

ON

ON Semiconductor®

Standby Power Reduction Techniques

TND324/D Rev.1 – September 2007

Agenda

Regulatory requirements

ON

- Sources for standby power losses
- Methods to lower the standby power consumption
- Measured results versus calculated results
- Conclusion

Agenda

Regulatory requirements

- Sources for standby power losses
- Methods to lower the standby power consumption
- Measured results versus calculated results
- Conclusion

Regulatory challenges

- Standby Power Reduction
 - 25% of total energy consumption is in low power/sleep/standby mode
 - Concerted effort by CECP, Energy Star, IEA and other international agencies to limit standby power
- Active Mode Efficiency Improvement
 - 75% of total energy consumption is in active mode
 - Changing efficiency from 60% to 75% can result in 15% energy savings
 - Next focus area for agencies
- Power Factor Correction (or Harmonic Reduction)
 - Applicable with IEC 1000-3-2 (Europe, Japan)
 - Some efficiency specifications also require >0.9 PF

Standby certification programs

(external power supplies)

Code	Region/Country & Timing	No Load Power Consumption
CUC1	CECP (China) & Energy Star (US)	≤ 0.50 W for 0-<10 W
	From January, 2005 (Tier 1)	≤ 0.75 W for ≥10-250 W
CUC2	CECP and Energy Star	≤ 0.30 W for 0-<10 W
	From July 1, 2006 (Tier 2)	≤ 0.50 W for ≥10-250 W
CE1	Europe (EC Code of Conduct)	≤ 0.30 W for <15 W
	From January 1, 2005	≤ 0.50 W for 15-50 W
		≤ 0.75 W for 50-60 W
		≤ 1.00 W for 60-150 W
CE2	Europe (EC Code of Conduct)	≤ 0.30 W for non-PFC
	From January 1, 2007	≤ 0.50 W for PFC
CA1	Australia (High Efficiency)	≤ 0.50 W
	From April, 2006	For 0-180 W

Standby mandatory programs

Code	Region/Country & Timing	No Load Power Consumption
MU0	US – FEMP	≤ 1.00 W for most applications
	DOE (Final 2011)	?
MC1	China GB (Guo Biao) Standards	≤ 0.75 W for 0-10 W
	(From January, 2005)	≤ 1.00 W for 10-250 W
MC2	China GB (Guo Biao) Standards	≤ 0.50 W for 0-10 W
	(From October, 2007)	≤ 0.75 W for 10-250 W
MA1	Australia (MEPS)	≤ 0.75 W for 0-180 W
	From April, 2006	
MA2	Australia (MEPS)	≤ 0.50 W for 0-180 W
	From 2008/9	

Agenda

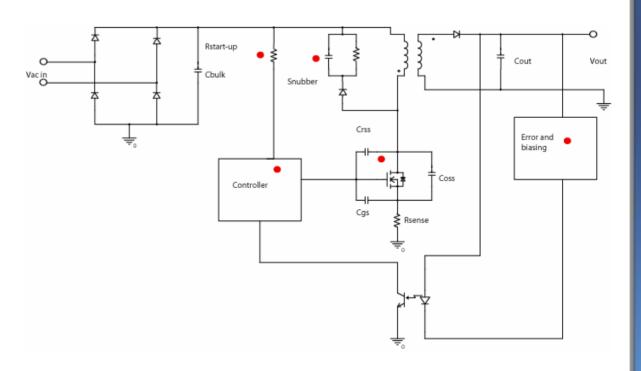
• Regulatory requirements

Sources for standby power losses

- Methods to lower the standby power consumption
- Measured results versus calculated results
- Conclusion

Application overview

- One application was selected.
- Notebook adaptor operating in a flyback topology.
 - Universal input 85 -265 Vac
 - Vout 19 Vdc @ 90 W
 - Frequency 65 kHz
 - No power factor correction pre-regulation stage.
- Standby power losses calculations
 - Start-up resistors 70 Vac, or 100 Vdc
 - Standby power calculations 230 Vac (required)
- Standby power measured data
 - Measured data 230 Vac, or 325 Vdc
- Goal to have a standby power < 0.5 W minimum
- Desired < 0.3 W



What are the sources for standby power losses?

