChnl parameter.

If no data is available for the previous transmission interval (as would be the case at the beginning of a transfer), the
data packet for the current transmission interval is used in its place, to ensure consistency of the transmission structure.

7.2.2.2 RF Physical Layer Configuration

The audio stream broadcast radio streaming protocol is required to:

• Maximize the available RX sensitivity to provide a more robust link
• Reduce the power consumption for receiving devices (typically by reducing the radio on-time)
• Provide sufficient throughput to support the required audio data channels

To meet these somewhat conflicting requirements, the configuration described in Table 67 on page 188 is used for
this custom protocol.

Header 1 Bits 1:0 - Transmission ID - Circular count that aligns an update with its
transmission interval

Bits 3:2 - Channel designation; nominal usage assigns the following designations:

• 0b00 - Reserved
• 0b01 - Left or Mono
• 0b10 - Right
• 0b11 - Other

Bits 7:4 - RFU (reserved for future use)

Payload Variable Payload data to be transferred using this protocol. The payload size is assumed to
be known in advance so as not to require transferring the length with each packet.

NOTE: If the payload size is not known up front, it is recommended
that the payload length used is included in the payload data
so that receivers can determine the correct length for
received packets.

CRC 2 CRC-CCITT value calculated over the header and payload from this packet

TABLE 66. AUDIO STREAM BROADCAST PACKET STRUCTURE DETAILS

Field Length (bytes) Description

onsemi
RSL10 Firmware Reference

www.onsemi.com

188

NOTE: The physical layer for the audio stream broadcast custom protocol, as implemented, does not
include whitening of the RF data. If you develop a use case that would include mostly ones or
zeros in the RF traffic, adding data whitening to this protocol will likely improve the reliability of
traffic broadcast using this protocol.

7.2.2.3 RF Transmission Structure

Audio streaming using this custom protocol is centered around an asymmetric use of resources. For this protocol,
the transmitter unconditionally retransmits data four times in an attempt to improve the likelihood of a successful data
reception. Transmission of data is defined by a set of RF transmission parameters as listed in Table 68.

Confirmation of link establishment or loss (disconnection) is provided to the application using a callback function.

Prior to transmission:

• Encoded audio data for each channel is placed into a packet (see Section Section 7.2.1, “Audio Stream
Broadcast Packet Structure”).

• Packets of data are collected with data from other channels and previous transfers, as a packet set (see Section
Section 7.2.2.1, “Packet Sets”).

Each packet set is transmitted at the synchronization point, and one retransmission interval later, as shown in the
example transmission sequence provided by Figure 161 on page 189. At the start of the next transmission interval, a

Table 67. Physical Layer Configuration for THE AUDIO STREAM BROADCAST CUSTOM PROTOCOL

Parameter Value Description and Notes

TX Power +6 dBm Typical; can be lowered based on the needs of the user’s device network.

Modulation Scheme GFSK -

Modulation Index 0.32 Nominal modulation index for compatibility with Ezairo 7150 SL implementations of this
protocol.

For RSL10 only connections, an optional configuration that uses a modulation index of
0.5 is provided for improved performance.

Symbol Rate 2 Mbps -

Channels 40 Aligned with Bluetooth low energy channels to simplify coexistence between this protocol
and Bluetooth low energy traffic. Channels aligned between 2402 and 2480 MHz.Channel Spacing 2 MHz

Channel Hop
Sequence

- Predefined hop sequences are used for transmissions and retransmissions, and can be
configured to ensure that all channels are used by this protocol, and all transmissions or
retransmissions of a given packet are widely spaced across the channel set.

For compatibility with Ezairo 7150 SL implementations, a hop sequence of 7 values is
used.

Table 68. RF Transmission Parameters

Parameter
Value

Notes

Transmission
Interval

10 ms The time interval between primary transmissions of packet sets; the start of the
transmission interval for a packet set is defined as the synchronization point for the
packet set transmission.

Retransmission
Interval

5 ms The time interval between the start of a primary transmission of a packet set, and the
start of the retransmission of that packet set.

onsemi
RSL10 Firmware Reference

www.onsemi.com

189

new packet set is created and the transmission process repeats. Each time a packet set is transmitted (including both at
the start of a transmission interval and at the retransmission interval), the channel used for the transmission is updated
with a fixed spacing between the transmission and retransmission, and a pre-defined channel hopping sequence is used
for each transmission interval (as described in Section 7.2.2.2, “RF Physical Layer Configuration”).

Figure 161. Example RF Transmission Sequence

To maintain an audio stream, the receiver needs to listen only to those events necessary to obtain a complete set of
data for its channel.

Figure 162 on page 189 shows an example of the receiver behavior when trying to receive one packet. In this
example, the receiver is attempting to receive data for the left channel, and fails to receive data for transmission interval
(n) in both transmission slots of transmission interval (n). This data is then received in transmission interval (n + 1),
along with the data for transmission interval (n+1). The receiver does not listen for more data during the retransmission
interval, and only listens for the data for the (n + 2) interval in the subsequent interval. In this way, the receiver only
listens when new data for its channel is available.

Figure 162. Example RF Reception Sequence

Transmission Interval

Retransmission
Interval

Left audio data for time interval (n � 1)
Left audio data for time interval (n)
Left audio data for time interval (n + 1)
Left audio data for time interval (n + 2)

Right audio data for time interval (n � 1)
Right audio data for time interval (n)
Right audio data for time interval (n + 1)
Right audio data for time interval (n + 2)

t=n t=n + 1 t=n + 2
Render Point

(n � 1)

Transmission Interval

X

Transmission Interval

Retransmission
Interval

Left audio data for time interval (n)
Left audio data for time interval (n + 1)
Left audio data for time interval (n + 2)

t=n t=n + 1 t=n + 2

Render
Point (n � 1)

X

onsemi
RSL10 Firmware Reference

www.onsemi.com

190

Only after all four potential transmissions have completed can the device then render its audio data. If this data is
available earlier, it needs to be held back, to maintain consistent timing. When rendering stereo data, the receiving
device also delays its rendering point, so that this point occurs after all packets from the last packet set containing a
given packet have been retransmitted, as shown in Figure 161 on page 189.

The library provides audio data using a rendering delay. This delay timing can be changed using the renderDelay
parameter. The library will automatically adjust the rendering time for the left and right microphones; the application is
not responsible for this. Rendering delay timing allows the left and right microphones to deliver audio data to the
application simultaneously. The time difference between left and right is taken into account in the protocol
implementation.

 The library will deliver audio data to the application through a callback function, which also provides the status of
the date.The application has no need to consider timing when no packet is received, because the protocol retains the
timing. At rendering time, the protocol provides one of three different status results for the packet: good packet, bad
CRC packet, or no packet (timeout). Then the application can decide if it wants to use any of the PLC algorithms.

7.2.3 AUDIO STREAM BROADCAST API

This reference material presents a detailed description of all the external API functions in the audio stream
broadcast custom protocol library (see Table 69), including calling parameters, returned values, and assumptions.

7.2.3.1 RM_Configure

Configure protocol environment based on input from application

Table 69. Audio Stream Broadcast Protocol Library Reference Functions

Function Description Reference

RM_Configure Configure protocol environment based on input from application 7.2.3.1 on p. 190

RM_Disable Disable the protocol 7.2.3.2 on p. 191

RM_Enable Enable the protocol 7.2.3.3 on p. 191

RM_EventHandler Protocol event handler 7.2.3.4 on p. 191

RM_StatusHandler Protocol status update handler 7.2.3.5 on p. 192

Type Function

Include File #include <rm_pkt.h>

Source File rm_event.c

Template uint8_t RM_Configure(struct rm_param_tag param, struct rm_callback
callback)

Description Configure protocol environment based on input from application

Inputs param = Application input parameters
callback = Application call back functions

Outputs return value = 0 if it configures successfully, error value otherwise

onsemi
RSL10 Firmware Reference

www.onsemi.com

191

7.2.3.2 RM_Disable

Disable the protocol

7.2.3.3 RM_Enable

Enable the protocol

7.2.3.4 RM_EventHandler

Protocol event handler

Assumptions None

Example struct app_env_tag app_env;
struct rm_callback callback;

/* Define the application environment and callback for the
* audio broadcast streaming custom protocol here... */

/* Configure the custom protocol for use by the application */
RM_Configure(&app_env.rm_param, callback);

Type Function

Include File #include <rm_pkt.h>

Source File rm_event.c

Template uint8_t RM_Disable(void)

Description Disable the protocol

Inputs None

Outputs return value = 0 if it disables successfully, error value otherwise

Assumptions None

Example /* Disable the custom protocol */
RM_Disable();

Type Function

Include File #include <rm_pkt.h>

Source File rm_event.c

Template uint8_t RM_Enable(uint16_t offset)

Description Enable the protocol

Inputs offset = Offset instant in micro second

Outputs return value = 0 if it enables successfully, error value otherwise

Assumptions None

Example /* Configure and enable the custom protocol for use by the application */
RM_Configure(&app_env.cp_param, callback);
RM_Enable(500);

Type Function

Include File #include <rm_pkt.h>

Source File rm_event.c

onsemi
RSL10 Firmware Reference

www.onsemi.com

192

7.2.3.5 RM_StatusHandler

Protocol status update handler

7.3 LOW-LATENCY CUSTOM PROTOCOL

The low-latency custom protocol provides a minimum latency bidirectional connection between two devices based
on the RSL10 SoC. This protocol provides a means for point-to-point audio streaming. The protocol’s main use cases
include, but are not limited to, the following:

• Ear-to-ear CROS and BiCROS uses
• Beamforming and directional microphones
• Quick control or algorithm data exchanges between two devices to enable coordinated signal processing

The low-latency custom protocol also demonstrates the use of the RSL10 RF front end, making it easier for users to
create and implement their own individual protocols.

All parameters of the protocol are configured through APIs. The target has the lowest possible delay, and the
flushable protocol cannot guarantee data transmission between points, as data that cannot be transmitted in the desired
window is simply discarded. This differs from Bluetooth low energy technology, which guarantees the arrival of all
data. In addition to ensuring that only data that is still relevant is received, transmitting audio data through the
low-latency custom protocol instead of Bluetooth low energy ensures that the data remains time synchronized between
the two sides of the link. This significantly simplifies synchronization between data sample across multiple devices.

Template uint8_t RM_EventHandler(uint8_t type, uint8_t *length, uint8_t *ptr)

Description Protocol event handler

Inputs None

Outputs return value = 0 if it handles successfully, error value otherwise

Assumptions None

Example /* Setup payload data for the left channel */
RM_EventHandler(RM_TX_PAYLOAD_READY_LEFT, &length,
(uint8_t *) &spi_buf[0]);

Type Function

Include File #include <rm_pkt.h>

Source File rm_event.c

Template void RM_StatusHandler(void)

Description Protocol status update handler

Inputs None

Outputs None

Assumptions None

Example /* Main loop: Handle custom protocol events */
while (1)
{
 Sys_Watchdog_Refresh();
 RM_StatusHandler();
 SYS_WAIT_FOR_EVENT;
}

onsemi
RSL10 Firmware Reference

www.onsemi.com

193

This symmetric protocol is supported by the firmware and sample code listed in Table 70.

7.3.1 Low-Latency Protocol Physical Layer

The Low-Latency custom protocol is designed to use the RF characteristics already qualified for use on the RSL10
device with Bluetooth low energy technologies, with some flexibility provided to enable users to meet a variety of use
cases. The physical layer configuration for this protocol is described in Table 71.

7.3.2 Low-Latency Protocol Packet Structure

The packet format for this protocol is:

• Preamble: 1 octet. Either 0x55 or 0xAA.
• Sync word: 4 octets. The Sync word has two roles: one for packet detection, and the other as an address.
• Header: 2 octets. The first octet is used for the packet control data; the second octet indicates the length of the

data field.

Table 70. Low-Latency Custom Protocol Objects

Object File Name or Project Description

Headers cp_pkt.h Header file that needs to be included to use this protocol

Source config_data.c, cp_event.c,
cp_pkt_hdl.c

Source files containing the implementation of this protocol

Library custom_protocolLib.a Library file that a user application needs to link against if using this protocol

Sample Code custom_protocol_trx Demonstration code showing use of this protocol to provide a complete audio path with
the custom protocol, routing audio

Table 71. Physical Layer Configuration for the Low Latency Custom Protocol

Parameter Value Description and Notes

Modulation Scheme GFSK -

Modulation Index 0.5 Matches Bluetooth low energy configuration

Symbol Rate 500 kbps, 1 Mbps, 2
Mbps

Configurable through the protocol API

Channels 40 Aligned with Bluetooth low energy channels to simplify coexistence between this protocol
and Bluetooth low energy traffic. Channels aligned between 2402 and 2480 MHz.Channel Spacing 2 MHz

Channel Hop
Sequence

- During data transmission, frequency hopping is used, with the number and list of
channels determined through the provided API. There are two frequency hopping lists:
one for the main transmissions, and one for re-transmissions.

In addition, the connection establishment phase and the connected phase have different
frequency hopping lists, as explained in Section 7.3.3, “Low-Latency Protocol Link Layer
Structure” on page 194.

Preamble (1 octet) Sync word (4 octets) Header (2 octets) Data (variable) CRC (2 octets)

onsemi
RSL10 Firmware Reference

www.onsemi.com

194

• Data: Any desired data sent through this protocol.

Since the main purpose of this protocol is transmitting audio with low latency, data in the sample code is a
coded audio frame (for example, 16 octets per 2 ms of data at a 64 Kbps coding rate). This audio data can be
replaced as needed by control data, signaled using the one-bit Data bit-field in the header.

• CRC: 2 octets. CRC-CCITT is calculated over the header and data sections of the low-latency protocol packet.

7.3.3 Low-Latency Protocol Link Layer Structure

The two peer devices that communicate using this protocol are the master and slave devices. The master device
sends data/audio packets in consecutive transmission intervals, while the channel frequency changes for each interval.
Once the slave receives the master’s audio/data packet, the slave sends back an acknowledgment packet at the same
channel frequency. If the master device does not receive the acknowledgement as expected, the master retransmits the
payload on another frequency channel. Figure 163 illustrates this mechanism.

Figure 163. Data Packet Reception and Acknowledgement

The low-latency custom protocol uses two sets, each with two lists of frequencies, for controlling the frequency
hopping configuration. In each set, one list is used to select the frequency for the main transmissions, and the second is
used for re-transmissions. The first set includes two lists of four frequencies each, which are used during link
establishment. The second set includes two lists of up to a maximum of 36 frequency channels, which are used while
streaming data.

At the beginning of link establishment, the master device sends packets via channels present on the first list of the
first set, and increments the frequency hop number at every connection interval. During each connection interval
following the main transmission, after a pre-defined inter frame space (IFS), the master device waits to receive an
acknowledgement from the slave device at the same frequency. If no acknowledgement is received after the IFS, the

Table 72. First Octet of Packet Header

Bit Number Name of Field Meaning

0 SN Sequence number of first (0) or second (1) packet.

1 ASN If ACK=1, the sequence number of the packet is acknowledged.

2 Data Library file that a user application needs to link with when using this protocol.
Packet includes data (1) or in-band signalling (0).

3 ACK Indicates whether an ACK (1) is conveyed.

4-7 Hop Cluster Num Header Cluster number of first stage channel hopping.

onsemi
RSL10 Firmware Reference

www.onsemi.com

195

main transmission packet will be sent again, on the same channel index but from the re-transmission list. The master
device continues sending the transmission, cycling through the 8 channels from the transmission and retransmission
lists, and as long as it does not receive any response from the slave device, it repeats the same sequence.

The frequency hop counter is sent in the packet header. Once the slave device receives it, the hop counter sequence
enables the slave device to synchronize with the master device. When the master receives the acknowledgment from the
slave device, it stops transmitting using the first set of channels, and switches to the second set of transmission lists to
send packets (and re-transmit packets) using entries from lists in the second channel frequency set.

While sending data packets, a pre-configured frequency list is used for frequency hopping. Each frequency in this
list is used for one transmission, with the list wrapping back to the start after all frequencies have been exhausted. Since
retransmission happens on a different frequency from initial transmission, the effects of interference and fading are
mitigated.

The intent behind this two-stage frequency hopping list is that this scheme makes link establishment faster, and
lowers power consumption, because the receiver has no need to deal with a long channel frequency list.

7.3.4 Low-Latency Protocol Application Program Interface

The low-latency custom protocol is implemented in a static library that can be linked to any application. The
interface between the library and the application is handled through the following steps:

1. Protocol configuration: At the beginning, the application provides the desired parameters to configure the
protocol (library). The application can change the following parameters:
• Protocol role: master or slave
• Mono-directional or bidirectional (currently only mono-directional is supported)
• Four frequency lists for the first and second phases of connection, including main transmission and

retransmission. The first list of the first phase, which can have a maximum of four channels, cannot have
any common channel with the other three lists.

• Transmission interval
• Radio data rate
• Audio data rate
• Access word and preamble
• Link management parameters (packet lost low and high thresholds)
• Status update callback function (at any change in the link status, the allocated callback function is called)
• Event handling callback function

2. Protocol-application interface: when the protocol needs to obtain data from the application for transmission,
the regarding callback function is called. Once data is received, the registered callback function is called. The
application can be informed of data packet reception through three events: main transmission, re-transmission,
and unsuccessful transmission (timeout). Being informed of data packet reception enables the application to
assess the link. In the case of timeout, the application can call any PLC (packet loss concealment) algorithm, or
receive the previous packet. On the master side, once the protocol requests data from the application for
transmission, the application is responsible for managing its timing to synchronize with the activity of the
radio.

For sampling clock synchronization, the required signals for the audio sink clock counter are generated in the
protocol library, and based on the phase and period interrupts. On the master side, these interrupts can be used
for sampling clock calculations based on the radio frame sync, The application can leverage this to
synchronize its audio peripheral interface, sampling rate converter, and encoding timing.

onsemi
RSL10 Firmware Reference

www.onsemi.com

196

On the slave side, these interrupts and signals can be used in the same way. Additionally, once a phase interrupt
occurs, a rendering timer can run such that audio is rendered after its expiry. Rendering time needs to be
configured in free run mode, and can be re-synchronized with the ASCC phase interrupt anytime it occurs. In
the case of a missed signal (timeout, retransmission), it continues rendering based on the receiver clock.

7.3.5 Low-Latency Protocol Modules/Peripheral Usage

The low-latency custom protocol library uses several system blocks as part of the protocol implementation. For
proper system functionality, the user cannot use these blocks elsewhere in their application when the low-latency
custom protocol is active without potentially disrupting the low-latency custom protocol. These blocks include:

• The RF front end module, which prevents the Bluetooth low energy BB (HW) from accessing the RF front
end. The radio block works in the RF front-end’s packet handling mode.

• Two of the general purpose timers (timers 0, 1).

7.3.6 LOW-LATENCY CUSTOM PROTOCOL API

This reference material presents a detailed description of all the external API functions in the low-latency custom
protocol library, including calling parameters, returned values, and assumptions.

7.3.6.1 CP_Configure

Configure protocol environment based on input from application

Table 73. Low-Latency Protocol Library Reference Functions

Function Description Reference

CP_Configure Configure protocol environment based on input from application 7.3.6.1 on p. 196

CP_Disable Disable the protocol 7.3.6.2 on p. 197

CP_Enable Enable the protocol 7.3.6.3 on p. 197

CP_EventHandler Protocol event handler 7.3.6.4 on p. 197

Type Function

Include File #include <cp_pkt.h>

Source File cp_event.c

Template uint8_t CP_Configure(struct cp_param_tag param, struct cp_callback
callback)

Description Configure protocol environment based on input from application

Inputs param = Application input parameters
callback = Application call back functions

Outputs return value = 0 if it configures successfully, error value otherwise

Assumptions None

Example struct app_env_tag app_env;
struct cp_callback callback;

/* Define the application environment and callback for the
* low-latency custom protocol here... */

/* Configure the custom protocol for application use */
CP_Configure(&app_env.cp_param, callback);

onsemi
RSL10 Firmware Reference

www.onsemi.com

197

7.3.6.2 CP_Disable

Disable the protocol

7.3.6.3 CP_Enable

Enable the protocol

7.3.6.4 CP_EventHandler

Protocol event handler

Type Function

Include File #include <cp_pkt.h>

Source File cp_event.c

Template uint8_t CP_Disable(void)

Description Disable the protocol

Inputs None

Outputs return value = 0 if it disables successfully, error value otherwise

Assumptions None

Example /* Disable the custom protocol */
CP_Disable();

Type Function

Include File #include <cp_pkt.h>

Source File cp_event.c

Template uint8_t CP_Enable(uint16_t offset)

Description Enable the protocol

Inputs offset = Offset instant in micro second

Outputs return value = 0 if it enables successfully, error value otherwise

Assumptions None

Example /* Configure and enable the custom protocol for application use */
CP_Configure(&app_env.cp_param, callback);
CP_Enable(500);

Type Function

Include File #include <cp_pkt.h>

Source File cp_event.c

Template uint8_t CP_EventHandler(void)

Description Protocol event handler

Inputs None

Outputs return value = 0 if it handles successfully, error value otherwise

onsemi
RSL10 Firmware Reference

www.onsemi.com

198

Assumptions None

Example /* Main loop: Handle custom protocol events */
while (1)
{
 Sys_Watchdog_Refresh();
 CP_EventHandler();
 SYS_WAIT_FOR_EVENT;
}

www.onsemi.com

199

CHAPTER 8

8.CMSIS Implementation Library Reference
This reference chapter presents a description of the functions implemented in the standards-compliant CMSIS

library. This includes calling parameters, returned values, and assumptions. These functions implement the
CMSIS-required device specific functions, and extend the generic function implementations provided for the ARM
Cortex-M3 processor. The generic functions provided by CMSIS are included in the CMSIS header files, and reference
documentation is provided by the standard ARM CMSIS documentation (http://arm-software.github.io/CMSIS_5/Core/
html/modules.html).

8.1 SYSTEMCORECLOCKUPDATE

Updates the variable SystemCoreClock and the FLASH_DELAY_CTRL register

Type Function

Include File #include <rsl10.h>

Source File system_rsl10.c

Template void SystemCoreClockUpdate(void)

Description Updates the variable SystemCoreClock and the FLASH_DELAY_CTRL register. This function must be called
whenever the core clock is changed during program execution.

Inputs None

Outputs None

Assumptions It is safe to treat undefined clock configurations as if they are sourced from the RC oscillator.

EXTCLK and JTCK should be scaled from their maximum frequencies.

It is safe to assume a STANDBYCLK frequency of 32768 Hz

Example /* Switch the system clock source to RF clock (clearing the
 * EXTCLK/JTCK divisors), and refresh the system core clock
 * variable. */
Sys_Clocks_SystemClkConfig(SYSCLK_CLKSRC_RFCLK);
SystemCoreClockUpdate();

onsemi
RSL10 Firmware Reference

www.onsemi.com

200

8.2 SYSTEMINIT

Setup the system core clock variable; assumes the ROM has previously initialized the system

Type Function

Include File #include <rsl10.h>

Source File system_rsl10.c

Template SystemInit

Description Setup the system core clock variable; assumes the ROM has previously initialized the system.

Inputs None

Outputs None

Assumptions None

Example /* Initialize the system */
SystemInit();

www.onsemi.com

201

onsemi Confidential

CHAPTER 9

9.System Library Reference
This reference chapter presents a detailed description of all the macros, functions and inline functions defined in

the ARM® Cortex®-M3 processor's system library. For each macro, function or inline function, it describes calling
parameters, modified registers, and returned values.

9.1 BLE_DEVICEPARAM_SET_ADV_IFS

Definition of the function to set advertisement inter-frame space

Type Function

Include File #include <rsl10.h>

Source File rsl10_protocol.c

Template BLE_DeviceParam_Set_ADV_IFS(uint32_t adv_ifs)

Description Definition of the function to set advertisement inter-frame space

Inputs adv_ifs = A inter-frame space in us

Outputs None

Assumptions None

Example

www.onsemi.com

202

onsemi Confidential
RSL10 Firmware Reference

9.2 BLE_DEVICEPARAM_SET_ADVDELAY

Enables a fixed value for advertisement intervals by setting advDelay to zero

Type Function

Include File #include <rsl10.h>

Source File rsl10_protocol.c

Template BLE_DeviceParam_Set_AdvDelay(uint8_t fixedDelayEnable)

Description Enables a fixed value for advertisement intervals by setting advDelay to zero. If enabled, this feature will
violate the Bluetooth Low Energy specification

Inputs fixedDelayEnable = Set to non-zero to enable a zero random AdvDelay value

Outputs None

Assumptions None

Example

www.onsemi.com

203

onsemi Confidential
RSL10 Firmware Reference

9.3 BLE_DEVICEPARAM_SET_CLOCKACCURACY

Definition of the function to set clock accuracy according to XTAL 48 MHz or low power clock accuracy for
sleep applications

Type Function

Include File #include <rsl10.h>

Source File rsl10_protocol.c

Template BLE_DeviceParam_Set_ClockAccuracy(uint16_t clockAccuracy)

Description Definition of the function to set clock accuracy according to XTAL 48 MHz or low power clock accuracy for
sleep applications

Inputs clockAccuracy = Clock accuracy in ppm

Outputs None

Assumptions None

Example

www.onsemi.com

204

onsemi Confidential
RSL10 Firmware Reference

9.4 BLE_DEVICEPARAM_SET_FORCEDCLOCKACCURACY

Definition of the function to set the sum of clock accuracy of master and slave devices

Type Function

Include File #include <rsl10.h>

Source File rsl10_protocol.c

Template BLE_DeviceParam_Set_ForcedClockAccuracy(uint32_t forcedClockAccuracy)

Description Definition of the function to set the sum of clock accuracy of master and slave devices

Inputs forcedClockAccuracy = The sum of clock accuracy of devices in ppm

Outputs None

Assumptions None

Example

www.onsemi.com

205

onsemi Confidential
RSL10 Firmware Reference

9.5 BLE_DEVICEPARAM_SET_MAXNUMRAL

The size of resolving address list

Type Function

Include File #include <rsl10.h>

Source File rsl10_protocol.c

Template BLE_DeviceParam_Set_MaxNumRAL(uint8_t maxNumRAL)

Description The size of resolving address list

Inputs maxNumRAL = Maximum number of devices that can be set for RAL. By default it is set to 3.
For a baseband clock equal or greater than 16 MHz, it can be set up to 6.

