ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

100-W Quasi-Resonant (QR) Buck LED Driver

Wide Analog Dimming and Precise LED Current Regulation

TND6338/D

Introduction

This Reference Design includes specifications, testing, typical operating characteristics, and construction of reference design, based on the NCL30076 Quasi–Resonant Buck controller. The Reference Design for 100–W performs accurate LED current regulation and wide analog dimming range.

ON Semiconductor®

www.onsemi.com

REFERENCE DESIGN

Table 1. SPECIFICATION FOR REFERENCE DESIGN

Description Input Voltage		Symbol	Value	Comments
		V _{IN}	400 V _{DC}	400 V _{DC} or PFC Output voltage
Output	Output Current		333 mA	
		I _{OUT.MIN}	< 1.2 mA	~0.2% dimming level
	Voltage	V _{OUT.MIN}	100 V	
		V _{OUT.MAX}	300 V	
Maximum Outp	ut Power	P _{OUT.MAX}	100 W	Condition: V _{OUT} 300 V, I _{OUT} 333 mA
	CC Tolerance in wide V _{OUT} :		±1.5%	Dimming Range: 0.2%~100%
	00 dimming curves $s \times 100/200/300 V_{OUT}$)	CC _{10%}	±3%	Ambient Temperature: 25°C
	0017	CC _{1%}	±20%	
CC Tolerance a		CC _{100V-100%}	±1.5%	Dimming Range: 0.2%~100%
	00 dimming curves $s \times 100 V_{OUT}$, worst case)	CC _{100V-10%}	±2%	Ambient Temperature: 25°C
X I		CC _{100V-1%}	±10%	
System Efficien	су	Eff. _{300V}	97.66%	V _{OUT} : 300 V I _{LED} : 333 mA, External VDD supply
		Eff. _{200V}	97.34%	V _{OUT} : 200 V I _{LED} : 333 mA, External VDD supply
			96.14%	V _{OUT} : 300 V I _{LED} : 333 mA, External VDD supply
PCB Size			63 imes 33 mm	System Size Without IN/OUT Connector

Key Features

- Wide Analog Dimming Range: 0.2~100%
- Excellent CC Tolerance:
 - ◆ ±3% in 10~100% Load
 - ◆ ±20% at 1% Load
- Low System BOM
- LED Off Mode at Standby
- PWM Dimming Available
- Robust Protection Features
 - LED Short Protection
 - Over Current Protection
 - Thermal Shutdown
 - VDD Over Voltage Protection

NCL30076LED1GEVB PHOTOGRAPHS

(System Dimensions: 63 mm (L) \times 33 mm (W))

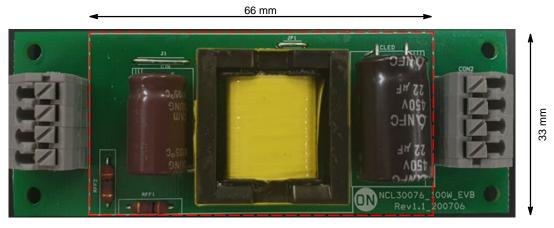
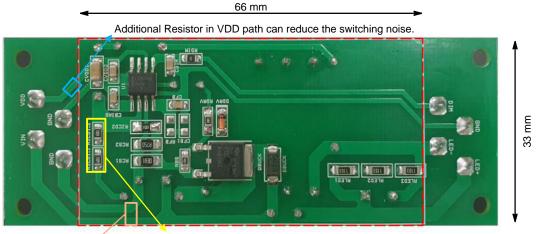



Figure 1. Top View

To meet the rated voltage, RZCD resistor have to be changed 1206 3pcs or axial resistor 2pcs. Additional Filter capacitor can reduce the switching noise.

NCL30076LED1GEVB GERBER VIEW

(PCB Outline: 91 mm (L) \times 33 mm (W), FR–4, Thickness 1.6T)