- Switching losses
- Gate charge losses

ON

- Start-up circuits
- Bias circuits
- Snubbers

Switching losses

 Switching losses are associated with the controller turning on the power MOSFET each oscillator cycle

$$P = \frac{1}{2} \bullet C \text{ oss } \bullet V \text{ bs}^2 \bullet Freq$$

$$P = \frac{1}{2} \bullet 390 \quad pF \bullet 325 \quad V^2 \bullet 65 \quad kHz = 1.33 \quad W$$
Where:

Operating frequency = 65 kHz

230 Vac • 1.414 = 325 V

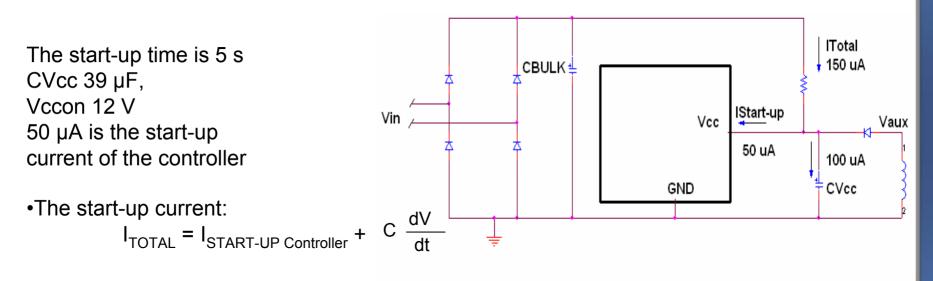
MOSFET Characteristics $V_{DS} = 650 V$ $I_D = 11 A$ $C_{OSS} = 390 pF$ Q = Gate Charge = 45 nC

Gate charge loss

 The loss due to the controller charging and discharging the power MOSFET's gate

$$P = Vg \bullet Q \bullet Fsw = 13 V \bullet 45 nC \bullet 65 kHz = 38 mW$$

Q = Gate Charge = 45 nC


Lower gate charge devices are available, but they typically have a higher R_{DSON} , decreasing the active efficiency of the SMPS at full load

ΠN

Start-up circuits

 Start-up circuits are used in SMPS to start the controller when the input power is first applied to the power supply.

I_{TOTAL} = 50 μA + 94 μA > 144 μA (Use 150 μA)
Where:
$$dV = 12$$
 V the controller turn-on threshold (VCCON)
 $dt = 5$ s (the start-up time)
 $C = CVcc = 39$ μF

Start-up circuits continued

$$R \text{ start} - UP = \frac{Vdc \min}{I_{Total}}$$

$$R \text{ start} - UP = \frac{100 \quad Vdc}{150 \quad \mu A} = 667 \quad k \Omega$$

$$P \text{ start} - UP = \frac{VBulk}{R \text{ start} - UP} = \frac{325}{667} \frac{2}{k\Omega} = 160 \text{ mW}$$

 $\mathsf{P}_{\mathsf{START_UP}}$ is calculated at 230 Vac

ON

ON Semiconductor®

Start-up time vs. standby power

Changing the start-up time to 500 ms

ON

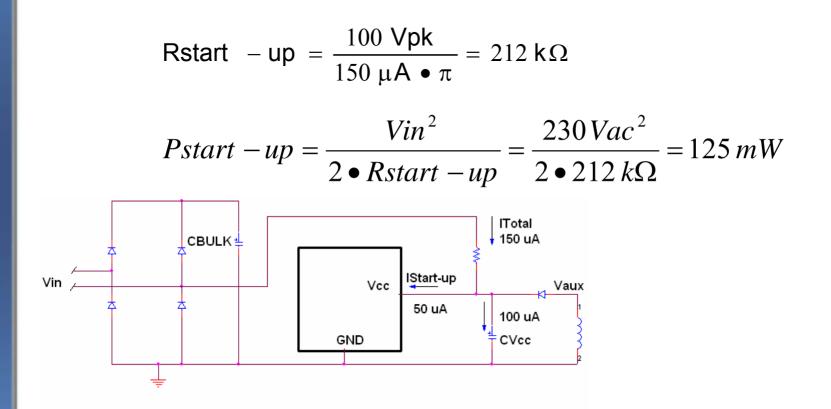
CVcc 39 μ F,

Vccon 12 V

 I_{Vcc} =50 µA is the start-up current of the controller

$$I_{vcc} = C_{vcc} \frac{VCC_{oN}}{T_{start - up}} = 39 \ \mu F \ \frac{12V}{500 \ ms} = 936 \ \mu A$$