Outputs None

Assumptions None

Example

www.onsemi.com

206

onsemi Confidential
RSL10 Firmware Reference

9.6 BLE_DEVICEPARAM_SET_MAXRXOCTET

Setting of default data length parameters

Type Function

Include File #include <rsl10.h>

Source File rsl10_protocol.c

Template BLE_DeviceParam_Set_MaxRxOctet(uint8_t maxRxOctet, uint16_t maxRxTime)

Description Setting of default data length parameters

Inputs maxRxOctet = Supported maximum number of bytes for RX : - maxRxTime - Supported
maximum time in microsecond for RX

Outputs return value = Returns zero if parameters are set successfully

Assumptions None

Example

www.onsemi.com

207

onsemi Confidential
RSL10 Firmware Reference

9.7 BLE_DEVICEPARAM_SET_SLAVELATENCYDELAY

Sets a delay to the instant that slave latency is applies Slave latency is delayed by the number of interval equals to
the argument of latencyDelay

Type Function

Include File #include <rsl10.h>

Source File rsl10_protocol.c

Template BLE_DeviceParam_Set_SlaveLatencyDelay(uint8_t latencyDelay)

Description Sets a delay to the instant that slave latency is applies Slave latency is delayed by the number of interval
equals to the argument of latencyDelay

Inputs fixedDelayEnable = The desired number of interval that slave latency is delayed

Outputs None

Assumptions None

Example

www.onsemi.com

208

onsemi Confidential
RSL10 Firmware Reference

9.8 DEVICE_PARAM_PREPARE

Weak definition of the function in case that application doesn't define it

Type Function

Include File #include <rsl10.h>

Source File rsl10_protocol.c

Template Device_Param_Prepare(app_device_param_t *param)

Description Weak definition of the function in case that application doesn't define it

Inputs param = Parameter identifier

Outputs None

Assumptions None

Example /* This weakly defined function must be replaced by any application
 * that wishes to use the Device_Param_Read() function */

www.onsemi.com

209

onsemi Confidential
RSL10 Firmware Reference

9.9 DEVICE_PARAM_READ

Read Bluetooth low energy parameters, security keys, and channel assessment parameters that are provided by
the application or NVR3

Type Function

Include File #include <rsl10.h>

Source File rsl10_protocol.c

Template Device_Param_Read(uint8_t requestedId, uint8_t *buf)

Description Read Bluetooth low energy parameters, security keys, and channel assessment parameters that are provided
by the application or NVR3

Inputs requestedId = Parameter identifier
buf = Pointer to the returned value

Outputs Return value = Indicate if requested parameter exists in flash memory

Assumptions Application has declared Device_Param_Prepare function

Example /* Read the public Bluetooth address from the device parameters */

if (Device_Param_Read(PARAM_ID_PUBLIC_BLE_ADDRESS, (uint8_t *)
&tempAddr))
{
 /* Use the address that was read to set up the device */
}

www.onsemi.com

210

onsemi Confidential
RSL10 Firmware Reference

9.10 SYS_ADC_CLEAR_BATMONSTATUS

Clear the battery monitor status

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_adc.h

Template void Sys_ADC_Clear_BATMONStatus(void)

Description Clear the battery monitor status

Inputs None

Outputs None

Assumptions None

Example /* Clear ADC new sample ready, overrun condition and battery
 * monitoring alarm status. */
Sys_ADC_Clear_BATMONStatus();

www.onsemi.com

211

onsemi Confidential
RSL10 Firmware Reference

9.11 SYS_ADC_GET_BATMONSTATUS

Get the battery monitor status

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_adc.h

Template uint32_t Sys_ADC_Get_BATMONStatus(void)

Description Get the battery monitor status

Inputs None

Outputs return value = Current ADC_BATMON_STATUS status; compare with
BATMON_ALARM_[FALSE | TRUE], ADC_OVERRUN_[FALSE | TRUE], and
ADC_READY_[FALSE | TRUE]

Assumptions None

Example /* Read status of ADC and battery monitoring alarm. */
status = Sys_ADC_Get_BATMONStatus();

www.onsemi.com

212

onsemi Confidential
RSL10 Firmware Reference

9.12 SYS_ADC_GET_CONFIG

Get the control register values from ADC_CFG

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_adc.h

Template uint32_t Sys_ADC_Get_Config(void)

Description Get the control register values from ADC_CFG

Inputs None

Outputs return value = Current ADC control setting; compare with ADC_VBAT_DIV2_[NORMAL |
DUTY], ADC_[NORMAL | CONTINUOUS], and ADC_[DISABLE |
PRESCALE_*]

Assumptions None

Example /* ADC configuration is read. */
status = Sys_ADC_Get_Config();

www.onsemi.com

213

onsemi Confidential
RSL10 Firmware Reference

9.13 SYS_ADC_INPUTSELECTCONFIG

Configure the input selection for an ADC channel

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_adc.h

Template void Sys_ADC_InputSelectConfig(uint32_t num, uint32_t cfg)

Description Configure the input selection for an ADC channel

Inputs num = Channel number; use [0 to 7]
cfg = Input selection configuration; use ADC_POS_INPUT_* | ADC_NEG_INPUT_*

Outputs None

Assumptions None

Example /* Configure the input selection of ADC. */
Sys_ADC_InputSelectConfig(0, ADC_POS_INPUT_DIO1);

www.onsemi.com

214

onsemi Confidential
RSL10 Firmware Reference

9.14 SYS_ADC_SET_BATMONCONFIG

Set the battery monitor configuration

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_adc.h

Template void Sys_ADC_Set_BATMONConfig(uint32_t cfg)

Description Set the battery monitor configuration.

Inputs cfg = ADC_BATMON configuration; use BATMON_ALARM_[NONE | COUNT1 |
COUNT255] or other values shifted to
ADC_BATMON_CFG_ALARM_COUNT_VALUE_Pos,
SUPPLY_THRESHOLD_[LOW | MID | HIGH] or other values shifted to
ADC_BATMON_CFG_SUPPLY_THRESHOLD_Pos, and BATMON_CH[6 | 7]

Outputs None

Assumptions None

Example /* Configure the battery monitoring alarm count value to 1 and low
 * voltage threshold to 1V and monitor channel 6. */
Sys_ADC_Set_BATMONConfig(BATMON_ALARM_COUNT1 |
 SUPPLY_THRESHOLD_MID |
 BATMON_CH6);

www.onsemi.com

215

onsemi Confidential
RSL10 Firmware Reference

9.15 SYS_ADC_SET_BATMONINTCONFIG

Set the battery monitor interrupt configuration

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_adc.h

Template void Sys_ADC_Set_BATMONIntConfig(uint32_t cfg)

Description Set the battery monitor interrupt configuration

Inputs cfg = ADC_BATMON_INT_ENABLE configuration; use INT_[DIS | EBL]_ADC
ADC_INT_CH*, and INT_[DIS | EBL]_BATMON_ALARM,

Outputs None

Assumptions None

Example /* Enable the ADC and BATMON alarm interrupts assigning channel
 * number 6 to trigger the ADC interrupt. */
Sys_ADC_Set_BATMONIntConfig(INT_EBL_ADC |
 ADC_INT_CH6 |
 INT_EBL_BATMON_ALARM);

www.onsemi.com

216

onsemi Confidential
RSL10 Firmware Reference

9.16 SYS_ADC_SET_CONFIG

Set the ADC configuration

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_adc.h

Template void Sys_ADC_Set_Config(uint32_t cfg)

Description Set the ADC configuration

Inputs cfg = The ADC configuration; use ADC_VBAT_DIV2_[NORMAL | DUTY],
ADC_[NORMAL | CONTINUOUS], and ADC_[DISABLE | PRESCALE_*]

Outputs None

Assumptions None

Example /* Configure ADC to normal mode VBAT dividing and sample the 8
 * channels in rate of 200Hz*/
Sys_ADC_Set_Config(ADC_VBAT_DIV2_DUTY |
 ADC_NORMAL |
 ADC_PRESCALE_800);

www.onsemi.com

217

onsemi Confidential
RSL10 Firmware Reference

9.17 SYS_AES_CIPHER

Run AES-128 cipher engine

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_aes.h

Template void Sys_AES_Cipher(void)

Description Run AES-128 cipher engine

Inputs None

Outputs None

www.onsemi.com

218

onsemi Confidential
RSL10 Firmware Reference

Assumptions The baseband block should be enabled. Sys_AES_Config() has been called.

Example /*
Key (16-octet value MSO to LSO):
 0x4C68384139F574D836BCF34E9DFB01BF
Plaintext_Data (16-octet value MSO to LSO):
 0x0213243546576879ACBDCEDFE0F10213
Encrypted_Data (16-octet value MSO to LSO):
 0x99AD1B5226A37E3E058E3B8E27C2C666
*/

/* Definitions from the BLE stack */
#define EM_BASE_ADDR 0x20012000
#define EM_BLE_ENC_PLAIN_OFFSET 0x1D0
#define EM_BLE_ENC_CIPHER_OFFSET (EM_BLE_ENC_PLAIN_OFFSET + 0x10)

/* Plain-text data */
uint32_t plaintext[4] = {
 0XE0F10213,
 0XACBDCEDF,
 0X46576879,
 0X02132435
};

uint32_t key[4] = {
 0x9DFB01BF,
 0x36BCF34E,
 0x39F574D8,
 0x4C683841,
};

/* Enable and configure the base band block */
BBIF->CTRL = BB_CLK_ENABLE | BBCLK_DIVIDER_8 | BB_WAKEUP;

/* Copy in the exchange memory */
memcpy((void *)(EM_BLE_ENC_PLAIN_OFFSET + EM_BASE_ADDR),
 &plaintext[0],
 0x10 * sizeof(uint8_t));

/* Configure the AES-128 engine for ciphering with the key and the memory
 * zone */
Sys_AES_Config (key, EM_BLE_ENC_PLAIN_OFFSET);

/* Run AES-128 encryption block */
Sys_AES_Cipher();

/* Access to the cipher-text at EM_BLE_ENC_CIPHER_OFFSET address */

www.onsemi.com

219

onsemi Confidential
RSL10 Firmware Reference

9.18 SYS_AES_CONFIG

Configure AES-128 engine for a ciphering method

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_aes.h

Template void Sys_AES_Config(uint32_t * key, uint32_t mem_zone)

Description Configure AES-128 engine for a ciphering method

Inputs key = Pointer to AES encryption 128-bit key
mem_zone = Memory offset from the top of the exchange memory; points to a 32-byte array

consisting of the 16-byte plain-text input, followed by the 16-byte cipher-text
output

Outputs None

Assumptions The baseband block should be enabled.

Example /* Configure the AES-128 engine for ciphering with the key and the memory
 * zone */
Sys_AES_Config (key, EM_BLE_ENC_PLAIN_OFFSET);
/* Access to the cipher-text at EM_BLE_ENC_CIPHER_OFFSET address */

www.onsemi.com

220

onsemi Confidential
RSL10 Firmware Reference

9.19 SYS_ASRC_CALCPHASECNT

Calculate the phase increment value according to the mode and the input frequencies

Type Macro

Include File #include <rsl10.h>

Source File rsl10_sys_asrc.h

Template Sys_ASRC_CalcPhaseCnt(mode, f_src, f_sink)

Description Calculate the phase increment value according to the mode and the input frequencies

Inputs mode = Configuration of the ASRC mode value; use ASRC_INT_MODE |
ASRC_DEC_MODE*

f_src = Source frequency or source sample number
f_sink = Sink frequency or sink sample number

Outputs return value = The phase increment value

Assumptions None

Example /* Calculate the phase increment value when f_src = 4 kHz and
 * f_sink = 16 kHz are in mode 0. */
result = Sys_ASRC_CalcPhaseCnt(ASRC_INT_MODE, 4, 16);

www.onsemi.com

221

onsemi Confidential
RSL10 Firmware Reference

9.20 SYS_ASRC_CHECKINPUTCONFIG

Check that the input frequencies or sample numbers are valid in the range depending on the selected mode

Type Macro

Include File #include <rsl10.h>

Source File rsl10_sys_asrc.h

Template Sys_ASRC_CheckInputConfig(mode, f_src, f_sink)

Description Check that the input frequencies or sample numbers are valid in the range depending on the selected mode

Inputs mode = Configuration of the mode value; use ASRC_INT_MODE |
ASRC_DEC_MODE*

f_src = Source frequency or source sample number
f_sink = Sink frequency or sink sample number

Outputs return value = 0 if frequency range check failed; 1 otherwise

Assumptions None

Example /* Check if f_sink = 16 kHz and f_src = 4 kHz are valid pair of
 * frequencies in mode 0. */
result = Sys_ASRC_CheckInputConfig(ASRC_INT_MODE, 4, 16);

www.onsemi.com

222

onsemi Confidential
RSL10 Firmware Reference

9.21 SYS_ASRC_CONFIG

Configure the ASRC block

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_asrc.h

Template void Sys_ASRC_Config(uint32_t phase_inc, uint32_t cfg)

Description Configure the ASRC block

Inputs phase_inc = The phase increment value
cfg = The WDF type and ASRC mode; use ASRC_[INT_MODE | DEC_MODE*], and

[LOW_DELAY | WIDE_BAND]

Outputs None

Assumptions None

Example /* Configure ASRC block for f_sink = 7 kHz and f_src = 16 kHz in
 * mode = 3. Coefficient setting for WDF1 is for wide band
 * response. */
Sys_ASRC_Config(0x2492792, ASRC_DEC_MODE3 | WIDE_BAND);

www.onsemi.com

223

onsemi Confidential
RSL10 Firmware Reference

9.22 SYS_ASRC_CONFIGRUNTIME

Configure the phase increment value according to the WDF selection and the input frequencies

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_asrc.c

Template void Sys_ASRC_ConfigRunTime(uint32_t cfg, uint32_t f_src, uint32_t
f_sink)

Description Configure the phase increment value according to the WDF selection and the input frequencies. The mode is
calculated automatically.

Inputs cfg = The WDF type and the ASRC mode; use [LOW_DELAY | WIDE_BAND],
[ASRC_INT_MODE | ASRC_DEC_MODE*]

f_src = Source frequency or source sample number
f_sink = Sink frequency or sink sample number
diff_bit = Number of shifts on the numerator of the ASRC formula after the subtraction of

(f_src) and (x*f_sink). It must be calculated by the user to prevent overflow and
have the maximum precision

Outputs None

Assumptions The ASRC mode must be selected according to f_src and f_sink mode == ASRC_INT_MODE where (f_sink >
f_src) mode == ASRC_DEC_MODE1 where (f_sink < f_src * 1.20 && f_sink > f_src * 0.8) mode ==
ASRC_DEC_MODE2 where (f_sink > f_src * 0.4 && f_sink < f_src)) mode == ASRC_DEC_MODE2 where
f_sink < f_src * 0.4

Example /* Configure the ASRC block to convert 16 kHz sample rate to
 * 16.12 kHz at run time. Zero bit shift is performed*/
Sys_ASRC_ConfigRunTime(ASRC_INT_MODE | WIDE_BAND, 16000, 16120, 0);

www.onsemi.com

224

onsemi Confidential
RSL10 Firmware Reference

9.23 SYS_ASRC_INPUTDATA

Send a sample to the ASRC block

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_asrc.h

Template void Sys_ASRC_InputData(uint16_t data)

Description Send a sample to the ASRC block

Inputs data = Value of the input sample

Outputs None

Assumptions None

Example /* Send 0xAA as sample in the ASRC block. */
Sys_ASRC_InputData (0xAA);

www.onsemi.com

225

onsemi Confidential
RSL10 Firmware Reference

9.24 SYS_ASRC_INTENABLECONFIG

Configure the interrupt enable register of the ASRC block

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_asrc.h

Template void Sys_ASRC_IntEnableConfig(uint32_t cfg)

Description Configure the interrupt enable register of the ASRC block

Inputs cfg = Interrupt register value; use INT_EBL_ASRC_IN, INT_EBL_ASRC_OUT,
INT_EBL_ASRC_IN_ERR, and INT_EBL_ASRC_UPDATE_ERR

Outputs None

Assumptions None

Example /* Enable asrc_in and asrc_out interrupts. */
Sys_ASRC_IntEnableConfig(INT_EBL_ASRC_IN |
 INT_EBL_ASRC_OUT);

www.onsemi.com

226

onsemi Confidential
RSL10 Firmware Reference

9.25 SYS_ASRC_OUTPUTCOUNT

Read the ASRC output counter value

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_asrc.h

Template uint32_t Sys_ASRC_OutputCount(void)

Description Read the ASRC output counter value

Inputs None

Outputs return value = The output counter value

Assumptions None

Example /* Read the number of output samples. */
result = Sys_ASRC_OutputCount();

www.onsemi.com

227

onsemi Confidential
RSL10 Firmware Reference

9.26 SYS_ASRC_OUTPUTDATA

Read a sample from the ASRC block

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_asrc.h

Template uint16_t Sys_ASRC_OutputData(void)

Description Read a sample from the ASRC block

Inputs None

Outputs return value = The output value of the block

Assumptions None

Example /* Read sample out of the ASRC block. */
result = Sys_ASRC_OutputData();

www.onsemi.com

228

onsemi Confidential
RSL10 Firmware Reference

9.27 SYS_ASRC_PHASEINCCONFIG

Calculate the phase increment value in m8p24

Type Macro

Include File #include <rsl10.h>

Source File rsl10_sys_asrc.h

Template Sys_ASRC_PhaseIncConfig(mode, f_src, f_sink)

Description Calculate the phase increment value in m8p24

Inputs mode = Configuration value; use ASRC_INT_MODE | ASRC_DEC_MODE*
f_src = Source frequency or source samples
f_sink = Sink frequency or sink samples

Outputs return value = 0 if frequency range check failed; otherwise return the phase increment value

Assumptions None

Example /* Calculate the phase increment value when f_src = 4 kHz and
 * f_sink = 16 kHz are in mode 0. */
result = Sys_ASRC_PhaseIncConfig(ASRC_INT_MODE, 4, 16);

www.onsemi.com

229

onsemi Confidential
RSL10 Firmware Reference

9.28 SYS_ASRC_RESET

Reset the ASRC block

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_asrc.h

Template void Sys_ASRC_Reset(void)

Description Reset the ASRC block

Inputs None

Outputs None

Assumptions None

Example /* Reset the ASRC block. */
Sys_ASRC_Reset();

www.onsemi.com

230

onsemi Confidential
RSL10 Firmware Reference

9.29 SYS_ASRC_RESETOUTPUTCOUNT

Reset the ASRC block output counter

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_asrc.h

Template void Sys_ASRC_ResetOutputCount(void)

Description Reset the ASRC block output counter

Inputs None

Outputs None

Assumptions None

Example /* Reset the ASRC output counter. */
Sys_ASRC_ResetOutputCount();

www.onsemi.com

231

onsemi Confidential
RSL10 Firmware Reference

9.30 SYS_ASRC_STATUS

Read status of the ASRC block

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_asrc.h

Template uint32_t Sys_ASRC_Status(void)

Description Read status of the ASRC block

Inputs None

Outputs return value = The value of the ASRC_CTRL register

Assumptions None

Example /* Read status of the ASRC block. */
result = Sys_ASRC_Status();

www.onsemi.com

232

onsemi Confidential
RSL10 Firmware Reference

9.31 SYS_ASRC_STATUSCONFIG

Configure the status of the ASRC block

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_asrc.h

Template void Sys_ASRC_StatusConfig(uint32_t cfg)

Description Configure the status of the ASRC block

Inputs cfg = The value of the ASRC_CTRL register

Outputs None

Assumptions None

Example /* Reset the ASRC block. */
Sys_ASRC_StatusConfig(ASRC_RESET);

www.onsemi.com

233

onsemi Confidential
RSL10 Firmware Reference

9.32 SYS_AUDIO_DMICDIOCONFIG

Configure two DIOs for the specified DMIC data input selection

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_audio.h

Template void Sys_Audio_DMICDIOConfig(uint32_t cfg, uint32_t clk, uint32_t data,
uint32_t clk_ext)

Description Configure two DIOs for the specified DMIC data input selection

Inputs cfg = DIO pin configuration for the DMIC input
clk = DIO to use as the DMIC clock out pad
data = DIO to use as the DMIC input pad
clk_ext = Clock source for external clock on DMIC clock pad; use

DIO_MODE_[AUDIOCLK | AUDIOSLOWCLK]

Outputs None

Assumptions None

Example /* Configure DIOs 1 and 4 as the DMIC interface. */
Sys_Audio_DMICDIOConfig(APP_DIO_CFG, 1, 4, DIO_MODE_AUDIOCLK);

www.onsemi.com

234

onsemi Confidential
RSL10 Firmware Reference

9.33 SYS_AUDIO_ODDIOCONFIG

Configure two DIOs for the specified OD data output selection

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_audio.h

Template void Sys_Audio_ODDIOConfig(uint32_t cfg, uint32_t od_p, uint32_t od_n)

Description Configure two DIOs for the specified OD data output selection

Inputs cfg = DIO pin configuration for the OD outputs
od_p = DIO to use as the OD positive pin
od_n = DIO to use as the OD negative pin

Outputs None

Assumptions None

Example /* Configure pin 0 as OD positive and 1 as OD negative. */
Sys_Audio_ODDIOConfig(DIO_NO_PULL, 0, 1);

www.onsemi.com

235

onsemi Confidential
RSL10 Firmware Reference

9.34 SYS_AUDIO_ODDIOCONFIGMULT

Configure multiple sets of DIOs for the specified OD data output selection

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_audio.c

Template void Sys_Audio_ODDIOConfigMult(uint32_t cfg, uint32_t * od_p, uint32_t *
od_n, uint32_t num)

Description Configure multiple sets of DIOs for the specified OD data output selection

Inputs cfg = DIO pin configuration for the OD outputs
od_p = Pointer to the DIOs array to use as the OD positive pins
od_n = Pointer to the DIOs array to use as the OD negative pins
num = Number of pairs of DIO pins used for the OD

Outputs None

Assumptions The arrays od_p and od_n are the same length

Example /* Configure 3 pins as OD positive and 3 others as OD negative. */
#define NUM_OD_DIO 3

uint32_t P[NUM_OD_DIO] = {0, 1, 2};
uint32_t N[NUM_OD_DIO] = {3, 4, 5};
Sys_Audio_ODDIOConfigMult(DIO_NO_PULL, &P[0], &N[0], NUM_OD_DIO);

www.onsemi.com

236

onsemi Confidential
RSL10 Firmware Reference

9.35 SYS_AUDIO_SET_CONFIG

Configure the audio block

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_audio.h

Template void Sys_Audio_Set_Config(uint32_t cfg)

Description Configure the audio block

Inputs cfg = The DMIC and OD configuration values; use OD_[AUDIOCLK |
AUDIOSLOWCLK], DMIC_[AUDIOCLK | AUDIOSLOWCLK],
DECIMATE_BY_*, OD_UNDERRUN_PROTECT_[ENABLE | DISABLE],
OD_DMA_REQ_[ENABLE | DISABLE], OD_INT_GEN_[ENABLE | DISABLE],
OD_DATA_[LSB | MSB]_ALIGNED, OD_[ENABLE | DISABLE],
DMIC*_DMA_REQ_[ENABLE | DISABLE], DMIC*_INT_GEN_[ENABLE |
DISABLE], DMIC*_DATA_[LSB | MSB]_ALIGNED, and DMIC*_[ENABLE |
DISABLE]

Outputs None

Assumptions None

Example /* Enable OD with LSB aligned setting. */
Sys_Audio_Set_Config(OD_ENABLE | OD_DATA_LSB_ALIGNED);

www.onsemi.com

237

onsemi Confidential
RSL10 Firmware Reference

9.36 SYS_AUDIO_SET_DMICCONFIG

Configure the DMIC

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_audio.h

Template void Sys_Audio_Set_DMICConfig(uint32_t cfg, uint32_t frac_delay)

Description Configure the DMIC

Inputs cfg = The DMIC configuration; use DMIC*_DCRM_CUTOFF_[*HZ | DISABLE],
DMIC1_DELAY_[*P* | DISABLE], and DMIC*_[FALLING | RISING]_EDGE

frac_delay = DMIC1 fractional delay; use a 5- bit number

Outputs None

Assumptions None

Example /* Enable DMIC0 for a 5 Hz cutoff removal frequency and decimation
 * rate of 64, sampled on the falling edge of the input clock */
Sys_Audio_Set_DMICConfig(DMIC0_DCRM_CUTOFF_5HZ |
 DECIMATE_BY_64 |
 DMIC0_FALLING_EDGE |
 DMIC0_ENABLE,
 0);

www.onsemi.com

238

onsemi Confidential
RSL10 Firmware Reference

9.37 SYS_AUDIO_SET_ODCONFIG

Configure the OD block and sigma-delta modulator for normal operation

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_audio.h

Template void Sys_Audio_Set_ODConfig(uint32_t cfg)

Description Configure the OD block and sigma-delta modulator for normal operation

Inputs cfg = The OD configuration; use DCRM_CUTOFF_[*HZ | DISABLE],
DITHER_[ENABLE | DISABLE], and OD_[RISING | FALLING]_EDGE

Outputs None

Assumptions None

Example /* Configure OD to enable dithering, DC removal with a 10 Hz cut off
 * frequency and output data clock edge on rising. */
Sys_Audio_Set_ODConfig (DCRM_CUTOFF_10HZ |
 DITHER_ENABLE |
 OD_RISING_EDGE);

www.onsemi.com

239

onsemi Confidential
RSL10 Firmware Reference

9.38 SYS_AUDIOSINK_CONFIG

Configure the audio sink block and set values for clock counter, clock phase counter and clock period counter

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_audiosink.h

Template void Sys_Audiosink_Config(uint32_t cfg, uint32_t phasecnt, uint32_t
periodcnt)

Description Configure the audio sink block and set values for clock counter, clock phase counter and clock period counter

Inputs cfg = The number of the audio sink Clock periods over which the period counter
measures; use AUDIO_SINK_PERIODS_*

phasecnt = The sink clock phase counter initial value
periodcnt = The sink clock period counter initial value

Outputs None

Assumptions None

Example /* Measure 1 audio sink clock period. The initial value for the phase
 * and period counter is 0. */
Sys_Audiosink_Config(AUDIO_SINK_PERIODS_1, 0, 0);

www.onsemi.com

240

onsemi Confidential
RSL10 Firmware Reference

9.39 SYS_AUDIOSINK_COUNTER

Read the value of the audio sink Clock counter

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_audiosink.h

Template uint32_t Sys_Audiosink_Counter(void)

Description Read the value of the audio sink Clock counter

Inputs None

Outputs return value = The current value of the audio sink Clock counter

Assumptions None

Example /* Read audio sink clock counter value. */
result = Sys_Audiosink_Counter();

www.onsemi.com

241

onsemi Confidential
RSL10 Firmware Reference

9.40 SYS_AUDIOSINK_INPUTCLOCK

Configure a source for the audio sink input

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_audiosink.h

Template void Sys_Audiosink_InputClock(uint32_t cfg, uint32_t sink)

Description Configure a source for the audio sink input

Inputs cfg = DIO pin configuration for the audio sink input
sink = Source to use as the audio sink input pad; use AUDIOSINK_CLK_SRC_DIO_*,

AUDIOSINK_CLK_SRC_CONST_[LOW | HIGH], or
AUDIOSINK_CLK_SRC_[STANDBYCLK | DMIC_OD]

Outputs None

Assumptions None

Example /* Configure DIO 0 as Audio Sink pad. */
Sys_Audiosink_InputClock(APP_DIO_CFG, AUDIOSINK_CLK_SRC_DIO_0);

www.onsemi.com

242

onsemi Confidential
RSL10 Firmware Reference

9.41 SYS_AUDIOSINK_PERIODCOUNTER

Read the value of the audio sink Clock period counter

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_audiosink.h

Template uint32_t Sys_Audiosink_PeriodCounter(void)

Description Read the value of the audio sink Clock period counter

Inputs None

Outputs return value = The current value of the audio sink Clock period counter

Assumptions None

Example /* Read the audio sink period counter value. */
result = Sys_Audiosink_PeriodCounter();

www.onsemi.com

243

onsemi Confidential
RSL10 Firmware Reference

9.42 SYS_AUDIOSINK_PHASECOUNTER

Read the value of the audio sink Clock phase counter

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_audiosink.h

Template uint32_t Sys_Audiosink_PhaseCounter(void)

Description Read the value of the audio sink Clock phase counter

Inputs None

Outputs return value = The current value of the audio sink Clock phase counter

Assumptions None

Example /* Read the audio sink phase counter value. */
result = Sys_Audiosink_PhaseCounter();

www.onsemi.com

244

onsemi Confidential
RSL10 Firmware Reference

9.43 SYS_AUDIOSINK_RESETCOUNTERS

Reset counter, phase counter and period counter mechanism

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_audiosink.h

Template void Sys_Audiosink_ResetCounters(void)

Description Reset counter, phase counter and period counter mechanism.