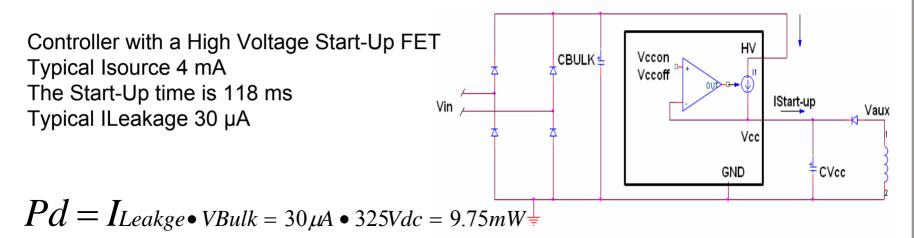
$$I_{Total} = I_{VCC} + I_{controller} = 936 \,\mu A + 50 \,\mu A = 986 \,\mu A$$


$$R_{START} - UP = \frac{Vdc}{I_{Total}} = \frac{100 \quad Vdc}{986 \quad \mu A} = 100.4 \text{ k}$$

$$P_{START} - UP = \frac{VBulk}{R_{START} - UP} = \frac{325 \quad V}{101 \quad .4 \quad k} = 1.04 \text{ W}$$
To increase the start-up time, R_{start-up} must be lowered increasing the standby power

ON

Half-wave connection



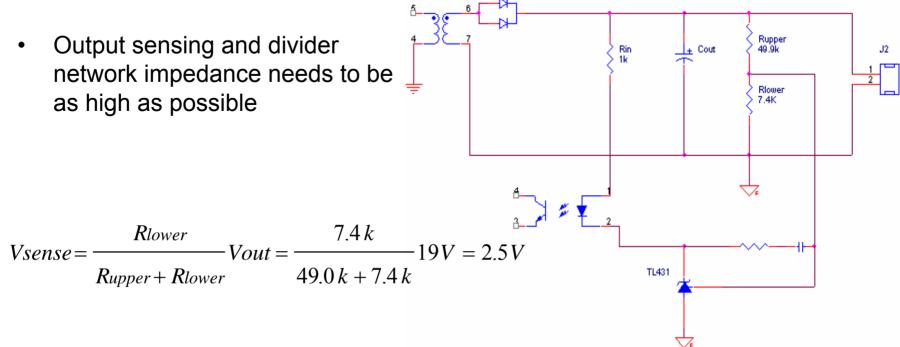
Pstart-up@ 230 Vac = 125 mW, a 22% reduction

ON Semiconductor®

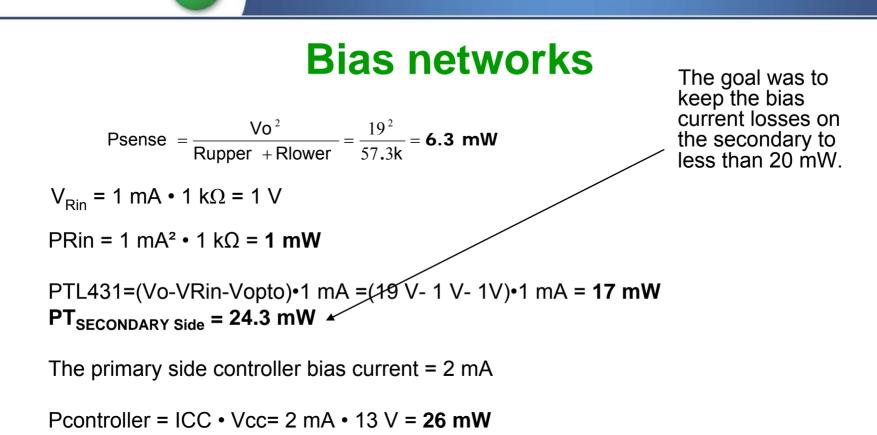
Integrated high voltage start-up MOSFETs

• The high voltage MOSFET is used as a current source that charges up the controllers Vcc capacitor when the input ac power is applied to the Power Supply.

Advantages:

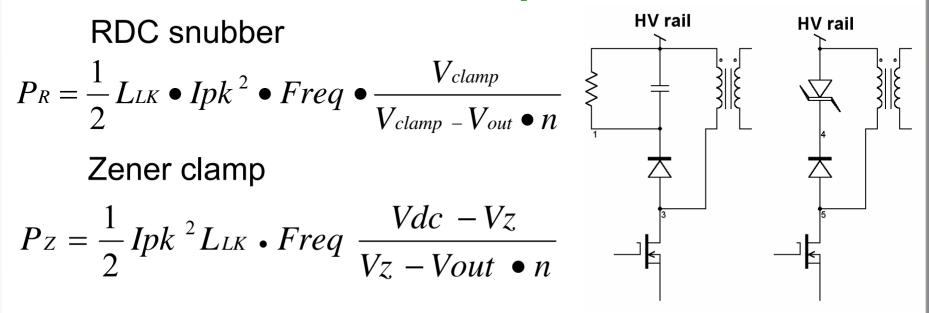

• Can reduce the standby power consumption by approximately **150 mW** (compared to a SMPS with the start-up resistors connected to the bulk capacitor) down to **9.75 mW**

• Faster start-up time.



Bias currents

- In any power supply there are a number of circuits that, if not carefully selected, can consume a significant amount of standby power.
 - TL431 Shunt Regulator (TL431 needs a minimum of 1 mA of cathode
 - current).
 - Optocoupler for the output feedback signal.
 - Resistive dividers



The total losses due to bias currents are:

PTotal = Psense + PRin + PTL431 + PController

6.3 mW + 1 mW + 17 mW + 26 mW = **50.3 mW**

Snubber/clamp losses

Where:

L_{LK} is the transformer leakage inductance lpk is the transformer peak primary current Freq is the SMPS operating frequency Vdc is the SMPS HV dc bus VZ is the zener break down voltage Vclamp is the RDC snubber clamp voltage Vout is the output voltage N is the transformer turns ratio

Losses summary

 $PT_{stand-by} = P_{Switching} + P_{Gate} + P_{Start-up} + P_{Bias}$

With 667 k Ω start-up resistors.

 $PT_{stand-by} = 1.33 W + 38 mW + 160 mW + 50.3 mW = 1.58 W$ With HV start-up $PT_{stand-by} = 1.33 W + 38 mW + 9.75 mW + 50.3 mW = 1.43 W$

Using Fixed frequency will not get us to the low standby power \mathcal{I} requirements.

• Regulatory requirements

ON

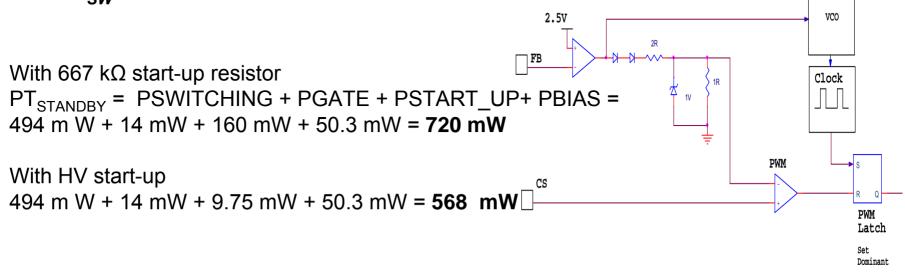
Sources for standby power losses

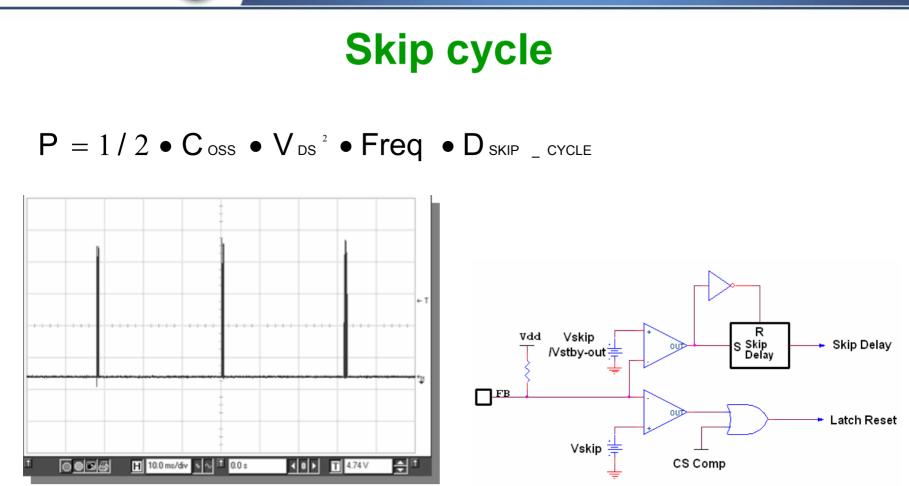
Methods to lower the standby power consumption