Inputs None

Outputs None

Assumptions None

Example /* Reset all Audio Sink counters. */
Sys_Audiosink_ResetCounters();

www.onsemi.com

245

onsemi Confidential
RSL10 Firmware Reference

9.44 SYS_AUDIOSINK_SET_CTRL

Configure the audio sink Clock control

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_audiosink.h

Template void Sys_Audiosink_Set_Ctrl(uint32_t cfg)

Description Configure the audio sink Clock control

Inputs cfg = The control value for the audio sink; use PHASE_CNT_[STOP | START], and
CNT_RESET

Outputs None

Assumptions None

Example /* Reset PERIOD_CNT and start audio sink clock period counter,
 * stop audio sink clock phase counter. */
Sys_Audiosink_Set_Ctrl(PHASE_CNT_STOP |
 CNT_RESET);

www.onsemi.com

246

onsemi Confidential
RSL10 Firmware Reference

9.45 SYS_BBIF_CONNECTRFFE

Internally connect the baseband to the RF front-end

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_bbif.h

Template Sys_BBIF_ConnectRFFE(void)

Description Internally connect the baseband to the RF front-end.

Inputs None

Outputs None

Assumptions None

Example /* Connect baseband to RF front-end. */
Sys_BBIF_ConnectRFFE();

www.onsemi.com

247

onsemi Confidential
RSL10 Firmware Reference

9.46 SYS_BBIF_DIOCONFIG

Configure DIO pads connected to radio pins of baseband controller

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_bbif.h

Template void Sys_BBIF_DIOConfig(uint32_t cfg, uint32_t gpi_rx_clk, uint32_t
gpi_rx_data, uint32_t tx_data_valid, uint32_t tx_data, uint32_t sync_p)

Description Configure DIO pads connected to radio pins of baseband controller

Inputs cfg = DIO pin configuration for the output pads
rx_clk = DIO to use as the BB_RX_CLK pad
rx_data = DIO to use as the BB_RX_DATA pad
tx_data_valid = DIO to use as the BB_TX_DATA_VALID pad
tx_data = DIO to use as the BB_TX_DATA pad
sync_p = DIO to use as the BB_SYNC_P pad

Outputs None

Assumptions None

Example /* Configure DIOs 1, 2, 3, 4, 5 as data for baseband. */
Sys_BBIF_DIOConfig(APP_DIO_CFG, 1, 2, 3, 4, 5);

www.onsemi.com

248

onsemi Confidential
RSL10 Firmware Reference

9.47 SYS_BBIF_RFFE

Configure a DIO as a source for RF front-end audio synchronization pulse

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_bbif.h

Template void Sys_BBIF_RFFE(uint32_t gpio_num)

Description Configure a DIO as a source for RF front-end audio synchronization pulse

Inputs gpio_num = GPIO number used for SYNC_PULSE generation

Outputs None

Assumptions None

Example /* Configure RF front-end audio synchronization pulse with link
 * label 0x00
 */
Sys_BBIF_RFFE(0x00);

www.onsemi.com

249

onsemi Confidential
RSL10 Firmware Reference

9.48 SYS_BBIF_RFFEDRIVENEXTERNAL

Configure DIO pads connected to the RF frontend interface to be driven from an external device

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_bbif.h

Template Sys_BBIF_RFFEDrivenExternal(uint32_t cfg, uint32_t clk, uint32_t mosi,
uint32_t miso, uint32_t csn, uint32_t rx_clk, uint32_t rx_data, uint32_t
tx_data_val, uint32_t tx_data, uint32_t sync_p)

Description Configure DIO pads connected to the RF frontend interface to be driven from an external device

Inputs cfg = DIO pin configuration for the output pads
clk = DIO to use as the clock pad
mosi = DIO to use as the MOSI pad
miso = DIO to use as the MISO pad
csn = DIO to use as the chip select pad
rx_clk = DIO to use as the BB_RX_CLK pad
rx_data = DIO to use as the BB_RX_DATA pad
tx_data_valid = DIO to use as the BB_TX_DATA_VALID pad
tx_data = DIO to use as the BB_TX_DATA pad
sync_p = DIO to use as the BB_SYNC_P pad

Outputs None

Assumptions None

Example /* Connect RF and digital pins to external GPIOs. */
Sys_BBIF_RFFEDrivenExternal(DIO_WEAK_PULL_DOWN,
 0, 1, 2, 3, 4, 5, 6, 7, 8);

www.onsemi.com

250

onsemi Confidential
RSL10 Firmware Reference

9.49 SYS_BBIF_SPICONFIG

Configure DIOs as an SPI slave for the Bluetooth baseband controller; disable the RF SPI slave interface

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_bbif.h

Template void Sys_BBIF_SPIConfig(uint32_t cfg, uint32_t miso, uint32_t csn,
uint32_t mosi, uint32_t clk)

Description Configure DIOs as an SPI slave for the Bluetooth baseband controller; disable the RF SPI slave interface

Inputs cfg = DIO pin configuration for the output pads
miso = DIO to use as the MISO pad
csn = DIO to use as the CSN pad
mosi = DIO to use as the MOSI pad
clk = DIO to use as the CLK pad

Outputs None

Assumptions None

Example /* Configure DIOs 1, 2, 3, 4 as the baseband SPI interface in slave
 * mode
 */
Sys_BBIF_SPIConfig(APP_DIO_CFG, 1, 2, 3, 4);

www.onsemi.com

251

onsemi Confidential
RSL10 Firmware Reference

9.50 SYS_BBIF_SYNCCONFIG

Configure the link synchronization

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_bbif.h

Template void Sys_BBIF_SyncConfig(uint32_t cfg, uint32_t linklbl, uint32_t
linkformat)

Description Configure the link synchronization

Inputs cfg = Configuration of the link synchronization mechanism mode; use RX_[IDLE |
ACTIVE], SYNC_[DISABLE | ENABLE], [IDLE | ACTIVE], and
SYNC_SOURCE_[BLE_RX | BLE_RX_AUDIO* | RF_RX | BLE_TX]

linklbl = The BLE link label for synchronization; use a 5-bit number
linkformat = Configure the BLE link format for synchronization; use [SLAVE,

MASTER]_CONNECT

Outputs None

Assumptions None

Example /* Configure the baseband synchronization signal to trigger from the
 * RX signal. */
Sys_BBIF_SyncConfig(SYNC_ENABLE | SYNC_SOURCE_BLE_TX, 0,
 SLAVE_CONNECT);

www.onsemi.com

252

onsemi Confidential
RSL10 Firmware Reference

9.51 SYS_BOOTROM_RESET

Reset the system by executing the reset vector in the Boot ROM

Type Function

Include File #include <rsl10.h>

Source File rsl10_romvect.h

Template void Sys_BootROM_Reset(void)

Description Reset the system by executing the reset vector in the Boot ROM

Inputs None

Outputs None

Assumptions None

Example /* Reset the system by executing the reset vector in the Boot ROM. */
Sys_BootROM_Reset();

www.onsemi.com

253

onsemi Confidential
RSL10 Firmware Reference

9.52 SYS_BOOTROM_STARTAPP

Validate and start up an application using the Boot ROM

Type Function

Include File #include <rsl10.h>

Source File rsl10_romvect.h

Template BootROMStatus Sys_BootROM_StartApp(uint32_t* vect_table)

Description Validate and start up an application using the Boot ROM.

Inputs vect_table = Pointer to the vector table at the start of an application that will be validated and
then run.

Outputs return value = Status code indicating application validation error if application cannot be
started. If not returning, the status code is written to the top of the started
application's stack to capture non-fatal validation issues.

Assumptions None

Example /* Checks if application is valid and starts it (if possible).
 * Returns status code. */
isValid = Sys_BootROM_StartApp(vect_table);

www.onsemi.com

254

onsemi Confidential
RSL10 Firmware Reference

9.53 SYS_BOOTROM_STARTAPP_RETURN

Read the start application return code from the application stack for the current application

Type Macro

Include File #include <rsl10.h>

Source File rsl10_sys_cm3.h

Template SYS_BOOTROM_STARTAPP_RETURN

Description Read the start application return code from the application stack for the current application

Inputs None

Outputs return value = The value stored on the top of the stack (uint32_t); compare against
BOOTROM_ERR_* or SYS_INIT_ERR_*

Assumptions None

Example /* Check the boot ROM start application error code return. */
result = SYS_BOOTROM_STARTAPP_RETURN;

www.onsemi.com

255

onsemi Confidential
RSL10 Firmware Reference

9.54 SYS_BOOTROM_STRICTSTARTAPP

Validate and start up an application using the Boot ROM

Type Function

Include File #include <rsl10.h>

Source File rsl10_romvect.c

Template BootROMStatus Sys_BootROM_StrictStartApp(uint32_t* vect_table)

Description Validate and start up an application using the Boot ROM. Only start the application if application validation
returns BOOTROM_ERR_NONE.

Inputs vect_table = Pointer to the vector table at the start of an application that will be validated and
then run.

Outputs return value = Status code indicating application validation error if application cannot be
started. If not returning, the status code is written to the top of the started
application's stack to capture non-fatal validation issues.

Assumptions None

Example /* Checks if application is valid and starts it (if possible).
 * Returns status code if any errors at all occur. */
isValid = Sys_BootROM_StrictStartApp(vect_table);

www.onsemi.com

256

onsemi Confidential
RSL10 Firmware Reference

9.55 SYS_BOOTROM_VALIDATEAPP

Validate an application using the Boot ROM application checks

Type Function

Include File #include <rsl10.h>

Source File rsl10_romvect.h

Template BootROMStatus Sys_BootROM_ValidateApp(uint32_t* vect_table)

Description Validate an application using the Boot ROM application checks.

Inputs vect_table = Pointer to the vector table at the start of an application that will be validated.

Outputs return value = Status code indicating whether a validation error occurred or not; compare
against BOOTROM_ERR_*

Assumptions None

Example /* Checks if application is valid. Returns status code. */
isValid = Sys_BootROM_ValidateApp(vect_table);

www.onsemi.com

257

onsemi Confidential
RSL10 Firmware Reference

9.56 SYS_CLOCKS_CLKDETENABLE

Enable/Disable the external clock detector

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_clocks.h

Template void Sys_Clocks_ClkDetEnable(void)

Description Enable/Disable the external clock detector

Inputs cfg = Configuration of the clock detector enable value; use CLK_DET_[DISABLE |
ENABLE]_BITBAND

Outputs None

Assumptions None

Example /* Enable the clock detector. */
Sys_Clocks_ClkDetEnable(CLK_DET_ENABLE_BITBAND);

www.onsemi.com

258

onsemi Confidential
RSL10 Firmware Reference

9.57 SYS_CLOCKS_OSC

Configure the RC oscillator

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_clocks.h

Template void Sys_Clocks_Osc(uint32_t cfg)

Description Configure the RC oscillator

Inputs cfg = Configuration for 3 MHz/12 MHz RC oscillator; use RC_START_OSC_[3 |
12]MHZ RC_START_OSC_[M48 | M46P5 | NOM | P46P5]

Outputs None

Assumptions None

Example /* Enable the RC oscillator at a nominal 3 MHz frequency. */
Sys_Clocks_Osc(RC_OSC_ENABLE |
 RC_START_OSC_3MHZ);

www.onsemi.com

259

onsemi Confidential
RSL10 Firmware Reference

9.58 SYS_CLOCKS_OSC32KCALIBRATEDCONFIG

Set the standby clock frequency to the given target based on a calibration trim value specified in NVR4

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_clocks.c

Template unsigned int Sys_Clocks_Osc32kCalibratedConfig(uint16_t target)

Description Set the standby clock frequency to the given target based on a calibration trim value specified in NVR4. The
32k oscillator is not enabled. This function will only load the trim register, the user is responsible for enabling
the oscillator if desired.

Inputs target = The target 32k oscillator frequency in Hz

Outputs return value = A code indicating whether an error has occurred.

Assumptions None

Example /* Load the standby oscillator trim register to target 32768 Hz */
result = Sys_Clocks_Osc32kCalibratedConfig(32768);

www.onsemi.com

260

onsemi Confidential
RSL10 Firmware Reference

9.59 SYS_CLOCKS_OSC32KHZ

Configure the 32 kHz RC oscillator

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_clocks.h

Template void Sys_Clocks_Osc32kHz(uint32_t cfg)

Description Configure the 32 kHz RC oscillator

Inputs cfg = Configuration for 32 kHz RC oscillator; use RC_OSC_[DISABLE | ENABLE]
RC_OSC_RANGE_[NOM | M25] RC_OSC_[M48 | M46P5 | NOM | P46P5]

Outputs None

Assumptions None

Example /* The 32kHz RC Oscillator frequency trimming set to the nominal. */
Sys_Clocks_Osc32kHz(RC_OSC_NOM);

www.onsemi.com

261

onsemi Confidential
RSL10 Firmware Reference

9.60 SYS_CLOCKS_OSCRCCALIBRATEDCONFIG

Set the start oscillator frequency to the given target based on a calibration trim value specified in NVR4

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_clocks.c

Template unsigned int Sys_Clocks_OscRCCalibratedConfig(uint16_t target)

Description Set the start oscillator frequency to the given target based on a calibration trim value specified in NVR4. This
function only loads the trim register and multiplier bit if necessary.

Inputs target = The target start oscillator frequency in kHz

Outputs return value = A code indicating whether an error has occurred.

Assumptions None

Example /* Load the start oscillator trim register for a target of 3 MHz */
result = Sys_Clocks_OscRCCalibratedConfig(3000);

www.onsemi.com

262

onsemi Confidential
RSL10 Firmware Reference

9.61 SYS_CLOCKS_SET_CLKDETCONFIG

Configure the external clock detector

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_clocks.h

Template void Sys_Clocks_Set_ClkDetConfig(uint32_t cfg)

Description Configure the external clock detector

Inputs cfg = The external clock detector configuration; use CLK_DET_[DISABLE |
ENABLE], CLK_DET_SLOWCLK_DIV*, CLK_DET_INT_[DISABLE |
ACTIVATED | DEACTIVATED | ACTIVITY_CHANGE], and
CLK_DET_SEL_[EXT | SW]CLK

Outputs None

Assumptions None

Example /* Enable the clock detector to monitor EXTCLK, setting the
 * clock detector divider to 32. */
Sys_Clocks_Set_ClkDetConfig(CLK_DET_ENABLE |
 CLK_DET_SLOWCLK_DIV32 |
 CLK_DET_INT_ACTIVATED |
 CLK_DET_SEL_EXTCLK);

www.onsemi.com

263

onsemi Confidential
RSL10 Firmware Reference

9.62 SYS_CLOCKS_SYSTEMCLKCONFIG

Configure System Clock

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_clocks.h

Template void Sys_Clocks_SystemClkConfig(uint32_t cfg)

Description Configure System Clock

Inputs cfg = Configuration of the system clock source and prescale value; use
SYSCLK_CLKSRC_[RCCLK | STANDBYCLK | RFCLK | EXTCLK | JTCK],
EXTCLK_PRESCALE_*, and JTCK_PRESCALE_*

Outputs None

Assumptions None

Example /* Configure the system clock source to RF clock with default
 * prescale values.
 */
Sys_Clocks_SystemClkConfig(SYSCLK_CLKSRC_RFCLK |
 EXTCLK_PRESCALE_1 |
 JTCK_PRESCALE_1);

www.onsemi.com

264

onsemi Confidential
RSL10 Firmware Reference

9.63 SYS_CLOCKS_SYSTEMCLKPRESCALE0

Configure prescale register number 0

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_clocks.h

Template void Sys_Clocks_SystemClkPrescale0(uint32_t cfg)

Description Configure prescale register number 0

Inputs cfg = Configuration of the prescale value for the slow, user and baseband peripheral
clocks; use SLOWCLK_PRESCALE_*, BBCLK_PRESCALE_*, and
USRCLK_PRESCALE_*

Outputs None

Assumptions None

Example /* Configure prescale of slow clock to 1, baseband clock to 2 and
 * user clock to 3. */
Sys_Clocks_SystemClkPrescale0(SLOWCLK_PRESCALE_1 |
 BBCLK_PRESCALE_2 |
 USRCLK_PRESCALE_3);

www.onsemi.com

265

onsemi Confidential
RSL10 Firmware Reference

9.64 SYS_CLOCKS_SYSTEMCLKPRESCALE1

Configure prescale register number 1

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_clocks.h

Template void Sys_Clocks_SystemClkPrescale1(uint32_t cfg)

Description Configure prescale register number 1

Inputs cfg = Configuration of the prescale value for the PWM0, PWM1, UART and AUDIO
input peripheral clocks; use PWM0CLK_PRESCALE_*,
PWM1CLK_PRESCALE_*, UARTCLK_PRESCALE_*, and
AUDIOCLK_PRESCALE_*

Outputs None

Assumptions None

Example /* Configure prescale of PWM0 clock to 1, PWM1 clock to 2,
 * UART clock to 31 and AUDIO clock to 63. */
Sys_Clocks_SystemClkPrescale1(PWM0CLK_PRESCALE_1 |
 PWM1CLK_PRESCALE_2 |
 UARTCLK_PRESCALE_31 |
 AUDIOCLK_PRESCALE_63);

www.onsemi.com

266

onsemi Confidential
RSL10 Firmware Reference

9.65 SYS_CLOCKS_SYSTEMCLKPRESCALE2

Configure prescale register number 2

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_clocks.h

Template void Sys_Clocks_SystemClkPrescale2(uint32_t cfg)

Description Configure prescale register number 2

Inputs cfg = Configuration of the prescale value for the charge pump and DC-DC converter
clocks; use CPCLK_PRESCALE_*, and DCCLK_PRESCALE_*

Outputs None

Assumptions None

Example /* Configure the prescalers of the clocks used by the charge pump
 * and DC-DC converters */
Sys_Clocks_SystemClkPrescale2(CPCLK_PRESCALE_1 |
 DCCLK_PRESCALE_2);

www.onsemi.com

267

onsemi Confidential
RSL10 Firmware Reference

9.66 SYS_CRC_CALC

Calculate the CRC over the specified range

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_crc.c

Template uint32_t Sys_CRC_Calc(uint32_t type, uint32_t base, uint32_t top,
uint32_t* crc_val)

Description Calculate the CRC over the specified range

Inputs type = CRC mode; use CRC_32 or CRC_CCITT
base = Base of the range to be verified
top = Last byte in the range to be verified
crc_val = Address to store the calculated value at

Outputs return value = 0 if invalid input; 1 otherwise

Assumptions None

Example /* Calculate the CRC for a sample buffer */
crc_val = 0x1234;
result = Sys_CRC_Calc(CRC_CCITT, (uint32_t)&sample,
 (uint32_t)&sample[7], &crc_val);

/* Save the calculated CRC at the end of the block (Assumes CRC-CCITT
 * algorithm and Little Endian mode) */
sample[8] = (uint8_t) (crc_val & 0xFF);
sample[9] = (uint8_t) ((crc_val >> 8) & 0xFF);

www.onsemi.com

268

onsemi Confidential
RSL10 Firmware Reference

9.67 SYS_CRC_CHECK

Check the CRC over the specified range assuming the last bytes of the defined block contain the previously
calculated CRC

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_crc.c

Template uint32_t Sys_CRC_Check(uint32_t type, uint32_t base, uint32_t top)

Description Check the CRC over the specified range assuming the last bytes of the defined block contain the previously
calculated CRC

Inputs type = CRC mode; use CRC_32 or CRC_CCITT
base = Base of the range to be verified
top = Last byte in the range to be verified

Outputs return value = 0 if CRC check failed, 1 if CRC check passed, 2 if there's an error

Assumptions None

Example /* Verify the CRC for a sample array of ten 8-bit elements */
result = Sys_CRC_Check(CRC_CCITT, (uint32_t)&sample,
 (uint32_t)&sample[9]);

www.onsemi.com

269

onsemi Confidential
RSL10 Firmware Reference

9.68 SYS_CRC_GET_CONFIG

Get the CRC generator configuration

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_crc.h

Template uint32_t Sys_CRC_Get_Config(void)

Description Get the CRC generator configuration

Inputs None

Outputs return value = CRC generator configuration; compare with CRC_[CCITT | 32], CRC_[BIG |
LITTLE]_ENDIAN, CRC_BIT_ORDER_[STANDARD | NON_STANDARD],
CRC_FINAL_REVERSE_[STANDARD | NON_STANDARD], and
CRC_FINAL_XOR_[STANDARD | NON_STANDARD]

Assumptions None

Example /* Get current CRC generator configuration. */
curr_config = Sys_CRC_Get_Config();

www.onsemi.com

270

onsemi Confidential
RSL10 Firmware Reference

9.69 SYS_CRC_SET_CONFIG

Configure the CRC generator type, endianness of the input data, and standard vs non-standard CRC behavior

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_crc.h

Template void Sys_CRC_Set_Config(uint32_t cfg)

Description Configure the CRC generator type, endianness of the input data, and standard vs non-standard CRC behavior

Inputs cfg = CRC generator configuration; use CRC_[CCITT | 32], CRC_[BIG |
LITTLE]_ENDIAN, CRC_BIT_ORDER_[STANDARD | NON_STANDARD],
CRC_FINAL_REVERSE_[STANDARD | NON_STANDARD], and
CRC_FINAL_XOR_[STANDARD | NON_STANDARD]

Outputs None

Assumptions None

Example /* Enable CRC-CCITT (16-bit) algorithm, Little Endian mode, standard
* bit order, standard CRC reversal and standard CRC XOR. */
Sys_CRC_Set_Config(CRC_CCITT |
 CRC_LITTLE_ENDIAN |
 CRC_BIT_ORDER_STANDARD |
 CRC_FINAL_REVERSE_STANDARD |
 CRC_FINAL_XOR_STANDARD);

www.onsemi.com

271

onsemi Confidential
RSL10 Firmware Reference

9.70 SYS_DELAY_PROGRAMROM

Delay by at least the specified number of clock cycles

Type Function

Include File #include <rsl10.h>

Source File rsl10_romvect.h

Template void Sys_Delay_ProgramROM(uint32_t cycles)

Description Delay by at least the specified number of clock cycles

Inputs cycles = Number of system clock cycles to delay

Outputs None

Assumptions The requested delay is at least 32 cycles (32 us at 1 MHz) and fits in a uint32_t (0xFFFFFFFF cycles is
approximately 214.75 s at 20 MHz).

A delay between cycles and (cycles + 3) provides a sufficient delay resolution.

The requested delay does not exceed the watchdog timeout.

If the delay resolution is required to be exact, disable interrupts.

Example /* Delay by 100 clock cycles. */
Sys_Delay_ProgramROM(100);

www.onsemi.com

272

onsemi Confidential
RSL10 Firmware Reference

9.71 SYS_DIO_CONFIG

Configure the specified digital I/O

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_dio.h

Template void Sys_DIO_Config(uint32_t pad, uint32_t cfg)

Description Configure the specified digital I/O

Inputs pad = Digital I/O pad to configure; use a constant between 0 and 15
cfg = I/O configuration; use DIO_*X_DRIVE, DIO_LPF_[ENABLE | DISABLE],

DIO_[NO_PULL | STRONG_PULL_UP | WEAK_PULL_UP |
WEAK_PULL_DOWN], and DIO_MODE_*

Outputs None

Assumptions None

Example /* Configure DIO 4 as a GPIO input with a weak pull-up resistor. */
Sys_DIO_Config(4, DIO_WEAK_PULL_UP | DIO_MODE_GPIO_IN_0);

www.onsemi.com

273

onsemi Confidential
RSL10 Firmware Reference

9.72 SYS_DIO_GET_MODE

Get the DIO mode (DIO or GPIO)

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_dio.h

Template uint32_t Sys_DIO_Get_Mode(void)

Description Get the DIO mode (DIO or GPIO)

Inputs None

Outputs return value = Current DIO/GPIO mode

Assumptions None

Example /* Get current DIO mode for DIOs 0 to 15. */
dio_mode = Sys_DIO_Get_Mode();

www.onsemi.com

274

onsemi Confidential
RSL10 Firmware Reference

9.73 SYS_DIO_INTCONFIG

Configure a DIO interrupt source

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_dio.h

Template void Sys_DIO_IntConfig(uint32_t index, uint32_t cfg, uint32_t dbnc_clk,
uint32_t dbnc_cnt)

Description Configure a DIO interrupt source

Inputs index = DIO interrupt source to configure; use [0- 3]
cfg = DIO interrupt configuration; use DIO_DEBOUNCE_[DISABLE | ENABLE],

DIO_SRC_DIO_*, and DIO_EVENT_[NONE | HIGH_LEVEL | LOW_LEVEL |
RISING_EDGE | FALLING_EDGE | TRANSITION]

dbnc_clk = Interrupt button debounce filter clock; use
DIO_DEBOUNCE_SLOWCLK_DIV[32 | 1024]

dbnc_cnt = Interrupt button debounce filter count

Outputs None

Assumptions None

Example /* Configure 0 Interrupt source with pad 0 and high level event in
 * active debounce with slow clock divider 32. */
Sys_DIO_IntConfig(0,
 DIO_DEBOUNCE_ENABLE |
 DIO_SRC_DIO_0 |
 DIO_EVENT_HIGH_LEVEL,
 DIO_DEBOUNCE_SLOWCLK_DIV32,
 0);

www.onsemi.com

275

onsemi Confidential
RSL10 Firmware Reference

9.74 SYS_DIO_NMICONFIG

Configure a DIO for the specified NMI input selection

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_dio.h

Template void Sys_DIO_NMIConfig(uint32_t cfg, uint32_t nmi)

Description Configure a DIO for the specified NMI input selection

Inputs cfg = DIO pin configuration for the NMI input pad
nmi = DIO to use as the NMI input pad

Outputs None

Assumptions None

Example /* Configure DIO 1 as the NMI interface. */
Sys_DIO_NMIConfig(APP_DIO_CFG, 1);

www.onsemi.com

276

onsemi Confidential
RSL10 Firmware Reference

9.75 SYS_DIO_SET_DIRECTION

Set the input/output direction for any DIOs configured as GPIOs

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_dio.h

Template void Sys_DIO_Set_Direction(uint32_t dir)

Description Set the input/output direction for any DIOs configured as GPIOs

Inputs dir = Input/output configuration for those DIOs configured as GPIOs; use
DIO*_INPUT, and DIO*_OUTPUT

Outputs None

Assumptions None

Example /* Set DIO0, DIO2 as inputs; set DIO1 as an output. */
Sys_DIO_Set_Direction(DIO0_INPUT | DIO1_OUTPUT | DIO2_INPUT);

www.onsemi.com

277

onsemi Confidential
RSL10 Firmware Reference

9.76 SYS_DMA_CHANNELCONFIG

Configure the DMA channels for a data transfer

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_dma.c

Template void Sys_DMA_ChannelConfig(uint32_t num, uint32_t cfg, uint32_t
transferLength, uint32_t counterInt, uint32_t srcAddr, uint32_t
destAddr)

Description Configure the DMA channels for a data transfer

Inputs num = DMA channel number
cfg = Configuration of the DMA transfer behavior; use

DMA_DEST_ADDR_STEP_SIZE_*, DMA_SRC_ADDR_STEP_SIZE_*,
DMA_DEST_ADDR_[POS | NEG], DMA_SRC_ADDR_[POS | NEG],
DMA_[LITTLE | BIG]_ENDIAN, DMA_DISABLE_INT_[DISABLE | ENABLE],
DMA_ERROR_INT_[DISABLE | ENABLE], DMA_COMPLETE_INT_[DISABLE
| ENABLE], DMA_COUNTER_INT_[DISABLE | ENABLE],
DMA_START_INT_[DISABLE | ENABLE], DMA_DEST_WORD_SIZE_*,
DMA_SRC_WORD_SIZE_*, DMA_DEST_[I2C | SPI0 | SPI1 | PCM | UART |
ASRC], DMA_SRC_[I2C | SPI0 | SPI1 | PCM | UART | ASRC],
DMA_PRIORITY_*, DMA_TRANSFER_[P | M]_TO_[P | M]
DMA_DEST_ADDR_[STATIC | INC], DMA_SRC_ADDR_[STATIC | INC],
DMA_ADDR_[CIRC | LIN], DMA_[DISABLE | ENABLE]

transferLength = Configuration of the DMA transfer length
counterInt = Configuration of when the counter interrupt will occur during the transfer
srcAddr = Base source address for the DMA transfer
destAddr = Base destination address for the DMA transfer

Outputs None

www.onsemi.com

278

onsemi Confidential
RSL10 Firmware Reference

Assumptions None

Example /* Configure DMA channel 0 for a transfer from the PCM interface to
 * a 16-word buffer in memory. Clear any previous DMA status bit
 * settings. */
Sys_DMA_ChannelConfig(0,
 (DMA_DEST_ADDR_STEP_SIZE_1 |
 DMA_DEST_ADDR_POS |
 DMA_SRC_ADDR_STEP_SIZE_1 |
 DMA_SRC_ADDR_POS |
 DMA_LITTLE_ENDIAN |
 DMA_DISABLE_INT_DISABLE |
 DMA_ERROR_INT_ENABLE |
 DMA_COMPLETE_INT_ENABLE |
 DMA_COUNTER_INT_ENABLE |
 DMA_START_INT_DISABLE |
 DMA_DEST_WORD_SIZE_32 |
 DMA_SRC_WORD_SIZE_32 |
 DMA_SRC_PCM |
 DMA_PRIORITY_0 |
 DMA_TRANSFER_P_TO_M |
 DMA_SRC_ADDR_STATIC |
 DMA_DEST_ADDR_INC |
 DMA_ADDR_CIRC |
 DMA_DISABLE) ,
 16,
 0,
 (uint32_t)&PCM->RX_DATA,
 (uint32_t)buffer);

www.onsemi.com

279

onsemi Confidential
RSL10 Firmware Reference

9.77 SYS_DMA_CHANNELDISABLE

Disable the DMA channel

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_dma.h

Template void Sys_DMA_ChannelDisable(uint32_t num)

Description Disable the DMA channel

Inputs num = The DMA channel number

Outputs None

Assumptions None

Example /* Disable DMA channel 0. */
Sys_DMA_ChannelDisable(0);

www.onsemi.com

280

onsemi Confidential
RSL10 Firmware Reference

9.78 SYS_DMA_CHANNELENABLE

Enable the DMA channel

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_dma.h

Template void Sys_DMA_ChannelEnable(uint32_t num)

Description Enable the DMA channel

Inputs num = The DMA channel number

Outputs None

Assumptions None

Example /* Enable DMA channel 0. */
Sys_DMA_ChannelEnable(0);

www.onsemi.com

281

onsemi Confidential
RSL10 Firmware Reference

9.79 SYS_DMA_CLEARALLCHANNELSTATUS

Clear the current status for the DMA on all channels

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_dma.h

Template void Sys_DMA_ClearAllChannelStatus(void)

Description Clear the current status for the DMA on all channels

Inputs None

Outputs None

Assumptions None

Example /* Clear the current status for DMA on all channels. */
Sys_DMA_ClearAllChannelStatus();

www.onsemi.com

282

onsemi Confidential
RSL10 Firmware Reference

9.80 SYS_DMA_CLEARCHANNELSTATUS

Clear the current status for the specified DMA channel

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_dma.h

Template void Sys_DMA_ClearChannelStatus(uint32_t num)

Description Clear the current status for the specified DMA channel

Inputs num = The DMA channel number; use 0- 7

Outputs None

Assumptions None

Example /* Clear the current status for DMA channel 0. */
Sys_DMA_ClearChannelStatus(0);

www.onsemi.com

283

onsemi Confidential
RSL10 Firmware Reference

9.81 SYS_DMA_GET_CHANNELSTATUS

Get the current status of the DMA channel

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_dma.h

Template uint8_t Sys_DMA_Get_ChannelStatus(uint32_t num)

Description Get the current status of the DMA channel

Inputs num = The DMA channel number

Outputs return value = The current status of the specified DMA channel

Assumptions None

Example /* Get the current status of DMA channel 0. */
status = Sys_DMA_Get_ChannelStatus(0);

www.onsemi.com

284

onsemi Confidential
RSL10 Firmware Reference

9.82 SYS_DMA_SET_CHANNELDESTADDRESS

Set the base destination address for the specified DMA channel

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_dma.h

Template void Sys_DMA_Set_ChannelDestAddress(uint32_t num, uint32_t destAddr)

Description Set the base destination address for the specified DMA channel

Inputs num = The DMA channel number
destAddr = Base destination address for the DMA transfer

Outputs None

Assumptions None

Example /* Set buffer as the base destination address for DMA channel 0. */
uint32_t buffer[1] = {0};
Sys_DMA_Set_ChannelDestAddress(0, (uint32_t) buffer);

www.onsemi.com

285

onsemi Confidential
RSL10 Firmware Reference

9.83 SYS_DMA_SET_CHANNELSOURCEADDRESS

Set the base source address for the specified DMA channel

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_dma.h

Template void Sys_DMA_Set_ChannelSourceAddress(uint32_t num, uint32_t srcAddr)

Description Set the base source address for the specified DMA channel

Inputs num = The DMA channel number
srcAddr = Base source address for the DMA transfer

Outputs None

Assumptions None

Example /* Set PCM_RX_DATA as the base source address for DMA channel 0. */
Sys_DMA_Set_ChannelSourceAddress(0, (uint32_t)&PCM->RX_DATA);

www.onsemi.com

286

onsemi Confidential
RSL10 Firmware Reference

9.84 SYS_FLASH_COMPARE

Compare data in the flash to a pre-specified value

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_flash.c

Template uint32_t Sys_Flash_Compare(uint32_t cfg, uint32_t addr, uint32_t length,
uint32_t value, uint32_t value_ecc)

Description Compare data in the flash to a pre-specified value

Inputs cfg = Flash comparator configuration; use COMP_MODE_[CONSTANT |
CHBK]_BYTE, COMP_ADDR_[DOWN | UP]_BYTE, and
COMP_ADDR_STEP_*_BYTE

addr = Base address of the area to verify
length = Number of words to verify
value = Value that the words read from flash will be compared against
value_ecc = Value that the error-correction coding bits from the extended words read from

flash will be compared against

Outputs return value = 0 if comparison succeeded, 1 if the comparison failed.

Assumptions addr points to an address in flash memory

Example /* Check that the 10 words this application needs are still erased */
result = Sys_Flash_Compare((COMP_MODE_CONSTANT_BYTE |
 COMP_ADDR_UP_BYTE |
 COMP_ADDR_STEP_1_BYTE),
 FLASH_MAIN_TOP - 0x100, 10,
 0xFFFFFFFF, 0xF);

if (result == 0)
{
 /* Use the flash here since it has been validated as erased. */
}

www.onsemi.com

287

onsemi Confidential
RSL10 Firmware Reference

9.85 SYS_FLASH_COPY

Copy data from the flash memory to a RAM memory instance

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_flash.c

Template void Sys_Flash_Copy(uint32_t src_addr, uint32_t dest_addr, uint32_t
length, uint32_t cpy_dest)

Description Copy data from the flash memory to a RAM memory instance

Inputs src_addr = Source address in flash to copy data from
dest_addr = Destination address in RAM to copy data to
length = Number of words to copy
cpy_dest = Destination copier is CRC or memories; use COPY_TO_[CRC |

MEM]_BITBAND

Outputs None

Assumptions src_addr points to an address in flash memory

dest_addr points to an address in RAM memory

If dest_addr points to an area in DSP_PRAM memory, the copy will write all 40 bits of the PRAM memory

The flash copy does not need to be complete before returning

If CRC is selected as the destination, dest_addr is ignored and 32-bit copy mode is selected automatically.

Example /* Copy 10 words from data to the base of DSP_PRAM0. */
Sys_Flash_Copy(data, DSP_PRAM0_BASE, 10, COPY_TO_MEM_BITBAND);

www.onsemi.com

288

onsemi Confidential
RSL10 Firmware Reference

9.86 SYS_FLASH_ECC_CONFIG

Configure the flash error-correction control support

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_flash.h

Template void Sys_Flash_ECC_Config(uint32_t cfg)

Description Configure the flash error-correction control support

Inputs cfg = Configuration for the flash error-correction control block; use
FLASH_IDBUS_ECC_[ENABLE | DISABLE], FLASH_DMA_ECC_[ENABLE |
DISABLE], FLASH_CMD_ECC_[ENABLE | DISABLE],
FLASH_COPIER_ECC_[ENABLE | DISABLE], and
FLASH_ECC_COR_INT_THRESHOLD_* or a constant shifted to
FLASH_ECC_CTRL_ECC_COR_CNT_INT_THRESHOLD_Pos

Outputs None

Assumptions None

Example /* Enable the ECC blocks for all users of flash. */
Sys_Flash_ECC_Config(FLASH_IDBUS_ECC_ENABLE | FLASH_CMD_ECC_ENABLE |
 FLASH_COPIER_ECC_ENABLE |
 FLASH_ECC_COR_INT_THRESHOLD_1);

www.onsemi.com

289

onsemi Confidential
RSL10 Firmware Reference

9.87 SYS_GPIO_SET_HIGH

Set the specified GPIO output value to high

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_gpio.h

Template void Sys_GPIO_Set_High(uint32_t gpio_pin)

Description Set the specified GPIO output value to high

Inputs gpio_pin = GPIO pin to set high

Outputs None

Assumptions None

Example /* Set GPIO 0 high. */
Sys_GPIO_Set_High(0);

www.onsemi.com

290

onsemi Confidential
RSL10 Firmware Reference

9.88 SYS_GPIO_SET_LOW

Set the specified GPIO output value to low

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_gpio.h

Template void Sys_GPIO_Set_Low(uint32_t gpio_pin)

Description Set the specified GPIO output value to low

Inputs gpio_pin = GPIO pin to set low

Outputs None

Assumptions None

Example /* Set GPIO 0 low. */
Sys_GPIO_Set_Low(0);

www.onsemi.com

291

onsemi Confidential
RSL10 Firmware Reference

9.89 SYS_GPIO_TOGGLE

Toggle the current value of the specified GPIO output

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_gpio.h

Template void Sys_GPIO_Toggle(uint32_t gpio_pin)

Description Toggle the current value of the specified GPIO output

Inputs gpio_pin = GPIO pin to toggle

Outputs None

Assumptions None

Example /* Toggle GPIO 0. */
Sys_GPIO_Toggle(0);

www.onsemi.com

292

onsemi Confidential
RSL10 Firmware Reference

9.90 SYS_I2C_ACK

Manually acknowledge the latest transfer

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_i2c.h

Template void Sys_I2C_ACK(void)

Description Manually acknowledge the latest transfer

Inputs None

Outputs None

Assumptions None

Example /* Acknowledge the latest byte transfer. */
Sys_I2C_ACK();

www.onsemi.com

293

onsemi Confidential
RSL10 Firmware Reference

9.91 SYS_I2C_CONFIG

Configure the I2C interface for operation

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_i2c.h

Template void Sys_I2C_Config(uint32_t cfg)

Description Configure the I2C interface for operation

Inputs cfg = I2C interface configuration; use I2C_MASTER_SPEED_*, a slave address
constant shifted to I2C_CTRL0_SLAVE_ADDRESS_Pos,
I2C_CONTROLLER_[CM3 | DMA], I2C_STOP_INT_[ENABLE | DISABLE],
I2C_AUTO_ACK_[ENABLE | DISABLE], I2C_SAMPLE_CLK_[ENABLE |
DISABLE], and I2C_SLAVE_[ENABLE | DISABLE],

Outputs None

Assumptions None

Example /* Configure the I2C interface to communicate as a slave at address
 * 0x40 in auto-acknowledgement mode. */
Sys_I2C_Config((0x40 << I2C_CTRL0_SLAVE_ADDRESS_Pos) |
 I2C_CONTROLLER_CM3 |
 I2C_STOP_INT_DISABLE |
 I2C_AUTO_ACK_ENABLE |
 I2C_SAMPLE_CLK_ENABLE |
 I2C_SLAVE_ENABLE);

www.onsemi.com

294

onsemi Confidential
RSL10 Firmware Reference

9.92 SYS_I2C_DIOCONFIG

Configure two DIOs for the specified I2C interface

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_i2c.h

Template void Sys_I2C_DIOConfig(uint32_t cfg, uint32_t scl, uint32_t sda)

Description Configure two DIOs for the specified I2C interface

Inputs cfg = DIO pin configuration for the I2C pads
scl = DIO to use as the I2C SCL pad
sda = DIO to use as the I2C SDA pad

Outputs None

Assumptions None

Example /* Configure DIOs 1 and 4 as the I2C interface. */
Sys_I2C_DIOConfig(APP_DIO_CFG, 1, 4);

www.onsemi.com

295

onsemi Confidential
RSL10 Firmware Reference

9.93 SYS_I2C_GET_STATUS

Get the current I2C interface status

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_i2c.h

Template uint32_t Sys_I2C_Get_Status(void)

Description Get the current I2C interface status

Inputs None

Outputs status = Current I2C interface status; compare with I2C_[NO_ERROR | ERROR]_S,
I2C_[BUS | NO_BUS]_ERROR_S, I2C_START_[PENDING | NOT_PENDING],
I2C_MASTER_[ACTIVE | INACTIVE], I2C_[DMA | NO_DMA]_REQUEST,
I2C_[STOP | NO_STOP]_DETECTED, I2C_[DATA | NON_DATA]_EVENT,
I2C_[ERROR | NO_ERROR], I2C_[BUS_ERROR | NO_BUS_ERROR],
I2C_BUFFER_[FULL | EMPTY], I2C_CLK_[STRETCHED |
NOT_STRETCHED], I2C_BUS_[FREE | BUSY], I2C_DATA_IS_[ADDR |
DATA], I2C_IS_[READ | WRITE], I2C_ADDR_[GEN_CALL | OTHER] and
I2C_HAS_[NACK | ACK]

Assumptions None

Example /* Check if a repeated start condition occurred, indicating that the
 * most recently received data will be treated as an address. */
if ((Sys_I2C_Get_Status() & (1 << I2C_STATUS_ADDR_DATA_Pos))
 == I2C_DATA_IS_ADDR)
{
 /* Initialize a new slave transfer over the I2C interface. */
}

www.onsemi.com

296

onsemi Confidential
RSL10 Firmware Reference

9.94 SYS_I2C_LASTDATA

Indicate that this is the last byte in the transfer

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_i2c.h

Template void Sys_I2C_LastData(void)

Description Indicate that this is the last byte in the transfer

Inputs None

Outputs None

Assumptions None

Example /* Send LAST_DATA control bit to stop a transaction automatically. */
Sys_I2C_LastData();

www.onsemi.com

297

onsemi Confidential
RSL10 Firmware Reference

9.95 SYS_I2C_NACK

Manually not-acknowledge the latest transfer (releases the bus to continue with a transfer)

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_i2c.h

Template void Sys_I2C_NACK(void)

Description Manually not-acknowledge the latest transfer (releases the bus to continue with a transfer)

Inputs None

Outputs None

Assumptions None

Example /* Do not acknowledge the latest byte transfer. */
Sys_I2C_NACK();

www.onsemi.com

298

onsemi Confidential
RSL10 Firmware Reference

9.96 SYS_I2C_NACKANDSTOP

Manually not-acknowledge the latest transfer and send a stop condition (Master mode only)

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_i2c.h

Template void Sys_I2C_NACKAndStop(void)

Description Manually not-acknowledge the latest transfer and send a stop condition (Master mode only)

Inputs None

Outputs None

Assumptions None

Example /* Not-acknowledge the latest byte transfer and issue a stop
 * condition on the I2C interface. */
Sys_I2C_NACKAndStop();

www.onsemi.com

299

onsemi Confidential
RSL10 Firmware Reference

9.97 SYS_I2C_RESET

Reset the I2C interface

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_i2c.h

Template void Sys_I2C_Reset(void)

Description Reset the I2C interface

Inputs None

Outputs None

Assumptions None

Example /* Reset the I2C Interface. */
Sys_I2C_Reset();

www.onsemi.com

300

onsemi Confidential
RSL10 Firmware Reference

9.98 SYS_I2C_STARTREAD

Initialize an I2C master read transfer on the I2C interface

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_i2c.h

Template void Sys_I2C_StartRead(uint32_t addr)

Description Initialize an I2C master read transfer on the I2C interface

Inputs addr = I2C slave address to initiate a transfer with

Outputs None

Assumptions None

Example /* Initialize a read from address 0x40 over the I2C interface. */
Sys_I2C_StartRead(0x40);

www.onsemi.com

301

onsemi Confidential
RSL10 Firmware Reference

9.99 SYS_I2C_STARTWRITE

Initialize an I2C master write transfer on the I2C interface

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_i2c.h

Template void Sys_I2C_StartWrite(uint32_t addr)

Description Initialize an I2C master write transfer on the I2C interface

Inputs addr = I2C slave address to initiate a transfer with

Outputs None

Assumptions None

Example /* Initialize a write to the general call address over the I2C
 * interface. */
Sys_I2C_StartWrite(0x00);

www.onsemi.com

302

onsemi Confidential
RSL10 Firmware Reference

9.100 SYS_INITIALIZE

Run the program ROM's extended initialization functions

Type Function

Include File #include <rsl10.h>

Source File rsl10_romvect.h

Template SysInitStatus Sys_Initialize(void)

Description Run the program ROM's extended initialization functions.

Inputs None

Outputs None

Assumptions None

Example /* Reinitialize the system using the initialization program stored
 * to the information page of flash. */
Sys_Initialize();

www.onsemi.com

303

onsemi Confidential
RSL10 Firmware Reference

9.101 SYS_INITIALIZE_BASE

Run the Program ROM based basic initialization function; re-initialize all critical memory, clock, and power
supply components

Type Function

Include File #include <rsl10.h>

Source File rsl10_romvect.h

Template void Sys_Initialize_Base(void)

Description Run the Program ROM based basic initialization function; re-initialize all critical memory, clock, and power
supply components

Inputs None

Outputs None

Assumptions None

Example /* Reinitialize the system using the ROM initializtion routine. */
Sys_Initialize_Base();

www.onsemi.com

304

onsemi Confidential
RSL10 Firmware Reference

9.102 SYS_IP_LOCK

Configure the debug lock key and set the device SWJ-DP to lock mode

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_ip.h

Template void Sys_IP_Lock(uint32_t * key)

Description Configure the debug lock key and set the device SWJ-DP to lock mode

Inputs key = Pointer to the 128-bit key as a debug lock key

Outputs None

Assumptions None

Example uint32_t ip_key[4] = {0x12345678, 0x9ABCDEF0, 0xAA5500FF, 0xAABBCCDD};

/* Set the key and limit access to the SWJ-DP interface */
Sys_IP_Lock(ip_key);

www.onsemi.com

305

onsemi Confidential
RSL10 Firmware Reference

9.103 SYS_IP_UNLOCK

Set the device SWJ-DP to unlock mode

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_ip.h

Template void Sys_IP_Unlock(void)

Description Set the device SWJ-DP to unlock mode

Inputs None

Outputs None

Assumptions None

Example /* Unlock full access to the SWJ-DP interface */
Sys_IP_Unlock();

www.onsemi.com

306

onsemi Confidential
RSL10 Firmware Reference

9.104 SYS_LPDSP32_COMMAND

Configure commands for LPDSP32

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_lpdsp32.h

Template void Sys_LPDSP32_Command(uint32_t cfg)

Description Configure commands for LPDSP32

Inputs cfg = Set LPDSP32 commands; use DSS_CMD_[0- 6]

Outputs None

Assumptions None

Example /* Send command 0 to the LPDSP32. */
Sys_LPDSP32_Command(DSS_CMD_0);

www.onsemi.com

307

onsemi Confidential
RSL10 Firmware Reference

9.105 SYS_LPDSP32_DIOJTAG

Configure DIO pads connected to LPDSP32 JTAG

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_lpdsp32.h

Template Sys_LPDSP32_DIOJTAG(uint32_t cfg, uint32_t tdi, uint32_t tms, uint32_t
tck, uint32_t tdo)

Description Configure DIO pads connected to LPDSP32 JTAG. It causes the LPDSP32 to be resumed.

Inputs cfg = DIO pin configuration for LPDSP32 JTAG pads
tdi = DIO to use as the JTAG TDI pad
tms = DIO to use as the JTAG TMS pad
tck = DIO to use as the JTAG TCK pad
tdo = DIO to use as the JTAG TDO pad

Outputs None

Assumptions None

Example /* Configure DIOs 1, 2 and 3 as the LPDSP32 JTAG interface. */
Sys_LPDSP32_DIOJTAG(APP_DIO_CFG, 1, 2, 3, 4);

www.onsemi.com

308

onsemi Confidential
RSL10 Firmware Reference

9.106 SYS_LPDSP32_GET_ACTIVITYCOUNTER

Read LPDSP32 activity counter value

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_lpdsp32.h

Template uint32_t Sys_LPDSP32_Get_ActivityCounter(void)

Description Read LPDSP32 activity counter value

Inputs None

Outputs return value = LPDSP32 activity counter value

Assumptions None

Example /* Read the LPDSP32 activity counter value. */
result = Sys_LPDSP32_Get_ActivityCounter();

www.onsemi.com

309

onsemi Confidential
RSL10 Firmware Reference

9.107 SYS_LPDSP32_INTCLEAR

Reset pending (DMA and ARM Cortex-M3) interrupts in the LPDSP32 interrupt controller

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_lpdsp32.h

Template void Sys_LPDSP32_IntClear(void)

Description Reset pending (DMA and ARM Cortex-M3) interrupts in the LPDSP32 interrupt controller

Inputs None

Outputs None

Assumptions None

Example /* Reset pending interrupts in the LPDSP32 interrupt controller. */
Sys_LPDSP32_IntClear();

www.onsemi.com

310

onsemi Confidential
RSL10 Firmware Reference

9.108 SYS_LPDSP32_PAUSE

Pause LPDSP32

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_lpdsp32.h

Template void Sys_LPDSP32_Pause(void)

Description Pause LPDSP32

Inputs None

Outputs None

Assumptions None

Example /* Pause DSS. */
Sys_LPDSP32_Pause();

www.onsemi.com

311

onsemi Confidential
RSL10 Firmware Reference

9.109 SYS_LPDSP32_RESET

Reset LPDSP32

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_lpdsp32.h

Template void Sys_LPDSP32_Reset(void)

Description Reset LPDSP32

Inputs None

Outputs None

Assumptions None

Example /* Reset DSS. */
Sys_LPDSP32_Reset();

www.onsemi.com

312

onsemi Confidential
RSL10 Firmware Reference

9.110 SYS_LPDSP32_RUN

Run LPDSP32

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_lpdsp32.h

Template void Sys_LPDSP32_Run(void)

Description Run LPDSP32

Inputs None

Outputs None

Assumptions None

Example /* Run DSS. */
Sys_LPDSP32_Run();

www.onsemi.com

313

onsemi Confidential
RSL10 Firmware Reference

9.111 SYS_LPDSP32_RUN_STATUS

LPDSP32 running status

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_lpdsp32.h

Template uint32_t Sys_LPDSP32_Run_Status(void)

Description LPDSP32 running status

Inputs None

Outputs return value = LPDSP32 status; compare with DSS_LPDSP32_STATE_[PAUSE | RUN]

Assumptions None

Example /* Get the LPDSP32 running status. */
status = Sys_LPDSP32_Run_Status();

www.onsemi.com

314

onsemi Confidential
RSL10 Firmware Reference

9.112 SYS_LPDSP32_RUNTIMEADDR

Calculate the equivalent LPDSP32 address to an ARM Cortex-M3 processor address

Type Macro

Include File #include <rsl10.h>

Source File rsl10_sys_lpdsp32.h

Template Sys_LPDSP32_RuntimeAddr(Addr, prgdata)

Description Calculate the equivalent LPDSP32 address to an ARM Cortex-M3 processor address.