- Measured results versus calculated results
- Conclusion

Methods to lower the standby power consumption

- Switching losses
 - Frequency foldback
 - Skip cycle operation
- Startup circuits
- Bias circuits




Frequency foldback

Operating frequency =65 kHz \rightarrow 24 kHz

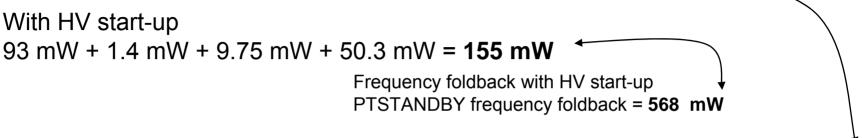
$$P = \frac{1}{2} \bullet 390 \text{ pF} \bullet 325 \text{ V}^2 \bullet 24 \text{ kHz} = 494 \text{ mW}$$

 \odot 62% reduction in standby power losses, compared to Example 1 where the P_{sw} = 1.33 W

Skip cycle with start-up resistors

Skip cycle switching loss calculation

ΠN

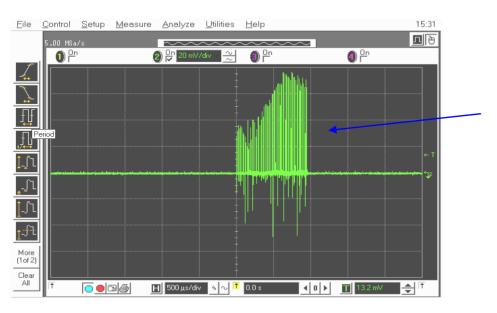

$$D_{SKIP_CYCLE} = 7\% \text{ (measured)}$$

$$P = \frac{1}{2} \bullet 390 \text{pF} \bullet 325 \text{V}^2 \bullet 65 \text{kHz} \bullet 0.07 = 93 \text{mW}$$

EQ 18: (With 667 k Ω start-up resistors)

$$P_{TSTANDBY_Skip} = P_{SWITCHING} \cdot D + P_{GATE} \cdot D + P_{START_UP} + P_{BIAS} =$$

```
93 mW + 1.4 mW + 160 mW + 50.3 mW = 304 mW
```



Frequency foldback with 667 kΩ start-up resistor PTSTANDBY = **720 mW**

Soft skip cycle

Skip cycle operation can lead to audible noise due to the instantaneous peak current which causing a mechanical resonance with the snubber capacitor and magnetic winding, and core .

Soft skip primary current waveform

•Soft skip reduces the high instantaneous peak current by ramping up the primary current

- This reduces the audible noise
- •This increases the skip duty cycle
- Increasing the standby power

Agenda

- Regulatory requirements
- Sources for standby power losses
- Methods to lower the standby power consumption

Measured results versus calculated results

Conclusion

ON

Standby power results with start-up resistors

667 k Ω start-up resistors

Vin	Fixed Frequency	Frequency Foldback	Skip cycle
	(65 kHz)	(65 kHz→24 kHz)	(65 kHz)
230	Calculated- 1.58 W	Calculated- 720 mW	Calculated- 304 mW
Vac	Measured-1.7 W	Measured- 710 mW	Measured- 320 mW

ON

Standby power results with a HV start-up

Vin	Skip with HV Start-Up (65 kHz)	Soft Skip with HV Start-Up (65 kHz)
230 Vac	Calculated-155 mW Measured- 160 mW	Measured- 190 mW

Conclusion

- Regulatory requirements worldwide are driving the reduction of standby power consumption
- Identification of sources for standby power losses:
 - Switching losses
 Bias circuits
 - Gate charge losses
 Snubbers
 - Start-up circuits

Identification of methods to lower the standby power

- Switching losses
- •Startup circuits
- Frequency foldback
 Bias circuits
- Skip cycle operation

Very good correlation between calculated and measured results