Inputs Addr = the address in LPDSP32
prgdata = selection between program memory or data memory in LPDSP32. Value 1

indicates program section and 0 shows data section

Outputs return value = equivalent address in ARM Cortex-M3 processor

Assumptions For DSP_PROMx the output will contain the 32 bit LSB locations

Example /* Calculate the equivalent LPDSP32 address 0x4000 in the
 * program memory. */
result = Sys_LPDSP32_RuntimeAddr(0x4000, 1);

www.onsemi.com

315

onsemi Confidential
RSL10 Firmware Reference

9.113 SYS_LPDSP32_SET_DEBUGCONFIG

Configure the LPDSP32 Debug Port

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_lpdsp32.h

Template void Sys_LPDSP32_Set_DebugConfig(uint32_t cfg)

Description Configure the LPDSP32 Debug Port

Inputs cfg = debug port configuration; use
LPDSP32_DEBUG_IN_POWERDOWN_[DISABLED | ENABLE] |
LPDSP32_EXIT_POWERDOWN_WHEN_HALTED_[DISABLED | ENABLE]

Outputs None

Assumptions None

Example /* Configure the LPDSP32 to exit power-down when halted */
Sys_LPDSP32_Set_DebugConfig(
 LPDSP32_EXIT_POWERDOWN_WHEN_HALTED_DISABLED);

www.onsemi.com

316

onsemi Confidential
RSL10 Firmware Reference

9.114 SYS_NVIC_CLEARALLPENDINGINT

Clear the pending status for all external interrupts

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_cm3.h

Template void Sys_NVIC_ClearAllPendingInt(void)

Description Clear the pending status for all external interrupts

Inputs None

Outputs None

Assumptions None

Example /* Clear the pending status for all of the external interrupts. */
Sys_NVIC_ClearAllPendingInt();

www.onsemi.com

317

onsemi Confidential
RSL10 Firmware Reference

9.115 SYS_NVIC_DISABLEALLINT

Disable all external interrupts

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_cm3.h

Template void Sys_NVIC_DisableAllInt(void)

Description Disable all external interrupts

Inputs None

Outputs None

Assumptions None

Example /* Disable all external interrupts. */
Sys_NVIC_DisableAllInt();

www.onsemi.com

318

onsemi Confidential
RSL10 Firmware Reference

9.116 SYS_PCM_CLEARSTATUS

Clear the current PCM interface status

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_pcm.h

Template void Sys_PCM_ClearStatus(void)

Description Clear the current PCM interface status

Inputs None

Outputs None

Assumptions None

Example /* Clear the error indicators for the PCM Interface. */
Sys_PCM_ClearStatus();

www.onsemi.com

319

onsemi Confidential
RSL10 Firmware Reference

9.117 SYS_PCM_CONFIG

Configure the PCM interface

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_pcm.h

Template void Sys_PCM_Config(uint32_t cfg)

Description Configure the PCM interface

Inputs cfg = Interface operation configuration; use PCM_SAMPLE_[FALLING |
RISING]_EDGE, PCM_BIT_ORDER_[MSB | LSB]_FIRST,
PCM_TX_ALIGN_[MSB | LSB], PCM_WORD_SIZE_*,
PCM_FRAME_ALIGN_[LAST | FIRST], PCM_FRAME_WIDTH_[SHORT |
LONG], PCM_MULTIWORD_*, PCM_SUBFRAME_[ENABLE | DISABLE],
PCM_CONTROLLER_[CM3 | DMA], PCM_[DISABLE | ENABLE], and
PCM_SELECT_[MASTER | SLAVE]

Outputs None

Assumptions None

Example /* Configure the PCM interface as a master for use with the DMA. */
Sys_PCM_Config(PCM_SAMPLE_FALLING_EDGE |
 PCM_BIT_ORDER_MSB_FIRST |
 PCM_TX_ALIGN_MSB |
 PCM_WORD_SIZE_32 |
 PCM_FRAME_ALIGN_LAST |
 PCM_FRAME_WIDTH_LONG |
 PCM_MULTIWORD_2 |
 PCM_SUBFRAME_ENABLE |
 PCM_CONTROLLER_DMA |
 PCM_ENABLE |
 PCM_SELECT_MASTER);

www.onsemi.com

320

onsemi Confidential
RSL10 Firmware Reference

9.118 SYS_PCM_CONFIGCLK

Configure four DIOs for the PCM interface and clock source selection

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_pcm.h

Template void Sys_PCM_ConfigClk(uint32_t slave, uint32_t cfg, uint32_t clk,
uint32_t frame, uint32_t seri, uint32_t sero, uint32_t clksrc)

Description Configure four DIOs for the PCM interface and clock source selection

Inputs slave = PCM master/slave configuration; use PCM_SELECT_[MASTER | SLAVE]
cfg = DIO pin configuration for the PCM pads
clk = DIO to use as the PCM clock pad
frame = DIO to use as the PCM frame pad
seri = DIO to use as the PCM serial input pad
sero = DIO to use as the PCM serial output pad
clksrc = Clock source for PCM; use DIO_MODE_[*CLK | INPUT]

Outputs None

Assumptions None

Example /* Configure DIOs 0, 1, 2, and 3 as a master PCM interface. */
Sys_PCM_ConfigClk(PCM_SELECT_MASTER, APP_DIO_CFG, 0, 1, 2, 3,
 DIO_MODE_USRCLK);

www.onsemi.com

321

onsemi Confidential
RSL10 Firmware Reference

9.119 SYS_PCM_DIOCONFIG

Configure four DIOs for the PCM interface

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_pcm.h

Template void Sys_PCM_DIOConfig(uint32_t slave, uint32_t cfg, uint32_t clk,
uint32_t frame, uint32_t seri, uint32_t sero)

Description Configure four DIOs for the PCM interface

Inputs slave = PCM master/slave configuration; use PCM_SELECT_[MASTER | SLAVE]
cfg = DIO pin configuration for the PCM pads
clk = DIO to use as the PCM clock pad
frame = DIO to use as the PCM frame pad
seri = DIO to use as the PCM serial input pad
sero = DIO to use as the PCM serial output pad

Outputs None

Assumptions None

Example /* Configure DIOs 0, 1, 2, and 3 as a master PCM interface. */
Sys_PCM_DIOConfig(PCM_SELECT_MASTER, APP_DIO_CFG, 0, 1, 2, 3);

www.onsemi.com

322

onsemi Confidential
RSL10 Firmware Reference

9.120 SYS_PCM_DISABLE

Disable the PCM interface without changing other PCM configuration settings

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_pcm.h

Template void Sys_PCM_Disable(void)

Description Disable the PCM interface without changing other PCM configuration settings

Inputs None

Outputs None

Assumptions None

Example /* Disable the PCM Interface. */
Sys_PCM_Disable();

www.onsemi.com

323

onsemi Confidential
RSL10 Firmware Reference

9.121 SYS_PCM_ENABLE

Enable the PCM interface without changing other PCM configuration settings

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_pcm.h

Template void Sys_PCM_Enable(void)

Description Enable the PCM interface without changing other PCM configuration settings

Inputs None

Outputs None

Assumptions None

Example /* Enable the PCM Interface. */
Sys_PCM_Enable();

www.onsemi.com

324

onsemi Confidential
RSL10 Firmware Reference

9.122 SYS_PCM_GET_STATUS

Get the current PCM interface status

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_pcm.h

Template uint32_t Sys_PCM_Get_Status(void)

Description Get the current PCM interface status

Inputs None

Outputs Return value = The current PCM interface status

Assumptions None

Example /* Check for errors on the PCM Interface. */
if (Sys_PCM_Get_Status() != 0)
{
 /* An error has occurred. Run the application's error handler. */
 AppErrorHandler();
}

www.onsemi.com

325

onsemi Confidential
RSL10 Firmware Reference

9.123 SYS_POWER_BANDGAPCALIBRATEDCONFIG

Set the band-gap voltage trim to the given target based on the calibration trim value specified in NVR4

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_power.c

Template unsigned int Sys_Power_BandGapCalibratedConfig(uint8_t target)

Description Set the band-gap voltage trim to the given target based on the calibration trim value specified in NVR4.

Inputs target = The target band-gap voltage in 10*mV

Outputs return value = A code indicating whether an error has occurred.

Assumptions None

Example /* Load the band gap power supply trim for a target of 750 mV */
result = Sys_Power_BandGapCalibratedConfig(75);

www.onsemi.com

326

onsemi Confidential
RSL10 Firmware Reference

9.124 SYS_POWER_BANDGAPCONFIG

Configure the band gap supply voltage

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_power.h

Template void Sys_Power_BandGapConfig(uint32_t cfg_slope, uint32_t cfg_vtrim)

Description Configure the band gap supply voltage

Inputs cfg_vtrim = Reference voltage trimming; use BG_TRIM_0p*
cfg_slope = Temperature coefficient trimming; use a 6-bit number

Outputs None

Assumptions None

Example /* Configure temperature dependency 0 ppm/C and reference voltage
 * trim on 0.750V. */
Sys_Power_BandGapConfig(0x6, BG_TRIM_0P750V);

www.onsemi.com

327

onsemi Confidential
RSL10 Firmware Reference

9.125 SYS_POWER_BANDGAPSTATUS

Read Bandgap status

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_power.h

Template uint32_t Sys_Power_BandGapStatus(void)

Description Read Bandgap status

Inputs None

Outputs return value = content of the BG register; compare with BG_NOT_READY | BG_READY, and
BG_TRIM_0p*V

Assumptions None

Example /* Read Bandgap status. */
result = Sys_Power_BandGapStatus();

www.onsemi.com

328

onsemi Confidential
RSL10 Firmware Reference

9.126 SYS_POWER_DCDCCALIBRATEDCONFIG

Set the DC-DC voltage trim to the given target based on the calibration trim value specified in NVR4

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_power.c

Template unsigned int Sys_Power_DCDCCalibratedConfig(uint8_t target)

Description Set the DC-DC voltage trim to the given target based on the calibration trim value specified in NVR4. If an
ICH_TRIM setting is available in NVR4, also load that trim. The DC-DC power supply is not enabled.

Inputs target = The target DCDC voltage in 10*mV

Outputs return value = A code indicating whether an error has occurred.

Assumptions None

Example /* Load the VCC power supply trim for a target of 1.20 V */
result = Sys_Power_DCDCCalibratedConfig(120);

www.onsemi.com

329

onsemi Confidential
RSL10 Firmware Reference

9.127 SYS_POWER_GET_RESETANALOG

Read ACS reset source status

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_power.h

Template uint32_t Sys_Power_Get_ResetAnalog(void)

Description Read ACS reset source status

Inputs None

Outputs return value = read status of reset source; compare with CLK_DET_RESET_FLAG_SET,
VDDM_RESET_FLAG_SET, VDDC_RESET_FLAG_SET,
PAD_RESET_FLAG_SET, and POR_RESET_FLAG_SET

Assumptions None

Example /* Read the reset source status. */
result = Sys_Power_Get_ResetAnalog();

www.onsemi.com

330

onsemi Confidential
RSL10 Firmware Reference

9.128 SYS_POWER_GET_RESETDIGITAL

Read digital reset source status

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_power.h

Template uint32_t Sys_Power_Get_ResetDigital(void)

Description Read digital reset source status

Inputs None

Outputs return value = setting for reset source status; use ACS_RESET_[NOT_SET | SET],
CM3_SW_RESET_[NOT_SET | SET], WATCHDOG_RESET_[NOT_SET |
SET], and LOCKUP_NOT_[NOT_SET | SET]

Assumptions None

Example /* Read the value of digital reset source. */
result = Sys_Power_Get_ResetDigital();

www.onsemi.com

331

onsemi Confidential
RSL10 Firmware Reference

9.129 SYS_POWER_RESETANALOGCLEARFLAGS

Clear all the analog reset flags

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_power.h

Template void Sys_Power_ResetAnalogClearFlags(void)

Description Clear all the analog reset flags

Inputs None

Outputs None

Assumptions None

Example /* Reset POR, PAD, VDDC, VDDM and CLK_DET flags. */
Sys_Power_ResetAnalogClearFlags();

www.onsemi.com

332

onsemi Confidential
RSL10 Firmware Reference

9.130 SYS_POWER_RESETDIGITALCLEARFLAGS

Clear all the digital reset flags

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_power.h

Template void Sys_Power_ResetDigitalClearFlags(void)

Description Clear all the digital reset flags

Inputs None

Outputs None

Assumptions None

Example /* Reset LOCKUP, Watchdog time out, CM3 software and ACS flags. */
Sys_Power_ResetDigitalClearFlags();

www.onsemi.com

333

onsemi Confidential
RSL10 Firmware Reference

9.131 SYS_POWER_VCCCONFIG

Configure DC-DC/ LDO supply

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_power.h

Template void Sys_Power_VCCConfig(uint32_t cfg)

Description Configure DC-DC/ LDO supply

Inputs cfg = DC-DC/ LDO supply value; use VCC_ICHTRIM_*MA, VCC_[MULTI |
SINGLE]_PULSE, VCC_CONSTANT_[CHARGE | IMAX], VCC_[BUCK |
VBAT], and VCC_TRIM_1p*V_BYTE

Outputs None

Assumptions None

Example /* Configure DC-DC/ LDO supply to 1 V nominal output voltage
 * in 16 mA max charge current. Single pulse mode control with
 * constant charge transfer is chosen. The buck converter
 * is enabled. */
Sys_Power_VCCConfig(VCC_ICHTRIM_16MA |
 VCC_SINGLE_PULSE |
 VCC_CONSTANT_CHARGE |
 VCC_BUCK |
 VCC_TRIM_1P00V);

www.onsemi.com

334

onsemi Confidential
RSL10 Firmware Reference

9.132 SYS_POWER_VDDACONFIG

Configure analog voltage maximum current and sleep mode clamp control

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_power.h

Template void Sys_Power_VDDAConfig(uint32_t cfg)

Description Configure analog voltage maximum current and sleep mode clamp control

Inputs cfg = Configuration for output power trimming; use VDDA_PTRIM_*MA

Outputs None

Assumptions None

Example /* Configure VDDA to 8 mA charge pump max current charge pump.
 * VCC is shorted to VDDA in sleep mode. */
Sys_Power_VDDAConfig(VDDA_PTRIM_8MA);

www.onsemi.com

335

onsemi Confidential
RSL10 Firmware Reference

9.133 SYS_POWER_VDDCCALIBRATEDCONFIG

Set the VDDC voltage trim to the given target based on the calibration trim value specified in NVR4

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_power.c

Template unsigned int Sys_Power_VDDCCalibratedConfig(uint8_t target)

Description Set the VDDC voltage trim to the given target based on the calibration trim value specified in NVR4.

Inputs target = The target VDDC voltage in 10*mV

Outputs return value = A code indicating whether an error has occurred.

Assumptions None

Example /* Load the VDDC power supply trim for a target of 1.15 V */
result = Sys_Power_VDDCCalibratedConfig(115);

www.onsemi.com

336

onsemi Confidential
RSL10 Firmware Reference

9.134 SYS_POWER_VDDCCONFIG

Configure digital core voltage regulator

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_power.h

Template void Sys_Power_VDDCConfig(uint32_t cfg)

Description Configure digital core voltage regulator

Inputs cfg = setting standby voltage trimming, low power mode control, sleep mode clamp
control and output voltage trimming configuration; use VDDC_TRIM_*V,
VDDC_SLEEP_[HIZ | GND], VDDC_[LOW| NOMINAL]_BIAS, and
VDDC_STANDBY_TRIM_*V

Outputs None

Assumptions None

Example /* Configure VDDC standby voltage 0.75 V and output voltage
 * 1 V in nominal biasing. The clamp output is grounded
 * in sleep mode. */
Sys_Power_VDDCConfig(VDDC_TRIM_1P00V |
 VDDC_SLEEP_GND |
 VDDC_NOMINAL_BIAS |
 VDDC_STANDBY_TRIM_0P75V);

www.onsemi.com

337

onsemi Confidential
RSL10 Firmware Reference

9.135 SYS_POWER_VDDCSTANDBYCALIBRATEDCONFIG

Set the VDDC standby voltage trim to the given target based on the calibration trim value specified in NVR4

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_power.c

Template unsigned int Sys_Power_VDDCStandbyCalibratedConfig(uint8_t target)

Description Set the VDDC standby voltage trim to the given target based on the calibration trim value specified in NVR4.

Inputs target = The target VDDC standby voltage in 10*mV

Outputs return value = A code indicating whether an error has occurred.

Assumptions None

Example /* Load the VDDC standby power supply trim for a target of 800 mV */
result = Sys_Power_VDDCStandbyCalibratedConfig(80);

www.onsemi.com

338

onsemi Confidential
RSL10 Firmware Reference

9.136 SYS_POWER_VDDMCALIBRATEDCONFIG

Set the VDDM voltage trim to the given target based on the calibration trim value specified in NVR4

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_power.c

Template unsigned int Sys_Power_VDDMCalibratedConfig(uint8_t target)

Description Set the VDDM voltage trim to the given target based on the calibration trim value specified in NVR4.

Inputs target = The target VDDM voltage in 10*mV

Outputs return value = A code indicating whether an error has occurred.

Assumptions None

Example /* Load the VDDM power supply trim for a target of 1.15 V */
result = Sys_Power_VDDMCalibratedConfig(115);

www.onsemi.com

339

onsemi Confidential
RSL10 Firmware Reference

9.137 SYS_POWER_VDDMCONFIG

Configure memories' voltage regulator setting

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_power.h

Template void Sys_Power_VDDMConfig(uint32_t cfg)

Description Configure memories' voltage regulator setting

Inputs cfg = value of the memory voltage regulator; use register VDDM_TRIM_*V,
VDDM_SLEEP_[HIZ | GND], VDDM_[LOW| NOMINAL]_BIAS, and
VDDM_STANDBY_TRIM_*V

Outputs None

Assumptions None

Example /* Configure VDDM standby voltage at 0.75 V and output voltage
 * at 1 V in nominal biasing. The clamp output is grounded in
 * sleep mode. */
Sys_Power_VDDMConfig(VDDM_TRIM_1P00V |
 VDDM_SLEEP_GND |
 VDDM_NOMINAL_BIAS |
 VDDM_STANDBY_TRIM_0P75V);

www.onsemi.com

340

onsemi Confidential
RSL10 Firmware Reference

9.138 SYS_POWER_VDDMSTANDBYCALIBRATEDCONFIG

Set the VDDM standby voltage trim to the given target based on the calibration trim value specified in NVR4

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_power.c

Template unsigned int Sys_Power_VDDMStandbyCalibratedConfig(uint8_t target)

Description Set the VDDM standby voltage trim to the given target based on the calibration trim value specified in NVR4.

Inputs target = The target VDDM standby voltage in 10*mV

Outputs return value = A code indicating whether an error has occurred.

Assumptions None

Example /* Load the VDDM standby power supply trim for a target of 800 mV */
result = Sys_Power_VDDMStandbyCalibratedConfig(80);

www.onsemi.com

341

onsemi Confidential
RSL10 Firmware Reference

9.139 SYS_POWER_VDDPACALIBRATEDCONFIG

Set the VDDPA voltage trim to the given target based on the calibration trim value specified in NVR4

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_power.c

Template unsigned int Sys_Power_VDDPACalibratedConfig(uint8_t target)

Description Set the VDDPA voltage trim to the given target based on the calibration trim value specified in NVR4. The
VDDPA power supply is not enabled.

Inputs target = The target VDDPA voltage in 10*mV

Outputs return value = A code indicating whether an error has occurred.

Assumptions None

Example /* Load the VDDPA power supply trim for a target of 1.30 V */
result = Sys_Power_VDDPACalibratedConfig(130);

www.onsemi.com

342

onsemi Confidential
RSL10 Firmware Reference

9.140 SYS_POWER_VDDPACONFIG

Configure power amplifier RF block regulator

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_power.h

Template void Sys_Power_VDDPAConfig(uint32_t cfg)

Description Configure power amplifier RF block regulator

Inputs cfg = Power amplifier supply control, enable current sensing circuit, enable control
and output voltage trimming configuration; use VDDPA_[DISABLE | ENABLE,
VDDPA_TRIM_*V, VDDPA_ISENSE_[DISABLE | ENABLE], and
VDDPA_SW_[HIZ | GND]

Outputs None

Assumptions None

Example /* Power amplifier output connected to VDDRF regulator,
 * the VDDPA regulator is enabled, the current sensing circuit
 * is disabled and VDDPA is configured for a nominal 1.05 V
 * output voltage trim. */
Sys_Power_VDDPAConfig(VDDPA_ENABLE |
 VDDPA_TRIM_1P05V |
 VDDPA_ISENSE_ENABLE |
 VDDPA_SW_HIZ);

www.onsemi.com

343

onsemi Confidential
RSL10 Firmware Reference

9.141 SYS_POWER_VDDRFCALIBRATEDCONFIG

Set the VDDRF voltage trim to the given target based on the calibration trim value specified in NVR4

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_power.c

Template unsigned int Sys_Power_VDDRFCalibratedConfig(uint8_t target)

Description Set the VDDRF voltage trim to the given target based on the calibration trim value specified in NVR4. The
VDDRF power supply is not enabled.

Inputs target = The target VDDRF voltage in 10*mV

Outputs return value = A code indicating whether an error has occurred.

Assumptions None

Example /* Load the VDDRF power supply trim for a target of 1.10 V */
result = Sys_Power_VDDRFCalibratedConfig(110);

www.onsemi.com

344

onsemi Confidential
RSL10 Firmware Reference

9.142 SYS_POWER_VDDRFCONFIG

Configure RF block regulator

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_power.h

Template void Sys_Power_VDDRFConfig(uint32_t cfg)

Description Configure RF block regulator

Inputs cfg = set the RF block regulator; use VDDRF_TRIM_*V, VDDRF_[DISABLE |
ENABLE], and VDDRF_DISABLE_[HIZ | GND]

Outputs None

Assumptions None

Example /* Configure VDDRF regulator nominal output voltage on 1.0 V.
 * The clamp control output is in floating. */
Sys_Power_VDDRFConfig(VDDRF_TRIM_1P00V |
 VDDRF_ENABLE |
 VDDRF_DISABLE_HIZ);

www.onsemi.com

345

onsemi Confidential
RSL10 Firmware Reference

9.143 SYS_POWERMODES_SLEEP

Configure the system, save register and memory banks of the BLE, then enter Sleep Mode

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_power_modes.c

Template void Sys_PowerModes_Sleep(struct sleep_mode_env_tag *sleep_mode_env)

Description Configure the system, save register and memory banks of the BLE, then enter Sleep Mode

Inputs sleep_mode_env = Parameters and configurations for the Sleep Mode

Outputs None

Assumptions It is safe to enter Sleep Mode (this should be checked before calling this function), DMA channel 0 is available

Example /* Assume the configuration of Sleep Mode in sleep_mode_init_env
 * and sleep_mode_env parameters were initialized. Also,
 * Sys_PowerModes_Sleep_Init(&sleep_mode_init_env) or
 * Sys_PowerModes_Sleep_Init_2Mbps(&sleep_mode_init_env) was called. */

/* Configure the system, save register and memory banks
 * of the BLE, then enter Sleep Mode. */
Sys_PowerModes_Sleep(&sleep_mode_env);

www.onsemi.com

346

onsemi Confidential
RSL10 Firmware Reference

9.144 SYS_POWERMODES_SLEEP_INIT

Initialize some system blocks for Sleep Mode, save RF register and memory banks excluding 2 Mbps bank,
configure retention regulators of supply voltages

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_power_modes.c

Template void Sys_PowerModes_Sleep_Init(struct sleep_mode_init_env_tag
*sleep_mode_env)

Description Initialize some system blocks for Sleep Mode, save RF register and memory banks excluding 2 Mbps bank,
configure retention regulators of supply voltages

Note - Since Sys_RFFE_SetTXPower() function updates the values of a number of RF registers, call this
function after each time Sys_RFFE_SetTXPower() function is called to ensure that updated RF register values
are backed up.

Inputs sleep_mode_env = Parameters and configurations for the Sleep Mode

Outputs None

Assumptions RF bank 1 (2 Mbps) does not need to be saved

Example /* Assume the configuration of Sleep Mode in sleep_mode_init_env
 * parameter was initialized. */

/* Initialize some system blocks for Sleep Mode, save RF
 * register and memory banks excluding 2 Mbps bank, configure
 * retention regulators of supply voltages. */
Sys_PowerModes_Sleep_Init(&sleep_mode_init_env);

www.onsemi.com

347

onsemi Confidential
RSL10 Firmware Reference

9.145 SYS_POWERMODES_SLEEP_INIT_2MBPS

Initialize some system blocks for Sleep Mode, save RF register and memory banks including 2 Mbps bank,
configure retention regulators of supply voltages

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_power_modes.c

Template void Sys_PowerModes_Sleep_Init_2Mbps(struct sleep_mode_init_env_tag
*sleep_mode_env)

Description Initialize some system blocks for Sleep Mode, save RF register and memory banks including 2 Mbps bank,
configure retention regulators of supply voltages

Note - Since Sys_RFFE_SetTXPower() function updates the values of a number of RF registers, call this
function after each time Sys_RFFE_SetTXPower() function is called to ensure that updated RF register values
are backed up.

Inputs sleep_mode_env = Parameters and configurations for the Sleep Mode

Outputs None

Assumptions None

Example /* Assume the configuration of Sleep Mode in sleep_mode_init_env
 * parameter was initialized. */

/* Initialize some system blocks for Sleep Mode, save RF
 * register and memory banks including 2 Mbps bank, configure
 * retention regulators of supply voltages. */
Sys_PowerModes_Sleep_Init_2Mbps(&sleep_mode_init_env);

www.onsemi.com

348

onsemi Confidential
RSL10 Firmware Reference

9.146 SYS_POWERMODES_SLEEP_WAKEUPFROMFLASH

Configure the system and enter Sleep Mode (wake up from flash)

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_power_modes.c

Template void Sys_PowerModes_Sleep_WakeupFromFlash(struct
sleep_mode_flash_env_tag *sleep_mode_env)

Description Configure the system and enter Sleep Mode (wake up from flash)

Inputs sleep_mode_env = Parameters and configurations for the Sleep Mode

Outputs None

Assumptions None

Example /* Assume the configuration of Sleep Mode in sleep_mode_flash_env
 * parameter was initialized and
 * Sleep_Mode_Configure(&sleep_mode_flash_env) was called. */

/* Configure the system and enter Sleep Mode (wake up from flash) */
Sys_PowerModes_Sleep_WakeupFromFlash(&sleep_mode_flash_env);

www.onsemi.com

349

onsemi Confidential
RSL10 Firmware Reference

9.147 SYS_POWERMODES_STANDBY

Configure the system and enter Standby Mode

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_power_modes.c

Template void Sys_PowerModes_Standby(struct standby_mode_env_tag
*standby_mode_env)

Description Configure the system and enter Standby Mode

Inputs standby_mode_env = Parameters and configurations for the Standby Mode

Outputs None

Assumptions Any retention regulator needed has been enabled

Desired wake-up source has been set up before calling this function

At least one interrupt needs to be enabled before going to Standby Mode and asserted after wake-up event to
wake up the ARM Cortex-M3 processor from WFI

Example /* Assume the configuration of Standby Mode in standby_mode_env
 * parameter was initialized and
 * Sys_PowerModes_Standby_Init(&standby_mode_env) was called. */

/* Configure the system and enter Standby Mode */
Sys_PowerModes_Standby(&standby_mode_env);

www.onsemi.com

350

onsemi Confidential
RSL10 Firmware Reference

9.148 SYS_POWERMODES_STANDBY_WAKEUP

Execute steps required to wake up the system from Standby Mode

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_power_modes.c

Template void Sys_PowerModes_Standby_Wakeup(struct standby_mode_env_tag
*standby_mode_env)

Description Execute steps required to wake up the system from Standby Mode

Inputs Pre-defined = and configurations for the Standby Mode

Outputs None

Assumptions None

Example

/* Execute steps required to wake up the system from Standby Mode */
Sys_PowerModes_Standby_Wakeup(&standby_mode_env);

/* Functions to be performed after waking up from Standby Mode
 * start here. */

www.onsemi.com

351

onsemi Confidential
RSL10 Firmware Reference

9.149 SYS_POWERMODES_WAKEUP

Execute steps required to wake up the system from Sleep Mode RF register bank 1 (2 Mbps) is not restored

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_power_modes.c

Template void Sys_PowerModes_Wakeup(void)

Description Execute steps required to wake up the system from Sleep Mode RF register bank 1 (2 Mbps) is not restored

Inputs None

Outputs None

Assumptions DMA channels 0 and 1 are available

Start RC oscillator is calibrated to 3 MHz

RF bank 1 (2 Mbps) does not need to be restored

Example /* Execute steps required to wake up the system from Sleep Mode.
 * RF register bank 1 (2 Mbps) is not restored. */
Sys_PowerModes_Wakeup(&sleep_mode_env);

/* Functions to be performed after waking up from Sleep Mode
 * start here. */

www.onsemi.com

352

onsemi Confidential
RSL10 Firmware Reference

9.150 SYS_POWERMODES_WAKEUP_2MBPS

Execute steps required to wake up the system from Sleep Mode RF register bank 1 (2 Mbps) is also restored

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_power_modes.c

Template void Sys_PowerModes_Wakeup_2Mbps(void)

Description Execute steps required to wake up the system from Sleep Mode RF register bank 1 (2 Mbps) is also restored

Inputs None

Outputs None

Assumptions DMA channels 0 and 1 are available

Start RC oscillator is calibrated to 3 MHz

Example /* Execute steps required to wake up the system from Sleep Mode.
 * RF register bank 1 (2 Mbps) is also restored. */
Sys_PowerModes_Wakeup_2Mbps(&sleep_mode_env);

/* Functions to be performed after waking up from Sleep Mode
 * start here. */

www.onsemi.com

353

onsemi Confidential
RSL10 Firmware Reference

9.151 SYS_PROGRAMROM_UNLOCKDEBUG

Run the unlock routine from the ProgramROM

Type Function

Include File #include <rsl10.h>

Source File rsl10_romvect.h

Template void Sys_ProgramROM_UnlockDebug(void)

Description Run the unlock routine from the ProgramROM. WARNING: This will unlock the device by erasing the flash and
SRAM memories!

Inputs None

Outputs None

Assumptions None

Example /* Unlock the SWJ-DP after wiping the flash and RAM contents
 * to protect the application IP (does not return). */
Sys_ProgramROM_UnlockDebug();

www.onsemi.com

354

onsemi Confidential
RSL10 Firmware Reference

9.152 SYS_PWM_CONFIG

Configure a pulse-width modulator

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_pwm.h

Template void Sys_PWM_Config(uint32_t num, uint32_t period, uint32_t duty)

Description Configure a pulse-width modulator

Inputs num = The PWM interface to configure; use 0 or 1
period = The period length for the PWM in cycles
duty = The high part of the period for the PWM in cycles

Outputs None

Assumptions PWM period is (period + 1) cycles long

PWM duty is high for (duty + 1) cycles

Example /* Set PWM0 period to (periodVal + 1). PWM0 duty cycle is high for
 * (dutyVal + 1) cycles. */
Sys_PWM_Config(0, periodVal, dutyVal);

www.onsemi.com

355

onsemi Confidential
RSL10 Firmware Reference

9.153 SYS_PWM_CONFIGALL

Configure both pulse-width modulators with the same configuration

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_pwm.h

Template void Sys_PWM_ConfigAll(uint32_t period, uint32_t duty)

Description Configure both pulse-width modulators with the same configuration

Inputs period = The period length for the PWMs in cycles
duty = The high part of the period for the PWMs in cycles

Outputs None

Assumptions PWM period is (period + 1) cycles long

PWM duty is high for (duty + 1) cycles

Example /* Sets PWM0 and PWM1 periods to (periodVal + 1). PWM0 and PWM1 duty
 * cycles are high for (dutyVal + 1) cycles. */
Sys_PWM_ConfigAll(periodVal, dutyVal);

www.onsemi.com

356

onsemi Confidential
RSL10 Firmware Reference

9.154 SYS_PWM_CONTROL

Set the control configuration for the two PWM interfaces

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_pwm.h

Template void Sys_PWM_Control(uint32_t cfg)

Description Set the control configuration for the two PWM interfaces

Inputs cfg = The PWM bitband enable/disable setting; use PWM*_[DISABLE | ENABLE],
PWM_OFFSET_[DISABLE | ENABLE], and a constant shifted to
PWM_CTRL_PWM_OFFSET_Pos

Outputs None

Assumptions None

Example /* Enable both PWM interfaces with an offset of 10 cycles between
 * PWM0 and PWM1. */
Sys_PWM_Control(PWM0_ENABLE | PWM1_ENABLE |
 PWM_OFFSET_ENABLE | (10 << PWM_CTRL_PWM_OFFSET_Pos));

www.onsemi.com

357

onsemi Confidential
RSL10 Firmware Reference

9.155 SYS_PWM_DIOCONFIG

Configure DIO for the specified PWM

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_pwm.h

Template void Sys_PWM_DIOConfig(uint32_t numinv, uint32_t cfg, uint32_t pwm)

Description Configure DIO for the specified PWM

Inputs numinv = PWM number; use DIO_MODE_[PWM0 | PWM0_INV | PWM1 | PWM1_INV]
cfg = DIO pin configuration for the PWM output
pwm = DIO to use as the PWM output pad

Outputs None

Assumptions None

Example /* Configure DIO 1 as the PWM0 interface and non-inverted. */
Sys_PWM_DIOConfig(DIO_MODE_PWM0, APP_DIO_CFG, 1);

www.onsemi.com

358

onsemi Confidential
RSL10 Firmware Reference

9.156 SYS_PWM_ENABLE

Enable or disable a PWM

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_pwm.h

Template void Sys_PWM_Enable(uint32_t num, uint32_t cfg)

Description Enable or disable a PWM

Inputs num = The PWM interface to enable or diable; use 0 or 1
cfg = The PWM bitband enable/disable setting; use PWM*_[DISABLE |

ENABLE]_BITBAND

Outputs None

Assumptions None

Example /* Enable PWM0 interface. */
Sys_PWM_Enable(0, PWM0_ENABLE_BITBAND);

www.onsemi.com

359

onsemi Confidential
RSL10 Firmware Reference

9.157 SYS_READNVR4

Read data from NVR4 using a function implemented in ROM

Type Function

Include File #include <rsl10.h>

Source File rsl10_romvect.h

Template unsigned int Sys_ReadNVR4(unsigned int calib_info_ptr,

Description Read data from NVR4 using a function implemented in ROM.

Inputs info_ptr = The base register for the specified calibration information.
numReads = The number of words to be read.
data = A pointer to the variable that will hold the read data.

Outputs return value = A code indicating whether an error has occurred.
data = The data read from NVR4 will be contained here.

Assumptions None

Example /* Read the default VDDRF configuration from NVR4 into data */
Sys_ReadNVR4(MANU_INFO_VDDRF, 1, (unsigned int *)&data);

www.onsemi.com

360

onsemi Confidential
RSL10 Firmware Reference

9.158 SYS_RFFE_INPUTDIOCONFIG

Configure a DIO pad as an RF front-end general-purpose input

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_rffe.h

Template void Sys_RFFE_InputDIOConfig(uint32_t num, uint32_t cfg, uint32_t gpi)

Description Configure a DIO pad as an RF front-end general-purpose input

Inputs num = GPIO interface pad to configure; use 0 to 9
cfg = DIO pin configuration for the output pads
gpi = DIO to use as the GPI pad; use RF_GPIO[0:9]_SRC_DIO_[0:15], and

RF_GPIO[0:9]_SRC_CONST_[LOW | HIGH]

Outputs None

Assumptions None

Example /* Configure DIO 4 as an input pin of the chip and connect it to RF
* GPIO3 in other-end. */
Sys_RFFE_InputDIOConfig(3, DIO_WEAK_PULL_UP, RF_GPIO3_SRC_DIO_4);

www.onsemi.com

361

onsemi Confidential
RSL10 Firmware Reference

9.159 SYS_RFFE_OUTPUTDIOCONFIG

Configure DIO pads connected to RF front-end GPIO

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_rffe.h

Template void Sys_RFFE_OutputDIOConfig(uint32_t num, uint32_t cfg, uint32_t gpio)

Description Configure DIO pads connected to RF front-end GPIO

Inputs num = GPIO interface pad to configure; use 0 to 9
cfg = DIO pin configuration for the output pads
gpo = DIO to use as the GPO pad

Outputs None

Assumptions None

Example /* Configure DIO 2 as an output pin of the chip and connect it to RF
* GPIO5 in other-end. */
Sys_RFFE_OutputDIOConfig(5, APP_DIO_CFG, 2);

www.onsemi.com

362

onsemi Confidential
RSL10 Firmware Reference

9.160 SYS_RFFE_SETTXPOWER

Set the TX Power according to the desired target value with an accuracy of +/-1 dBm for +6 dBm to -17 dBm

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_rffe.c

Template unsigned int Sys_RFFE_SetTXPower(int target)

Description Set the TX Power according to the desired target value with an accuracy of +/-1 dBm for +6 dBm to -17 dBm.
This function sets VDDRF, VDDPA, and PA_PWR (RF_REG19) when applicable.

Note - This function provides RF TX power configurations that match the requested levels, without considering
the potential for increased power consumption due to the use of VDDPA.

• This function uses ADC channel 0 and disables it after use.
• Ensure this function is called prior to initializing the Sleep Mode (or Standby Mode) in applications

that use both BLE and Sleep (or Standby) functionality so updated RF register values can be backed
up. See other notes in Sys_PowerModes_Sleep_Init(), Sys_PowerModes_Sleep_Init_2Mbps() and
Sys_PowerModes_Standby_Init() functions.

Inputs target = Target transmission power in the range from -17 to +6 dBm in 1 dBm
increments

Outputs return value = ERRNO_NO_ERROR; ERRNO_RFFE_INVALIDSETTING_ERROR: if target is
out of the expected range; ERRNO_RFFE_MISSINGSETTING_ERROR: if the
device is missing the manufacturing reference trim values in NVR4;
ERRNO_RFFE_INSUFFICIENTVCC_ERROR: if the configured VCC target
may not be enough to guarantee the expected target TX power. The function
might still try to reach the desired target

Assumptions The calibrated voltage values exist in device NVR4

VCC has been configured to an appropriate level for the expected battery level

Example /* Set the radio TX power to 0 dBm */
result = Sys_RFFE_SetTXPower(0);

www.onsemi.com

363

onsemi Confidential
RSL10 Firmware Reference

9.161 SYS_RFFE_SPIDIOCONFIG

Configure the SPI slave for the RF front-end to use DIOs as the SPI master source

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_rffe.h

Template void Sys_RFFE_SPIDIOConfig(uint32_t cfg, uint32_t mosi, uint32_t csn,
uint32_t clk, uint32_t miso)

Description Configure the SPI slave for the RF front-end to use DIOs as the SPI master source

Inputs cfg = DIO pin configuration for the output pads
mosi = DIO to use as the MOSI pad
csn = DIO to use as the CSN pad
clk = DIO to use as the CLK pad
miso = DIO to use as the MISO pad

Outputs None

Assumptions None

Example /* Configure DIOs 1, 2, 3, 4 as the SPI interface to the
 * RF front-end. */
Sys_RFFE_SPIDIOConfig(APP_DIO_CFG, 1, 2, 3, 4);

www.onsemi.com

364

onsemi Confidential
RSL10 Firmware Reference

9.162 SYS_RTC_CONFIG

Configure RTC block

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_rtc.h

Template void Sys_RTC_Config(uint32_t start_value, uint32_t rtc_ctrl_cfg)

Description Configure RTC block

Inputs start_value = Start value for the RTC timer counter; use a 32 bit value
rtc_ctrl_cfg = RTC control register; use RTC_RESET, RTC_FORCE_CLOCK,

RTC_ALARM_*, RTC_[DISABLE | ENABLE], and RTC_CLK_SRC_[XTAL32K |
RC_OSC]

Outputs None

Assumptions None

Example /* RTC timer count period of 30.518 us, RTC is reset and enabled,
 * RTC alarm invoke every 1 s and the RTC is RC Oscillator. */
Sys_RTC_Config(0, RTC_RESET |
 RTC_ALARM_1S |
 RTC_ENABLE |
 RTC_CLK_SRC_RC_OSC);

www.onsemi.com

365

onsemi Confidential
RSL10 Firmware Reference

9.163 SYS_RTC_START

Enable or disable the RTC

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_rtc.h

Template void Sys_RTC_Start(uint32_t cfg)

Description Enable or disable the RTC

Inputs cfg = Value for enabling or disabling RTC; use RTC_[DISABLE | ENABLE]_BITBAND

Outputs None

Assumptions None

Example /* Enable the RTC timer. */
Sys_RTC_Start(RTC_ENABLE_BITBAND);

www.onsemi.com

366

onsemi Confidential
RSL10 Firmware Reference

9.164 SYS_RTC_VALUE

Read the current value of the RTC timer

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_rtc.h

Template void Sys_RTC_Value(uint32_t cfg)

Description Read the current value of the RTC timer

Inputs None

Outputs return value = RTC timer counter current value

Assumptions None

Example /* Read the value of the RTC timer. */
result = Sys_RTC_Value();

www.onsemi.com

367

onsemi Confidential
RSL10 Firmware Reference

9.165 SYS_SPI_CONFIG

Configure the specified SPI interface's operation and controller information

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_spi.h

Template void Sys_SPI_Config(uint32_t num, uint32_t cfg)

Description Configure the specified SPI interface's operation and controller information

Inputs num = SPI interface to configure; use 0 or 1
cfg = Interface operation configuration; use SPI*_OVERRUN_INT_[DISABLE |

ENABLE], SPI*_UNDERRUN_INT_[DISABLE | ENABLE],
SPI*_CONTROLLER_[CM3 | DMA], SPI*_SELECT_[MASTER | SLAVE],
SPI*_CLK_POLARITY_[NORMAL | INVERSE],
SPI*_MODE_SELECT_[MANUAL | AUTO], SPI*_[DISABLE | ENABLE] and
SPI*_PRESCALE_*

Outputs None

Assumptions None

Example /* Configure SPI0 for master-mode writes of 16-bit data (controlled
 * by the ARM Cortex-M3 processor), running the SPI0 at 1/4 of the
 * system clock frequency. */
Sys_SPI_Config(0, SPI0_OVERRUN_INT_DISABLE |
 SPI0_UNDERRUN_INT_DISABLE |
 SPI0_CONTROLLER_CM3 |
 SPI0_SELECT_MASTER |
 SPI0_CLK_POLARITY_NORMAL |
 SPI0_MODE_SELECT_AUTO |
 SPI0_ENABLE |
 SPI0_PRESCALE_4);

Sys_SPI_TransferConfig(0, SPI0_IDLE |
 SPI0_WRITE_DATA |
 SPI0_CS_1 |
 SPI0_WORD_SIZE_16);

www.onsemi.com

368

onsemi Confidential
RSL10 Firmware Reference

9.166 SYS_SPI_DIOCONFIG

Configure four DIOs for the specified SPI interface

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_spi.h

Template void Sys_SPI_DIOConfig(uint32_t num, uint32_t slave, uint32_t cfg,
uint32_t clk, uint32_t cs, uint32_t seri, uint32_t sero)

Description Configure four DIOs for the specified SPI interface

Inputs num = SPI interface to configure; use 0 or 1
slave = SPI master/slave configuration; use SPI*_SELECT_[MASTER | SLAVE]
cfg = DIO pin configuration for the SPI pads
clk = DIO to use as the SPI clock pad
cs = DIO to use as the SPI chip select pad
seri = DIO to use as the SPI serial input pad
sero = DIO to use as the SPI serial output pad

Outputs None

Assumptions None

Example /* Configure DIOs 5, 6, 7, and 8 as SPI interface 1 in slave mode */
Sys_SPI_DIOConfig(1, SPI1_SELECT_SLAVE, APP_DIO_CFG, 5, 6, 7, 8);

www.onsemi.com

369

onsemi Confidential
RSL10 Firmware Reference

9.167 SYS_SPI_MASTERINIT

Initialize an SPI operation on a specified SPI interface when running this interface in master mode

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_spi.h

Template void Sys_SPI_MasterInit(uint32_t num)

Description Initialize an SPI operation on a specified SPI interface when running this interface in master mode

Inputs num = SPI interface to configure; use 0 or 1

Outputs None

Assumptions The SPI interface is currently idle

The SPI interface is configured for master mode operation

If writing over the SPI interface, the data to be written has been queued

Example /* Read the latest word from SPI0 before starting the next
 * transfer. */
tempData = SPI0->RX_DATA;
Sys_SPI_MasterInit(0);

www.onsemi.com

370

onsemi Confidential
RSL10 Firmware Reference

9.168 SYS_SPI_READ

Configure the interface to read the specified number of bits over the specified SPI interface

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_spi.h

Template void Sys_SPI_Read(uint32_t num, uint8_t bits)

Description Configure the interface to read the specified number of bits over the specified SPI interface

Inputs num = SPI interface to read from; use 0 or 1
bits = Word size used by the SPI interface; use SPI*_WORD_SIZE_*

Outputs None

Assumptions The SPI interface is currently idle

The SPI interface is configured for master mode operation

Example /* Read the latest word from SPI0 before reading the next SPI0
 * byte. */
tempData = SPI0->RX_DATA;
Sys_SPI_Read(0, 8);

www.onsemi.com

371

onsemi Confidential
RSL10 Firmware Reference

9.169 SYS_SPI_READWRITE

Configure the interface to read and write the specified number of bits over the specified SPI interface
(full-duplex)

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_spi.h

Template void Sys_SPI_ReadWrite(uint32_t num, uint8_t bits)

Description Configure the interface to read and write the specified number of bits over the specified SPI interface
(full-duplex)

Inputs num = SPI interface to read from; use 0 or 1
bits = Number of bits to transmit and receive (between 1 and 32)

Outputs None

Assumptions The SPI interface is currently idle

The SPI interface is configured for master mode operation

The data to be written has been queued

Example /* Echo back to slave device the most recently received SPI0 word,
 * while reading the next word. */
SPI0->TX_DATA = SPI0->RX_DATA;
Sys_SPI_ReadWrite(0, 32);

www.onsemi.com

372

onsemi Confidential
RSL10 Firmware Reference

9.170 SYS_SPI_TRANSFERCONFIG

Configure the SPI transfer information for the specified SPI interface

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_spi.h

Template void Sys_SPI_TransferConfig(uint32_t num, uint32_t cfg)

Description Configure the SPI transfer information for the specified SPI interface

Inputs num = SPI interface to configure; use 0 or 1
cfg = Interface transfer configuration; use SPI*_[IDLE | START], SPI*_[WRITE |

READ | RW]_DATA, SPI*_CS_*, and SPI*_WORD_SIZE_* or a constant
shifted to SPI*_CTRL1_SPI0_WORD_SIZE_Pos

Outputs None

Assumptions None

Example /* Configure SPI0 for master-mode writes of 32-bit data
 * (controlled by the ARM Cortex-M3 processor), running the SPI0
 * at 1/2 of the system clock frequency. */
Sys_SPI_Config(0, SPI0_OVERRUN_INT_DISABLE |
 SPI0_UNDERRUN_INT_DISABLE |
 SPI0_CONTROLLER_CM3 |
 SPI0_SELECT_MASTER |
 SPI0_CLK_POLARITY_NORMAL |
 SPI0_MODE_SELECT_AUTO |
 SPI0_ENABLE |
 SPI0_PRESCALE_2);

Sys_SPI_TransferConfig(0, SPI0_IDLE |
 SPI0_WRITE_DATA |
 SPI0_CS_1 |
 SPI0_WORD_SIZE_32);

www.onsemi.com

373

onsemi Confidential
RSL10 Firmware Reference

9.171 SYS_SPI_WRITE

Configure the interface to write the specified number of bits over the specified SPI interface

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_spi.h

Template void Sys_SPI_Write(uint32_t num, uint8_t bits)

Description Configure the interface to write the specified number of bits over the specified SPI interface

Inputs num = SPI interface to read from; use 0 or 1
bits = Number of bits to transmit (between 1 and 32)

Outputs None

Assumptions The SPI interface is currently idle

The SPI interface is configured for master mode operation

The data to be written has been queued

Example /* Queue up and transmit the next SPI0 byte. */
SPI0->TX_DATA = tempData;
Sys_SPI_Write(0, 8);

www.onsemi.com

374

onsemi Confidential
RSL10 Firmware Reference

9.172 SYS_TIMER_BBCONFIG

Configure the baseband timer

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_timers.h

Template void Sys_Timer_BBConfig(uint32_t cfg)

Description Configure the baseband timer

Inputs cfg = Value for configuration of the baseband timer clock; use: BB_TIMER_[RESET |
NRESET], BB_CLK_PRESCALE_*

Outputs None

Assumptions None

Example /* Reset and configure the baseband timer with prescale 1. */
Sys_Timer_BBConfig(BB_TIMER_RESET | BB_CLK_PRESCALE_1);

www.onsemi.com

375

onsemi Confidential
RSL10 Firmware Reference

9.173 SYS_TIMER_GET_STATUS

Return the current running or stopped status of the specified general-purpose system timer

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_timers.h

Template uint32_t Sys_Timer_Get_Status(uint32_t num)

Description Return the current running or stopped status of the specified general-purpose system timer

Inputs num = Timer to read status from; use 0, 1, 2, or 3

Outputs return value = The current timer status; value loaded from
TIMER_CTRL_[*].TIMER_STATUS_ALIAS

Assumptions None

Example /* Get current running or stopped status of timer 0. */
status = Sys_Timer_Get_Status(0);

www.onsemi.com

376

onsemi Confidential
RSL10 Firmware Reference

9.174 SYS_TIMER_SET_CONTROL

Set up a general-purpose system timer

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_timers.h

Template void Sys_Timer_Set_Control(uint32_t num, uint32_t cfg)

Description Set up a general-purpose system timer

Inputs num = Timer to configure; use 0, 1, 2, or 3
cfg = Control configuration for the specified timer; use TIMER_MULTI_COUNT_*,

TIMER_[SHOT_MODE | FREE_RUN], TIMER_PRESCALE_* and a timeout
count setting

Outputs None

Assumptions None

Example /* Configure general-purpose timer 0 as a free-running timer,
 * triggering every second for a slow clock of 1.28 MHz. */
Sys_Timer_Set_Control(0, TIMER_FREE_RUN | TIMER_PRESCALE_32 | 40000);

www.onsemi.com

377

onsemi Confidential
RSL10 Firmware Reference

9.175 SYS_TIMERS_START

Start the specified general-purpose system timers

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_timers.c

Template void Sys_Timers_Start(uint32_t cfg)

Description Start the specified general-purpose system timers

Inputs cfg = Timers to start; use the SELECT_TIMER* settings or SELECT_[ALL |
NO]_TIMERS to indicate which timers to start

Outputs None

Assumptions None

Example /* Start timer 0 and timer 2. */
Sys_Timers_Start(SELECT_TIMER0 | SELECT_TIMER2);

www.onsemi.com

378

onsemi Confidential
RSL10 Firmware Reference

9.176 SYS_TIMERS_STOP

Stop the specified general-purpose system timers

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_timers.c

Template void Sys_Timers_Stop(uint32_t cfg)

Description Stop the specified general-purpose system timers

Inputs cfg = Timers to stop; use the SELECT_TIMER* settings or SELECT_[ALL |
NO]_TIMERS to indicate which timers to stop

Outputs None

Assumptions None

Example /* Stop timer 0 and timer 2. */
Sys_Timers_Stop(SELECT_TIMER0 | SELECT_TIMER2);

www.onsemi.com

379

onsemi Confidential
RSL10 Firmware Reference

9.177 SYS_UART_DIOCONFIG

Configure two DIOs for the specified UART interface

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_uart.h

Template void Sys_UART_DIOConfig(uint32_t cfg, uint32_t tx, uint32_t rx)

Description Configure two DIOs for the specified UART interface

Inputs cfg = DIO pin configuration for the UART pads
tx = DIO to use as the UART transmit pad
rx = DIO to use as the UART receive pad

Outputs None

Assumptions None

Example /* Configure DIOs 9 and 10 as UART interface 1. */
Sys_UART_DIOConfig(APP_DIO_CFG, 9, 10);

www.onsemi.com

380

onsemi Confidential
RSL10 Firmware Reference

9.178 SYS_UART_DISABLE

Disable the UART

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_uart.h

Template void Sys_UART_Disable(void)

Description Disable the UART

Inputs None

Outputs None

Assumptions None

Example /* Disable the UART0 interface. */
Sys_UART_Disable();

www.onsemi.com

381

onsemi Confidential
RSL10 Firmware Reference

9.179 SYS_WAIT_FOR_EVENT

Hold the ARM Cortex-M3 core waiting for an event, interrupt request, abort or debug entry request (ARM
Thumb-2 WFE instruction)

Type Macro

Include File #include <rsl10.h>

Source File rsl10_sys_cm3.h

Template SYS_WAIT_FOR_EVENT

Description Hold the ARM Cortex-M3 core waiting for an event, interrupt request, abort or debug entry request (ARM
Thumb-2 WFE instruction)

Inputs None

Outputs None

Assumptions None

Example /* Wait for an event, interrupt request, abort or debug entry
 * request. */
SYS_WAIT_FOR_EVENT;

www.onsemi.com

382

onsemi Confidential
RSL10 Firmware Reference

9.180 SYS_WAIT_FOR_INTERRUPT

Hold the ARM Cortex-M3 core waiting for an interrupt request, abort or debug entry request (ARM Thumb-2
WFI instruction)

Type Macro

Include File #include <rsl10.h>

Source File rsl10_sys_cm3.h

Template SYS_WAIT_FOR_INTERRUPT

Description Hold the ARM Cortex-M3 core waiting for an interrupt request, abort or debug entry request (ARM Thumb-2
WFI instruction)

Inputs None

Outputs None

Assumptions None

Example /* Wait for an interrupt request, abort or debug entry request. */
SYS_WAIT_FOR_INTERRUPT;

www.onsemi.com

383

onsemi Confidential
RSL10 Firmware Reference

9.181 SYS_WATCHDOG_REFRESH

Refresh the watchdog timer count

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_watchdog.h

Template void Sys_Watchdog_Refresh(void)

Description Refresh the watchdog timer count

Inputs None

Outputs None

Assumptions None

Example /* Refresh the watchdog timer count. */
Sys_Watchdog_Refresh();

www.onsemi.com

384

onsemi Confidential
RSL10 Firmware Reference

9.182 SYS_WATCHDOG_SET_TIMEOUT

Set the watchdog timeout period

Type Function

Include File #include <rsl10.h>

Source File rsl10_sys_watchdog.h

Template void Sys_Watchdog_Set_Timeout(uint32_t timeout)

Description Set the watchdog timeout period

Inputs timeout = Timeout value for watchdog; use WATCHDOG_TIMEOUT_*

Outputs None

Assumptions None

Example /* Set up watchdog timeout value to 2.048ms for a 1MHz watchdog
 * input clock. */
Sys_Watchdog_Set_Timeout(WATCHDOG_TIMEOUT_2M048);

www.onsemi.com

385

CHAPTER 10

10.Math Library Reference
This reference chapter presents a detailed description of all the functions in the ARM Cortex-M3 math library,

including calling parameters, returned values, and assumptions.

10.1 MATH_ADD_FRAC32

Add two 32-bit signed fractional numbers, then saturate

Type Function

Include File #include <rsl10_math.h>

Source File rsl10_math_frac32.c

Template int32_t Math_Add_frac32(int32_t x, int32_t y)

Description Add two 32-bit signed fractional numbers, then saturate. The result is one of the following:

• (x + y), if MIN_FRAC32 <= (x + y) <= MAX_FRAC32
• MAX_FRAC32, if (x + y) > MAX_FRAC32
• MIN_FRAC32, if (x + y) < MIN_FRAC32

Inputs x = Fractional number represented as a 32 bit integer
y = Fractional number represented as a 32 bit integer

Outputs z = (x + y) with saturation

Assumptions None

Example /* Addition with saturation: add two 32-bit signed fractional
 * numbers, then saturate to 0x7FFFFFFF if positive overflow
 * occurs, or 0x80000000 if negative overflow occurs. */
z = Math_Add_frac32(x, y);

onsemi
RSL10 Firmware Reference

www.onsemi.com

386

10.2 MATH_ATTACKRELEASE

Calculate a first-order attack-release filter

Type Function

Include File #include <rsl10_math.h>

Source File rsl10_math_float.c

Template float Math_AttackRelease(float a, float b, float x, float y1)

Description Calculate a first-order attack-release filter. The outputs of the attack-release filter are calculated as:

• y[n] = beta * x[n] + (1 - beta) * y[n-1]

Where:

• beta = a if x[n] >= y[n-1]
• beta = b if x[n] < y[n-1]
• a is the coefficient for attack, 0 < a < 1
• b is the coefficient for release, 0 < b < 1

Inputs a = Filter coefficient
b = Filter coefficient
x = Current input
y1 = Previous output

Outputs y = New output

Assumptions None

Example /* Dual-time constant attack release averaging filter: generate new
 * output data based on the filter coefficients a and b, new input
 * data data_in, and previous output data data_out. */
data_out = Math_AttackRelease(a, b, data_in, data_out);

onsemi
RSL10 Firmware Reference

www.onsemi.com

387

10.3 MATH_ATTACKRELEASE_FRAC32

Calculate a fixed-point first-order attack-release filter

Type Function

Include File #include <rsl10_math.h>

Source File rsl10_math_frac32.c

Template int32_t Math_AttackRelease_frac32(int32_t a, int32_t b, int32_t x,
int32_t y1)

Description Calculate a fixed-point first-order attack-release filter. The outputs of the attack-release filter are calculated as:

• y[n] = beta * x[n] + (1 - beta) * y[n-1]

Where:

• beta = a if x[n] >= y[n-1]
• beta = b if x[n] < y[n-1]
• a is the coefficient for attack, 0 < a < 1
• b is the coefficient for release, 0 < b < 1

Inputs a = Filter coefficient
b = Filter coefficient
x = Current input
y1 = Previous output

Outputs y = New output

Assumptions None

Example /* Dual-time constant attack release averaging filter: generate new
 * output data based on the filter coefficients a and b, new input
 * data data_in, and previous output data data_out. All input and
 * output types are 32-bit signed fractional. */
data_out = Math_AttackRelease_frac32(a, b, data_in, data_out);

onsemi
RSL10 Firmware Reference

www.onsemi.com

388

10.4 MATH_EXPAVG

Calculate a first-order exponential average

Type Function

Include File #include <rsl10_math.h>

Source File rsl10_math_float.c

Template float Math_ExpAvg(float alpha, float x, float y1)

Description Calculate a first-order exponential average. The outputs of the exponential average are calculated as:

• y[n] = alpha * x[n] + (1 - alpha) * y[n-1]

Where:

• 0 < alpha < 1

Inputs alpha = Filter coefficient
x = Current input
y1 = Previous output

Outputs y = New output

Assumptions None

Example /* Exponential moving average filter: generate new output data based
 * on the filter coefficient alpha, new input data data_in, and
 * previous output data data_out. */
data_out = Math_ExpAvg(alpha, data_in, data_out);

onsemi
RSL10 Firmware Reference

www.onsemi.com

389

10.5 MATH_EXPAVG_FRAC32

Calculate a fixed-point first-order exponential average

Type Function

Include File #include <rsl10_math.h>

Source File rsl10_math_frac32.c

Template int32_t Math_ExpAvg_frac32(int32_t alpha, int32_t x, int32_t y1)

Description Calculate a fixed-point first-order exponential average. The outputs of the exponential average are calculated
as:

• y[n] = alpha * x[n] + (1 - alpha) * y[n-1]

Where:

• 0 < alpha < 1

Inputs alpha = Filter coefficient
x = Current input
y1 = Previous output

Outputs y = New output

Assumptions None

Example /* Exponential moving average filter: generate new output data based
 * on the filter coefficient alpha, new input data data_in, and
 * previous output data data_out. All input and output types are
 * 32-bit signed fractional. */
data_out = Math_ExpAvg_frac32(alpha, data_in, data_out);

onsemi
RSL10 Firmware Reference

www.onsemi.com

390

10.6 MATH_LINEARINTERP

Calculate linear interpolation on the interval [x0, x1)

Type Function

Include File #include <rsl10_math.h>

Source File rsl10_math_float.c

Template float Math_LinearInterp(float x0, float x1, float y0, float y1, float x)

Description Calculate linear interpolation on the interval [x0, x1). The interpolation is calculated as:

• y = y0 + ((y1 - y0) / (x1 - x0)) * (x - x0)

Inputs x0 = First boundary point x-axis value
x1 = Second boundary point x-axis value
y0 = First boundary point y-axis value
y1 = Second boundary point y-axis value
x = Interpolation point

Outputs y = Interpolated value

Assumptions x0 != x1

Example /* Linear interpolation on the interval [x0, x1) with boundary points
 * (x0, y0) and (x1, y1). */
y = Math_LinearInterp(x0, x1, y0, y1, x);

onsemi
RSL10 Firmware Reference

www.onsemi.com

391

10.7 MATH_LINEARINTERP_FRAC32

Calculate fixed-point linear interpolation on the interval [0, 1)

Type Function

Include File #include <rsl10_math.h>

Source File rsl10_math_frac32.c

Template int32_t Math_LinearInterp_frac32(int32_t y0, int32_t y1, int32_t x)

Description Calculate fixed-point linear interpolation on the interval [0, 1). The interpolation is calculated as:

• y = y0 + x * (y1 - y0)

Inputs y0 = Left boundary point
y1 = Right boundary point
x = Interpolation point

Outputs y = Interpolated value

Assumptions 0 <= x < 1

Example /* Linear interpolation on the interval [0, 1) with boundary points
 * y0 and y1. */
y = Math_LinearInterp_frac32(y0, y1, x);

onsemi
RSL10 Firmware Reference

www.onsemi.com

392

10.8 MATH_MULT_FRAC32

Multiply two 32-bit signed fractional numbers, then saturate

Type Function

Include File #include <rsl10_math.h>

Source File rsl10_math_frac32.c

Template int32_t Math_Mult_frac32(int32_t x, int32_t y)

Description Multiply two 32-bit signed fractional numbers, then saturate. The result is either:

• x * y, if x > MIN_FRAC32 or y > MIN_FRAC32
• MAX_FRAC32, if x = MIN_FRAC32 and y = MIN_FRAC32

Inputs x = Fractional number represented as a 32 bit integer
y = Fractional number represented as a 32 bit integer

Outputs z = (x * y) with saturation

Assumptions None

Example /* Multiplication with saturation: multiply two 32-bit signed
 * fractional numbers, then saturate to 0x7FFFFFFF if overflow
 * occurs. */
z = Math_Mult_frac32(x, y);

onsemi
RSL10 Firmware Reference

www.onsemi.com

393

10.9 MATH_SINGLEVAR_REG

Find the least-squares solution for a single variable linear regression model

Type Function

Include File #include <rsl10_math.h>

Source File rsl10_math_float.c

Template void Math_SingleVar_Reg(float* x, float* y, unsigned int N, float* a)

Description Find the least-squares solution for a single variable linear regression model. A linear regression model with a
single predictor variable can be represented as:

• y[i] = a0 + a1 * x[i] + e[i], i = 0, 1, 2, ..., N-1

Inputs x = Pointer to the input variable vector x[]
y = Pointer to the dependent variable vector y[]
N = Length of vector x[] and y[]

Outputs a = Pointer to the coefficient vector {a0, a1}

Assumptions x[] and y[] are of the same length

x[] is not a constant vector (constant vector here means x[0] = x[1] = ... = x[N-1])

a is a pointer to a coefficient vector of length 2

Example /* For an input variable vector x[] and a dependent variable vector
 * y[], find the least-squares solution to the linear regression
 * model. */
Math_SingleVar_Reg(x, y, DATA_LENGTH, coeff_vector);

onsemi
RSL10 Firmware Reference

www.onsemi.com

394

10.10 MATH_SUB_FRAC32

Subtract one 32-bit signed fractional number from another, then saturate

Type Function

Include File #include <rsl10_math.h>

Source File rsl10_math_frac32.c

Template int32_t Math_Sub_frac32(int32_t x, int32_t y)

Description Subtract one 32-bit signed fractional number from another, then saturate. The result is one of the following:

• (x - y), if MIN_FRAC32 <= (x - y) <= MAX_FRAC32
• MAX_FRAC32, if (x - y) > MAX_FRAC32
• MIN_FRAC32, if (x - y) < MIN_FRAC32

Inputs x = Fractional number represented as a 32 bit integer
y = Fractional number represented as a 32 bit integer

Outputs z = (x - y) with saturation

Assumptions None

Example /* Subtract with saturation: subtract one 32-bit signed fractional
 * number from another, then saturate to 0x7FFFFFFF if positive
 * overflow occurs, or 0x80000000 if negative overflow occurs. */
z = Math_Sub_frac32(x, y);

www.onsemi.com

395

onsemi Confidential

CHAPTER 11

11.Flash Library Reference
This reference chapter presents a detailed description of all the functions in the flash write support library,

including calling parameters, returned values, and assumptions. Warning: All functions provided by the flash library
should be executed from RAM or ROM, as executing them from flash can result in hidden, flash-access-related failures.

11.1 FLASH_ERASEALL

Erase all of the sectors in the main block of the flash

Type Function

Include File #include <rsl10_flash.h>

Source File rsl10_flash.c

Template unsigned int Flash_EraseAll(void)

Description Erase all of the sectors in the main block of the flash

Inputs None

Outputs return value = Status code indicating whether the requested flash operation succeeded

Assumptions The calling application has unlocked all of the main flash instance, and any NVR or redundancy sectors that
should be erased

If the flash is in sequential programming mode, it is safe to exit this mode

Example /* Configure the flash to allow writing to the whole flash */
FLASH->MAIN_CTRL = (MAIN_LOW_W_ENABLE | MAIN_MIDDLE_W_ENABLE |
 MAIN_HIGH_W_ENABLE);
FLASH->MAIN_WRITE_UNLOCK = FLASH_MAIN_KEY;

/* Erase the main flash */
Flash_EraseAll();

www.onsemi.com

396

onsemi Confidential
RSL10 Firmware Reference

11.2 FLASH_ERASESECTOR

Erase the specified flash sector

Type Function

Include File #include <rsl10_flash.h>

Source File rsl10_flash.c

Template unsigned int Flash_EraseSector(unsigned int addr)

Description Erase the specified flash sector. This sector could be in the main flash, one of the NVR sectors, or one of the
redundancy sectors. Verify the sector was erased, progressively trying the different sector erase pulses until
one successfully erases the sector.

Inputs addr = Address of data in the sector to be erased

Outputs return value = Status code indicating whether the requested flash operation succeeded

Assumptions The calling application has unlocked the flash for erase

If the flash is in sequential programming mode, it is safe to exit this mode

None of the RECALL, VREAD0_MODE and VREAD1_MODE bits are set in FLASH_IF_CTRL

Example /* Configure the flash to allow writing to the lower flash area */
FLASH->MAIN_CTRL = MAIN_LOW_W_ENABLE;
FLASH->MAIN_WRITE_UNLOCK = FLASH_MAIN_KEY;

/* Erase the first sector of the main flash */
Flash_EraseSector(FLASH_MAIN_BASE);

www.onsemi.com

397

onsemi Confidential
RSL10 Firmware Reference

11.3 FLASH_WRITEBUFFER

Write a buffer of memory of the specified length, starting at the specified address, to flash

Type Function

Include File #include <rsl10_flash.h>

Source File rsl10_flash.c

Template unsigned int Flash_WriteBuffer(unsigned int start_addr, unsigned int
length, unsigned int* data)

Description Write a buffer of memory of the specified length, starting at the specified address, to flash

Inputs start_addr = Start address for the write to flash
length = Number of words to write to flash
data = Pointer to the data to write to flash

Outputs return value = Status code indicating whether the requested flash operation succeeded

Assumptions The calling application has unlocked the flash for write

The areas of flash to be written have been previously erased (if necessary) and are not currently write
protected

"data" points to a buffer of at least "length" words

The address in flash is even word aligned

The number of words to write is an even number

If the flash is already in sequential programming mode, it is safe to exit this mode to perform the buffered write.

None of the RECALL, VREAD0_MODE and VREAD1_MODE bits are set in FLASH_IF_CTRL

Example /* Configure the flash to allow writing to the lower flash area */
FLASH->MAIN_CTRL = MAIN_LOW_W_ENABLE;
FLASH->MAIN_WRITE_UNLOCK = FLASH_MAIN_KEY;

/* Write the first words of the main flash with data from a
 * previously loaded buffer (assumes this sector has been
 * previously erased) */
Flash_WriteBuffer(FLASH_MAIN_BASE, bufferLength, buffer);

www.onsemi.com

398

onsemi Confidential
RSL10 Firmware Reference

11.4 FLASH_WRITECOMMAND

Safely issue a flash command; blocks waiting for the flash to be idle before running the command and again
before returning

Type Function

Include File #include <rsl10_flash.h>

Source File rsl10_flash.c

Template void Flash_WriteCommand(uint32_t command)

Description Safely issue a flash command; blocks waiting for the flash to be idle before running the command and again
before returning.

Inputs command = Command to be written to FLASH_CMD_CTRL; use CMD_*

Outputs return value = Status code indicating whether the flash interface can be written; returns
FLASH_ERR_INACCESSIBLE if the flash is isolated or not powered, otherwise
returns no error.

Assumptions None

Example /* Force a wakeup the flash */
Flash_WriteCommand(CMD_WAKE_UP);

www.onsemi.com

399

onsemi Confidential
RSL10 Firmware Reference

11.5 FLASH_WRITEINTERFACECONTROL

Safely write the interface control register; blocks waiting for the flash to be idle before writing the interface
control register, and again before returning

Type Function

Include File #include <rsl10_flash.h>

Source File rsl10_flash.c

Template void Flash_WriteInterfaceControl(uint32_t ctrl)

Description Safely write the interface control register; blocks waiting for the flash to be idle before writing the interface
control register, and again before returning.

Inputs ctrl = Data to write to the FLASH_IF_CTRL register

Outputs return value = Status code indicating whether the flash interface can be written; returns
FLASH_ERR_INACCESSIBLE if the flash is isolated or not powered and
LP_MODE, RECALL, VREAD0_MODE or VREAD1_MODE are being changed,
otherwise returns no error.

Assumptions If the flash is in sequential programming mode, it is safe to exit this mode

No more than two of the LP_MODE, RECALL, VREAD0_MODE and VREAD1_MODE bits are being updated
in FLASH_IF_CTRL

Example /* Disable the flash recall settings */
Flash_WriteInterfaceControl(FLASH_RECALL_DISABLE);

www.onsemi.com

400

onsemi Confidential
RSL10 Firmware Reference

11.6 FLASH_WRITEWORDPAIR

Write a word pair of flash at the specified address

Type Function

Include File #include <rsl10_flash.h>

Source File rsl10_flash.c

Template unsigned int Flash_WriteWordPair(unsigned int addr, unsigned int data0,
unsigned int data1)

Description Write a word pair of flash at the specified address

Inputs addr = Address to write in the flash
data0 = First data word to write to the specified address in flash
data1 = Second data word to write to the specified (address + 4) in flash

Outputs return value = Status code indicating whether the requested flash operation succeeded

Assumptions The calling application has unlocked the flash for write

The area of flash to be written has been previously erased (if necessary) and is not currently write protected

If the flash is in sequential programming mode, it is safe to exit this mode

None of the RECALL, VREAD0_MODE and VREAD1_MODE bits are set in FLASH_IF_CTRL

Example /* Configure the flash to allow writing to the lower flash area */
FLASH->MAIN_CTRL = MAIN_LOW_W_ENABLE;
FLASH->MAIN_WRITE_UNLOCK = FLASH_MAIN_KEY;

/* Write the first word of the main flash with a test value (assumes
 * this sector has been previously erased) */
Flash_WriteWordPair(FLASH_MAIN_BASE, 0x12345678, 0x9ABCDEF0);

www.onsemi.com

401

CHAPTER 12

12.Calibration Library Reference
This reference chapter presents a detailed description of all the functions in the calibration support library,

including calling parameters, returned values, and assumptions.

12.1 CALIBRATE_CLOCK_32K_RCOSC

Used to calibrate the 32K RC oscillator to a specified frequency

Type Function

Include File #include <rsl10_calibrate.h>

Source File rsl10_calibrate_clock.c

Template unsigned int Calibrate_Clock_32K_RCOSC(uint32_t target)

Description Used to calibrate the 32K RC oscillator to a specified frequency.

Inputs target = Number of cycles required to achieve the Desired clock frequency in Hz

Outputs return value = Status code indicating whether the RCOSC calibration succeeded

Assumptions Calibrate_Clock_Initialize() has been called.

Example /* Calibrate the 32K RC oscillator to 30000 Hz */
result = Calibrate_Clock_32K_RCOSC(30000);

onsemi
RSL10 Firmware Reference

www.onsemi.com

402

12.2 CALIBRATE_CLOCK_INITIALIZE

Initialize the system to support the clock calibration, consisting of the 48 MHz XTAL oscillator and RC oscillator

Type Function

Include File #include <rsl10_calibrate.h>

Source File rsl10_calibrate_clock.c

Template void Calibrate_Clock_Initialize(void)

Description Initialize the system to support the clock calibration, consisting of the 48 MHz XTAL oscillator and RC
oscillator.

Inputs None

Outputs None

Assumptions None

Example /* Initialize the system for clock calibration. */
Calibrate_Clock_Initialize();

onsemi
RSL10 Firmware Reference

www.onsemi.com

403

12.3 CALIBRATE_CLOCK_START_OSC

Used to calibrate the startup oscillator to a specified frequency

Type Function

Include File #include <rsl10_calibrate.h>

Source File rsl10_calibrate_clock.c

Template unsigned int Calibrate_Clock_Start_OSC(uint32_t target)

Description Used to calibrate the startup oscillator to a specified frequency.

Inputs target = Desired clock frequency in kHz

Outputs return value = Status code indicating whether the clock succeeded

Assumptions Calibrate_Clock_Initialize() has been called.

Example /* Calibrate the startup oscillator to 3 MHz */
result = Calibrate_Clock_Start_OSC(3000);

onsemi
RSL10 Firmware Reference

www.onsemi.com

404

12.4 CALIBRATE_POWER_DCDC

Calibrate the DC-DC converter (DCDC)

Type Function

Include File #include <rsl10_calibrate.h>

Source File rsl10_calibrate_power.c

Template unsigned int Calibrate_Power_DCDC(unsigned int adc_num, uint32_t
*adc_ptr, uint32_t target)

Description Calibrate the DC-DC converter (DCDC).

Inputs adc_num = ADC channel number [0-7]
adc_ptr = Pointer to the ADC data register
target = Target voltage readback [10*mV]

Outputs return value = Status code indicating whether the calibration succeeded

Assumptions VBG has been calibrated.

Calibrate_Power_Initialize() has been called.

Example /* Calibrate the DC-DC converter to 125 10*mV. */
result = Calibrate_Power_DCDC(0, (uint32_t *)&ADC->DATA_TRIM_CH[0],
 125);

onsemi
RSL10 Firmware Reference

www.onsemi.com

405

12.5 CALIBRATE_POWER_INITIALIZE

The initialization function does the following tasks: 1) Changes settings in all power supply control registers to
their default values

Type Function

Include File #include <rsl10_calibrate.h>

Source File rsl10_calibrate_power.c

Template void Calibrate_Power_Initialize(void)

Description The initialization function does the following tasks: 1) Changes settings in all power supply control registers to
their default values. 2) Sets the system clock source to RFCLK/3 (16 MHz). 3) Configures the ADC to enable
measurement at 100 Hz

Inputs None

Outputs None

Assumptions VBAT must be less than or equal to 1.3 V

Example /* Initialize the system for power supply calibration and configure
 * ADC to be measured. */
Calibrate_Power_Initialize();

onsemi
RSL10 Firmware Reference

www.onsemi.com

406

12.6 CALIBRATE_POWER_VBG

Calibrate the bandgap voltage (VBG) against a specified VBAT supply voltage

Type Function

Include File #include <rsl10_calibrate.h>

Source File rsl10_calibrate_power.c

Template unsigned int Calibrate_Power_VBG(unsigned int adc_num, uint32_t
*adc_ptr, uint32_t target)

Description Calibrate the bandgap voltage (VBG) against a specified VBAT supply voltage. VBG is the reference voltage
for the ADC, so it can be calibrated based on the ADC output for a known voltage, which is VBAT.

Inputs adc_num = ADC channel number [0-7]
adc_ptr = Pointer to the ADC data register
target = Target voltage readback [10*mV]

Outputs return value = Status code indicating whether the calibration succeeded

Assumptions The target band-gap is calibrated by reading the current VBAT supply using the ADC. The assumed VBAT
supply voltage is 1.25 V.

Calibrate_Power_Initialize() has been called.

Example /* Calibrate the bandgap voltage (VBG) to 75 10*mV.*/
result = Calibrate_Power_VBG(0, (uint32_t *)&ADC->DATA_TRIM_CH[0],
 75);

onsemi
RSL10 Firmware Reference

www.onsemi.com

407

12.7 CALIBRATE_POWER_VDDC

Calibrate the digital core voltage power supply (VDDC)

Type Function

Include File #include <rsl10_calibrate.h>

Source File rsl10_calibrate_power.c

Template unsigned int Calibrate_Power_VDDC(unsigned int adc_num, uint32_t
*adc_ptr, uint32_t target)

Description Calibrate the digital core voltage power supply (VDDC).

Inputs adc_num = ADC channel number [0-7]
adc_ptr = Pointer to the ADC data register
target = Target voltage readback [10*mV]

Outputs return value = Status code indicating whether the calibration succeeded

Assumptions VBG has been calibrated.

Calibrate_Power_Initialize() has been called.

Example /* Calibrate the VDDC supply to 118 10*mV. */
result = Calibrate_Power_VDDC(0, (uint32_t *)&ADC->DATA_TRIM_CH[0],
 118);

onsemi
RSL10 Firmware Reference

www.onsemi.com

408

12.8 CALIBRATE_POWER_VDDM

Calibrate the digital memory voltage (VDDM)

Type Function

Include File #include <rsl10_calibrate.h>

Source File rsl10_calibrate_power.c

Template unsigned int Calibrate_Power_VDDM(unsigned int adc_num, uint32_t
*adc_ptr, uint32_t target)

Description Calibrate the digital memory voltage (VDDM)

Inputs adc_num = ADC channel number [0-7]
adc_ptr = Pointer to the ADC data register
target = Target voltage readback [10*mV]

Outputs return value = Status code indicating whether the calibration succeeded

Assumptions VBG has been calibrated.

Calibrate_Power_Initialize() has been called.

Example /* Calibrate the VDDM supply to 118 10*mV. */
result = Calibrate_Power_VDDM(0, (uint32_t *)&ADC->DATA_TRIM_CH[0],
 118);

onsemi
RSL10 Firmware Reference

www.onsemi.com

409

12.9 CALIBRATE_POWER_VDDPA

Calibrate the radio power amplifier power supply (VDDPA)

Type Function

Include File #include <rsl10_calibrate.h>

Source File rsl10_calibrate_power.c

Template unsigned int Calibrate_Power_VDDPA(unsigned int adc_num, uint32_t
*adc_ptr, uint32_t target)

Description Calibrate the radio power amplifier power supply (VDDPA).

Inputs adc_num = ADC channel number [0-7]
adc_ptr = Pointer to the ADC data register
target = Target voltage readback [10*mV]

Outputs return value = Status code indicating whether the calibration succeeded

Assumptions VBG has been calibrated.

Calibrate_Power_Initialize() has been called.

Example /* Calibrate the VDDPA supply to 160 10*mV. */
result = Calibrate_Power_VDDPA(0, (uint32_t *)&ADC->DATA_TRIM_CH[0],
 160);

onsemi
RSL10 Firmware Reference

www.onsemi.com

410

12.10 CALIBRATE_POWER_VDDRF

Calibrate the radio front-end power supply (VDDRF)

Type Function

Include File #include <rsl10_calibrate.h>

Source File rsl10_calibrate_power.c

Template unsigned int Calibrate_Power_VDDRF(unsigned int adc_num, uint32_t
*adc_ptr, uint32_t target)

Description Calibrate the radio front-end power supply (VDDRF).

Inputs adc_num = ADC channel number [0-7]
adc_ptr = Pointer to the ADC data register
target = Target voltage readback [10*mV]

Outputs return value = Status code indicating whether the calibration succeeded

Assumptions VBG has been calibrated.

Calibrate_Power_Initialize() has been called.

VCC is sufficiently high to trim VDDRF to the desired value. This is because VCC supplies VDDRF.

Example /* Calibrate the VDDRF supply to 125 10*mV. */
result = Calibrate_Power_VDDRF(0, (uint32_t *)&ADC->DATA_TRIM_CH[0],
 125);

www.onsemi.com

411

APPENDIX A
A.Glossary

The following abbreviations and terms are used in this manual:

ACL asynchronous connection-oriented logical transport

ACS analog control system

ADC analog-to-digital converter

AFE analog front-end

CRC cyclic redundancy check

CSRK Connection Signature Resolving Key

DAC digital-to-analog converter

DIO digital input/output

DMA direct memory access

ECC error correcting code

GAP generic access profile

GAPC generic access profile controller

GAPM generic access profile manager

GPIO general-purpose input/output

HCI host controller interface

I2C inter-IC communication protocol

I2S inter-IC sound protocol

INL integral non-linearity

IRK Identity Resolving Key

JTAG joint test action group (developer of IEEE standard 1149.1-1990)

L2CAP logical link control and adaptation protocol

L2CC logical link control controller

LC link controller

onsemi
RSL10 Firmware Reference

www.onsemi.com

412

LL link layer

LLC link layer controller

LLM link layer manager

LM link manager

LDO low dropout voltage regulator

LSB least significant bit

MCU microcontroller unit

MSB most significant bit

MUX multiplexer, selector of one signal from many

NVIC nested vectored interrupt controller

PCM pulse code modulation

PDU packet data unit; sub-packet containing a 2-byte L2CAP header and a payload

PLL phase-locked loop

PMU power management unit

PWM pulse width modulation

POR power-on-reset

RAM random-access memory

ROM read-only memory

RTC real-time clock

SCL serial clock (part of I2C bus)

SDA serial data (part of I2C bus)

SPI serial peripheral interface

SWD serial wire debug, two-wire interface used for communication with Arm cores

SWJ-DP serial wire and JTAG debug port

TWI two-wire interface

onsemi
RSL10 Firmware Reference

www.onsemi.com

413

UART universal asynchronous receiver-transmitter

VCO voltage-controlled oscillator

VDD system voltage

VDDA analog voltage domain

VDDC digital core voltage domain

VDDO I/O supply voltage domain

VDD_XTAL crystal voltage domain

WDF wave digital filter

XTAL crystal, generally quartz-based

onsemi
RSL10 Firmware Reference

www.onsemi.com

414

Arm and Cortex are trademarks or registered trademarks of Arm Ltd. Bluetooth is a registered trademark of Bluetooth SIG, Inc. All other brand names and product names

appearing in this document are trademarks of their respective holders.

 M-20818-022

onsemi and the onsemi logo are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi
owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi’s product/patent coverage may be accessed at
www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty,
representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and
applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance
may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any
license under its patent rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any
FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal
injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi
is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Literature Distribution Center for onsemi
19521 E., 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3867 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll
free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910

onsemi Website: www.onsemi.com

Order LIterature: http://www.onsemi.com/orderlit

For additional information, please contact your local
Sales Representative

	RSL10 Firmware Reference
	Table of Contents
	1. Introduction
	1.1 Purpose
	1.2 Intended Audience
	1.3 Conventions
	1.4 Further Reading

	2. Firmware Overview
	2.1 Introduction
	2.2 Firmware Components
	2.2.1 Firmware Files
	2.2.2 Compliance Exceptions

	2.3 Firmware Naming Conventions
	2.4 Firmware Resource Usage
	2.5 Versions
	2.5.1 Hardware Variants and Firmware Compatibility
	2.5.2 Firmware Versions

	3. Hardware Definitions
	3.1 Register and Register Bit-field Definition
	3.2 Memory Map Definition
	3.3 Non-Volatile Record Memory Map
	3.3.1 Application Specific Record
	3.3.2 Bond Information Record
	3.3.3 Device Configuration Record
	3.3.4 Manufacturing Records

	3.4 Interrupt Vector Definition

	4. Event Kernel
	4.1 Overview
	4.1.1 Feature List
	4.1.2 Top-Level Objects
	4.1.3 Include Files
	4.1.4 API Functions
	4.1.4.1 Kernel_Init
	4.1.4.2 Kernel_Schedule

	4.1.5 Kernel Environment

	4.2 Messages
	4.2.1 Overview
	4.2.2 Message Format
	4.2.3 Message Identifier
	4.2.4 Parameter Management
	4.2.5 Message Queue Object
	4.2.6 Message Queue Primitives
	4.2.6.1 Message Allocation
	4.2.6.2 Message Send
	4.2.6.3 Message Send Basic
	4.2.6.4 Message Forward
	4.2.6.5 Message Free

	4.3 Scheduler
	4.3.1 Overview
	4.3.2 Requirements
	4.3.2.1 Scheduling Algorithm
	4.3.2.2 Save Service

	4.4 Tasks
	4.4.1 Definition

	4.5 Kernel Timer
	4.5.1 Overview
	4.5.2 Time Definition
	4.5.3 Timer Object
	4.5.4 Timer Setting
	4.5.5 Time Primitives
	4.5.5.1 Timer Set
	4.5.5.2 Timer Clear
	4.5.5.3 Timer Activity
	4.5.5.4 Timer Expiry

	4.6 Useful Macros

	5. Program ROM
	5.1 Overview
	5.2 Vector Table
	5.3 Initialization Support
	5.3.1 Base System Initialization
	5.3.2 User-Defined System Initialization
	5.3.3 Boot and Wakeup Initialization

	5.4 Application Validation and Boot
	5.5 Function Table

	6. Bluetooth Stack and Profiles
	6.1 Introduction
	6.1.1 Include and Object Files
	6.1.2 Bluetooth Stack
	6.1.3 Stack Support Functions
	6.1.3.1 BLE_ADV_Flags_Set
	6.1.3.2 BLE_Init
	6.1.3.3 BLE_InitNoTL
	6.1.3.4 BLE_Power_Mode_Enter
	6.1.3.5 BLE_Reset
	6.1.3.6 BLE_Set_EventPriority
	6.1.3.7 BLE_Sleep_MaxDuration_Set
	6.1.3.8 BLE_Sleep_ReductionTime_Set
	6.1.3.9 BLE_Set_RxWinSize_Max
	6.1.3.10 BLE_Set_RxWinSize_Disconnect
	6.1.3.11 BLE_Set_AnchorPointMoveReq
	6.1.3.12 BLE_Set_ParmUpdtReqOffsets
	6.1.3.13 BLE_Set_ScanConIndStatusCallBack
	6.1.3.14 Platform_Reset
	6.1.3.15 SecurityKeys_Read

	6.2 HCI
	6.2.1 HCI Software Architecture
	6.2.1.1 HCI Control Messages Descriptors
	6.2.1.2 Event Descriptors
	6.2.1.3 Internal Messages Definition
	6.2.1.4 Events
	6.2.1.4.1 Legacy Events
	6.2.1.4.2 LE Event
	6.2.1.4.3 Command Complete Event
	6.2.1.4.4 Command Status Event
	6.2.1.4.5 LE ACL RX Data
	6.2.1.4.6 LE ACL TX Data

	6.2.1.5 Internal Messages Routing
	6.2.1.5.1 For External Host to Internal Controller

	6.2.2 Between Internal Host and Controller
	6.2.3 Proprietary Rules for Connection Handle Allocation
	6.2.4 Communication with External Host
	6.2.5 HCI Events
	6.2.5.1 Legacy Events
	6.2.5.2 Command Complete Events
	6.2.5.3 Command Status Events
	6.2.5.4 LE Events
	6.2.5.5 HCI ACL TX Data
	6.2.5.6 HCI ACL RX Data

	6.2.6 Generic Parameter Packing - Unpacking
	6.2.6.1 Parameters Format Definition
	6.2.6.2 Generic Packer
	6.2.6.3 Generic Unpacker
	6.2.6.4 Alignment and Data Copy Primitives

	6.3 GATT
	6.3.1 GATT Fundamentals
	6.3.1.1 Roles
	6.3.1.2 Security Features
	6.3.1.3 Attribute Grouping
	6.3.1.3.1 Service
	6.3.1.3.2 Included Service
	6.3.1.3.3 Characteristics

	6.3.1.4 L2CAP

	6.3.2 Attribute Protocol Toolbox
	6.3.2.1 Basic Attribute Concepts
	6.3.2.1.1 Attribute
	6.3.2.1.2 Protocol Methods

	6.3.2.2 Attribute Protocol Packet Data Unit Format
	6.3.2.3 Attribute Protocol Operations
	6.3.2.3.1 Atomic Operations
	6.3.2.3.2 Flow Control
	6.3.2.3.3 Transaction

	6.3.2.4 Attribute Protocol Module Interfaces
	6.3.2.4.1 Interface with Upper Layers
	6.3.2.4.2 Interface with L2CAP

	6.3.2.5 Attribute Manager (Database Owner)
	6.3.2.5.1 Attribute Definition
	6.3.2.5.2 Service Definition
	6.3.2.5.3 Service Permission Field
	6.3.2.5.4 Attribute Permission Field
	6.3.2.5.5 Data Caching
	6.3.2.5.6 Attribute Database Example

	6.3.2.6 Attribute Server
	6.3.2.6.1 Attribute Discovery / Read
	6.3.2.6.2 Attribute Write
	6.3.2.6.3 Server Initiated Events
	6.3.2.6.4 Data Caching

	6.3.2.7 Attribute Client
	6.3.2.7.1 Discovery Command
	6.3.2.7.2 Read Command
	6.3.2.7.3 Write Command
	6.3.2.7.4 Reception of Notification or Indications

	6.3.3 Features and Functions
	6.3.3.1 Attribute Packet Size Negotiation
	6.3.3.2 Primary Service Discovery
	6.3.3.3 Relationship Discovery
	6.3.3.4 Characteristic Discovery
	6.3.3.5 Characteristic Descriptor Discovery
	6.3.3.6 Characteristic Value Read
	6.3.3.7 Characteristic Value Write
	6.3.3.8 Characteristic Value Notification
	6.3.3.9 Characteristic Value Indication
	6.3.3.10 Characteristic Descriptor Value Read
	6.3.3.11 Characteristic Descriptor Value Write

	6.3.4 Service Discovery Procedure
	6.3.5 GATT Profile Service
	6.3.6 GATT Environment Variables
	6.3.6.1 GATT Manager Environment
	6.3.6.2 GATT Controller Environment

	6.4 GAP Functionality
	6.4.1 Modes and Profile Roles
	6.4.2 General LE Procedures
	6.4.2.1 Broadcasting and Observing
	6.4.2.1.1 Conditions

	6.4.2.2 Advertising Modes
	6.4.2.2.1 Broadcast Mode
	6.4.2.2.2 Non-Discoverable Mode
	6.4.2.2.3 General Discoverable
	6.4.2.2.4 Limited Discoverable
	6.4.2.2.5 Direct Mode

	6.4.2.3 Scan Modes
	6.4.2.3.1 Device Discovery
	6.4.2.3.2 Observer Mode
	6.4.2.3.3 General Discovery
	6.4.2.3.4 Limited Discovery
	6.4.2.3.5 Name Discovery

	6.4.2.4 Connection
	6.4.2.4.1 Direct Connection Establishment
	6.4.2.4.2 General Connection Establishment
	6.4.2.4.3 Automatic Connection Establishment
	6.4.2.4.4 Selective Connection Establishment
	6.4.2.4.5 Update Connection Parameters

	6.4.2.5 Bonding

	6.4.3 Low Energy Security
	6.4.3.1 Security Modes
	6.4.3.2 Authentication Procedure
	6.4.3.3 Authorization Procedure
	6.4.3.4 Data Signing
	6.4.3.5 Privacy
	6.4.3.5.1 Host Managed Privacy (1.1)
	6.4.3.5.2 Controller Managed Privacy (1.2)
	6.4.3.5.3 LE Address

	6.4.4 Security Manager Toolbox
	6.4.4.1 Keys Definition
	6.4.4.2 AES-CMAC Algorithm
	6.4.4.3 Identity Root Generation
	6.4.4.3.1 Identity Resolving Key Generation
	6.4.4.3.2 Diversifier Hiding Key Generation
	6.4.4.3.3 Connection Signature Resolving Key Generation
	6.4.4.3.4 Long Term Key and Diversifier Generation
	6.4.4.3.5 Encrypted Session Setup
	6.4.4.3.6 Link Layer Encryption
	6.4.4.3.7 Signing Algorithm
	6.4.4.3.8 Slave Initiated Security

	6.4.4.4 Procedure Details
	6.4.4.4.1 Random Address Generation
	6.4.4.4.2 Address Resolution
	6.4.4.4.3 Encryption Toolbox Access
	6.4.4.4.4 Pairing
	6.4.4.4.5 Encryption
	6.4.4.4.6 Data Signing
	6.4.4.4.7 Pairing Repeated Attempts

	6.4.4.5 Security Manager Protocol Data Unit Format
	6.4.4.5.1 SMP PDU Codes

	6.4.5 LE Credit Based Channel
	6.4.5.1 Channel Registration
	6.4.5.2 Connection Creation
	6.4.5.3 Disconnection
	6.4.5.4 Data Exchange
	6.4.5.5 Credit Management
	6.4.5.6 LE Ping
	6.4.5.7 LE Data Packet Length Extension
	6.4.5.8 Profile Management
	6.4.5.9 GAP service database
	6.4.5.10 GAP Environment Variables
	6.4.5.10.1 GAP Manager Environment
	6.4.5.10.2 GAP Controller Environment
	6.4.5.10.3 GAP Profiles Environment

	6.4.5.11 Device initialization
	6.4.5.11.1 Software Reset
	6.4.5.11.2 Device Configuration

	6.4.6 Profile Functionalities
	6.4.7 Message API naming requirements
	6.4.8 Memory Optimization
	6.4.8.1 Connection Oriented Task
	6.4.8.2 Operation Model

	7. Custom Protocols
	7.1 Overview
	7.2 Audio Stream Broadcast Custom Protocol
	7.2.1 Audio Stream Broadcast Packet Structure
	7.2.2 Audio Stream Broadcast Transmission Structure
	7.2.2.1 Packet Sets
	7.2.2.2 RF Physical Layer Configuration
	7.2.2.3 RF Transmission Structure

	7.2.3 Audio Stream Broadcast API
	7.2.3.1 RM_Configure
	7.2.3.2 RM_Disable
	7.2.3.3 RM_Enable
	7.2.3.4 RM_EventHandler
	7.2.3.5 RM_StatusHandler

	7.3 Low-Latency Custom Protocol
	7.3.1 Low-Latency Protocol Physical Layer
	7.3.2 Low-Latency Protocol Packet Structure
	7.3.3 Low-Latency Protocol Link Layer Structure
	7.3.4 Low-Latency Protocol Application Program Interface
	7.3.5 Low-Latency Protocol Modules/Peripheral Usage
	7.3.6 Low-Latency Custom Protocol API
	7.3.6.1 CP_Configure
	7.3.6.2 CP_Disable
	7.3.6.3 CP_Enable
	7.3.6.4 CP_EventHandler

	8. CMSIS Implementation Library Reference
	8.1 SystemCoreClockUpdate
	8.2 SystemInit

	9. System Library Reference
	9.1 BLE_DeviceParam_Set_ADV_IFS
	9.2 BLE_DeviceParam_Set_AdvDelay
	9.3 BLE_DeviceParam_Set_ClockAccuracy
	9.4 BLE_DeviceParam_Set_ForcedClockAccuracy
	9.5 BLE_DeviceParam_Set_MaxNumRAL
	9.6 BLE_DeviceParam_Set_MaxRxOctet
	9.7 BLE_DeviceParam_Set_SlaveLatencyDelay
	9.8 Device_Param_Prepare
	9.9 Device_Param_Read
	9.10 Sys_ADC_Clear_BATMONStatus
	9.11 Sys_ADC_Get_BATMONStatus
	9.12 Sys_ADC_Get_Config
	9.13 Sys_ADC_InputSelectConfig
	9.14 Sys_ADC_Set_BATMONConfig
	9.15 Sys_ADC_Set_BATMONIntConfig
	9.16 Sys_ADC_Set_Config
	9.17 Sys_AES_Cipher
	9.18 Sys_AES_Config
	9.19 Sys_ASRC_CalcPhaseCnt
	9.20 Sys_ASRC_CheckInputConfig
	9.21 Sys_ASRC_Config
	9.22 Sys_ASRC_ConfigRunTime
	9.23 Sys_ASRC_InputData
	9.24 Sys_ASRC_IntEnableConfig
	9.25 Sys_ASRC_OutputCount
	9.26 Sys_ASRC_OutputData
	9.27 Sys_ASRC_PhaseIncConfig
	9.28 Sys_ASRC_Reset
	9.29 Sys_ASRC_ResetOutputCount
	9.30 Sys_ASRC_Status
	9.31 Sys_ASRC_StatusConfig
	9.32 Sys_Audio_DMICDIOConfig
	9.33 Sys_Audio_ODDIOConfig
	9.34 Sys_Audio_ODDIOConfigMult
	9.35 Sys_Audio_Set_Config
	9.36 Sys_Audio_Set_DMICConfig
	9.37 Sys_Audio_Set_ODConfig
	9.38 Sys_Audiosink_Config
	9.39 Sys_Audiosink_Counter
	9.40 Sys_Audiosink_InputClock
	9.41 Sys_Audiosink_PeriodCounter
	9.42 Sys_Audiosink_PhaseCounter
	9.43 Sys_Audiosink_ResetCounters
	9.44 Sys_Audiosink_Set_Ctrl
	9.45 Sys_BBIF_ConnectRFFE
	9.46 Sys_BBIF_DIOConfig
	9.47 Sys_BBIF_RFFE
	9.48 Sys_BBIF_RFFEDrivenExternal
	9.49 Sys_BBIF_SPIConfig
	9.50 Sys_BBIF_SyncConfig
	9.51 Sys_BootROM_Reset
	9.52 Sys_BootROM_StartApp
	9.53 SYS_BOOTROM_STARTAPP_RETURN
	9.54 Sys_BootROM_StrictStartApp
	9.55 Sys_BootROM_ValidateApp
	9.56 Sys_Clocks_ClkDetEnable
	9.57 Sys_Clocks_Osc
	9.58 Sys_Clocks_Osc32kCalibratedConfig
	9.59 Sys_Clocks_Osc32kHz
	9.60 Sys_Clocks_OscRCCalibratedConfig
	9.61 Sys_Clocks_Set_ClkDetConfig
	9.62 Sys_Clocks_SystemClkConfig
	9.63 Sys_Clocks_SystemClkPrescale0
	9.64 Sys_Clocks_SystemClkPrescale1
	9.65 Sys_Clocks_SystemClkPrescale2
	9.66 Sys_CRC_Calc
	9.67 Sys_CRC_Check
	9.68 Sys_CRC_Get_Config
	9.69 Sys_CRC_Set_Config
	9.70 Sys_Delay_ProgramROM
	9.71 Sys_DIO_Config
	9.72 Sys_DIO_Get_Mode
	9.73 Sys_DIO_IntConfig
	9.74 Sys_DIO_NMIConfig
	9.75 Sys_DIO_Set_Direction
	9.76 Sys_DMA_ChannelConfig
	9.77 Sys_DMA_ChannelDisable
	9.78 Sys_DMA_ChannelEnable
	9.79 Sys_DMA_ClearAllChannelStatus
	9.80 Sys_DMA_ClearChannelStatus
	9.81 Sys_DMA_Get_ChannelStatus
	9.82 Sys_DMA_Set_ChannelDestAddress
	9.83 Sys_DMA_Set_ChannelSourceAddress
	9.84 Sys_Flash_Compare
	9.85 Sys_Flash_Copy
	9.86 Sys_Flash_ECC_Config
	9.87 Sys_GPIO_Set_High
	9.88 Sys_GPIO_Set_Low
	9.89 Sys_GPIO_Toggle
	9.90 Sys_I2C_ACK
	9.91 Sys_I2C_Config
	9.92 Sys_I2C_DIOConfig
	9.93 Sys_I2C_Get_Status
	9.94 Sys_I2C_LastData
	9.95 Sys_I2C_NACK
	9.96 Sys_I2C_NACKAndStop
	9.97 Sys_I2C_Reset
	9.98 Sys_I2C_StartRead
	9.99 Sys_I2C_StartWrite
	9.100 Sys_Initialize
	9.101 Sys_Initialize_Base
	9.102 Sys_IP_Lock
	9.103 Sys_IP_Unlock
	9.104 Sys_LPDSP32_Command
	9.105 Sys_LPDSP32_DIOJTAG
	9.106 Sys_LPDSP32_Get_ActivityCounter
	9.107 Sys_LPDSP32_IntClear
	9.108 Sys_LPDSP32_Pause
	9.109 Sys_LPDSP32_Reset
	9.110 Sys_LPDSP32_Run
	9.111 Sys_LPDSP32_Run_Status
	9.112 Sys_LPDSP32_RuntimeAddr
	9.113 Sys_LPDSP32_Set_DebugConfig
	9.114 Sys_NVIC_ClearAllPendingInt
	9.115 Sys_NVIC_DisableAllInt
	9.116 Sys_PCM_ClearStatus
	9.117 Sys_PCM_Config
	9.118 Sys_PCM_ConfigClk
	9.119 Sys_PCM_DIOConfig
	9.120 Sys_PCM_Disable
	9.121 Sys_PCM_Enable
	9.122 Sys_PCM_Get_Status
	9.123 Sys_Power_BandGapCalibratedConfig
	9.124 Sys_Power_BandGapConfig
	9.125 Sys_Power_BandGapStatus
	9.126 Sys_Power_DCDCCalibratedConfig
	9.127 Sys_Power_Get_ResetAnalog
	9.128 Sys_Power_Get_ResetDigital
	9.129 Sys_Power_ResetAnalogClearFlags
	9.130 Sys_Power_ResetDigitalClearFlags
	9.131 Sys_Power_VCCConfig
	9.132 Sys_Power_VDDAConfig
	9.133 Sys_Power_VDDCCalibratedConfig
	9.134 Sys_Power_VDDCConfig
	9.135 Sys_Power_VDDCStandbyCalibratedConfig
	9.136 Sys_Power_VDDMCalibratedConfig
	9.137 Sys_Power_VDDMConfig
	9.138 Sys_Power_VDDMStandbyCalibratedConfig
	9.139 Sys_Power_VDDPACalibratedConfig
	9.140 Sys_Power_VDDPAConfig
	9.141 Sys_Power_VDDRFCalibratedConfig
	9.142 Sys_Power_VDDRFConfig
	9.143 Sys_PowerModes_Sleep
	9.144 Sys_PowerModes_Sleep_Init
	9.145 Sys_PowerModes_Sleep_Init_2Mbps
	9.146 Sys_PowerModes_Sleep_WakeupFromFlash
	9.147 Sys_PowerModes_Standby
	9.148 Sys_PowerModes_Standby_Wakeup
	9.149 Sys_PowerModes_Wakeup
	9.150 Sys_PowerModes_Wakeup_2Mbps
	9.151 Sys_ProgramROM_UnlockDebug
	9.152 Sys_PWM_Config
	9.153 Sys_PWM_ConfigAll
	9.154 Sys_PWM_Control
	9.155 Sys_PWM_DIOConfig
	9.156 Sys_PWM_Enable
	9.157 Sys_ReadNVR4
	9.158 Sys_RFFE_InputDIOConfig
	9.159 Sys_RFFE_OutputDIOConfig
	9.160 Sys_RFFE_SetTXPower
	9.161 Sys_RFFE_SPIDIOConfig
	9.162 Sys_RTC_Config
	9.163 Sys_RTC_Start
	9.164 Sys_RTC_Value
	9.165 Sys_SPI_Config
	9.166 Sys_SPI_DIOConfig
	9.167 Sys_SPI_MasterInit
	9.168 Sys_SPI_Read
	9.169 Sys_SPI_ReadWrite
	9.170 Sys_SPI_TransferConfig
	9.171 Sys_SPI_Write
	9.172 Sys_Timer_BBConfig
	9.173 Sys_Timer_Get_Status
	9.174 Sys_Timer_Set_Control
	9.175 Sys_Timers_Start
	9.176 Sys_Timers_Stop
	9.177 Sys_UART_DIOConfig
	9.178 Sys_UART_Disable
	9.179 SYS_WAIT_FOR_EVENT
	9.180 SYS_WAIT_FOR_INTERRUPT
	9.181 Sys_Watchdog_Refresh
	9.182 Sys_Watchdog_Set_Timeout

	10. Math Library Reference
	10.1 Math_Add_frac32
	10.2 Math_AttackRelease
	10.3 Math_AttackRelease_frac32
	10.4 Math_ExpAvg
	10.5 Math_ExpAvg_frac32
	10.6 Math_LinearInterp
	10.7 Math_LinearInterp_frac32
	10.8 Math_Mult_frac32
	10.9 Math_SingleVar_Reg
	10.10 Math_Sub_frac32

	11. Flash Library Reference
	11.1 Flash_EraseAll
	11.2 Flash_EraseSector
	11.3 Flash_WriteBuffer
	11.4 Flash_WriteCommand
	11.5 Flash_WriteInterfaceControl
	11.6 Flash_WriteWordPair

	12. Calibration Library Reference
	12.1 Calibrate_Clock_32K_RCOSC
	12.2 Calibrate_Clock_Initialize
	12.3 Calibrate_Clock_Start_OSC
	12.4 Calibrate_Power_DCDC
	12.5 Calibrate_Power_Initialize
	12.6 Calibrate_Power_VBG
	12.7 Calibrate_Power_VDDC
	12.8 Calibrate_Power_VDDM
	12.9 Calibrate_Power_VDDPA
	12.10 Calibrate_Power_VDDRF

	A. Glossary