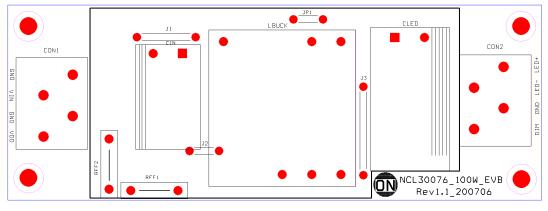
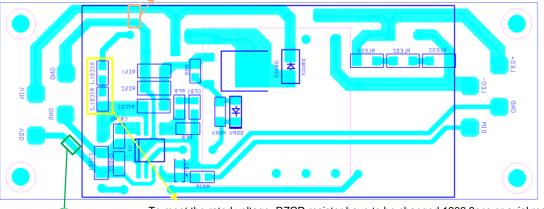
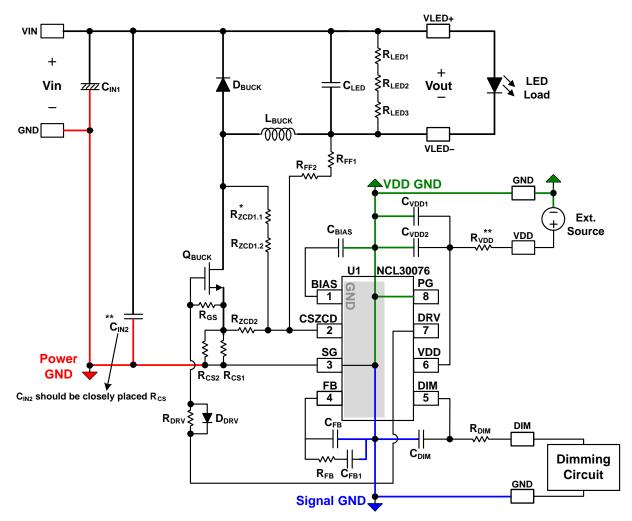



Figure 3. Top View

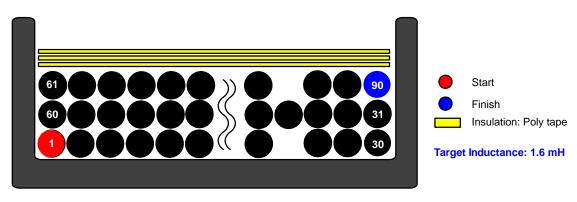

Additional Filter capacitor can reduce the switching noise.

To meet the rated voltage, RZCD resistor have to be changed 1206 3pcs or axial resistor 2pcs. Additional Resistor in VDD path can reduce the switching noise.

Figure 4. Bottom View

NCL30076LED1GEVB SCHEMATIC

* R_{ZCD1} should be properly selected according to rated voltage. (1206 resistor 3pcs or axial resistor 2pcs) ** R_{VDD} and C_{IN2} must be added for improving switching noise immunity. (not applied in demo board)


Figure 5. Schematic for 100–W Design Reference

BILL OF MATERIAL FOR THE NCL30076LED1GEVB

Table 2. BILL OF MATERIAL FOR NCL30076LED1GEVB

Designator	Qty.	Description	Value	Footprint	Manufacturer	Part Number
U1	1	QR Buck Controller	NCL30076	SOIC-8	ON Semiconductor	NCL30076
CIN	1	Electrolytic Capacitor	450 V/10 μF	$10 \times 16 \text{ mm}$	Samyoung	NHA series
LBUCK	1	Inductor	1.6 mH (0.1 pi ×12 90 turns)	EFD25/13/9 10pin Bobbin	TDK Electronics Inc	B66422W1010D001
CLED	1	Electrolytic Capacitor	450 V/22 F	$12.5 \times 20 \text{ mm}$	Samyoung	NFC series
DBUCK	1	Ultra–Fast Recovery Rectifier	600 V/1 A	SMA	ON Semiconductor	ES1J
QBUCK	1	N-Channel MOSFET	600V 3.4 A, 2.5 Ω	DPAK-3	ON Semiconductor	FDD4N60NZ
RFF1, RFF2	2	Resistor Axial (±5%)	30 MΩ	Axial	Stackpole Electronics Inc	MG14JT30M0
RCS1	1	Resistor SMD (±1%)	1.3	3216F	Yageo	
RCS2	1	Resistor SMD (±1%)	0.75	3216F	Yageo	
RLED1, RLED2 RLED3	3	Resistor SMD (±1%)	110 kΩ	3216	Yageo	
RZCD1.1, RZCD1.2	2	Resistor SMD (±1%)	1.3 MΩ	2012	Yageo	
RZCD2	1	Resistor SMD (±1%)	1.5 kΩ	2012	Yageo	
RFB	0	N.C				
RDIM	1	Resistor SMD (±1%)	0	2012	Yageo	
RDRV	1	Resistor SMD (±1%)	10	2012	Yageo	
RGS	1	Resistor SMD (±1%)	100 kΩ	2012	Yageo	
DDRV	1	Small Signal Diode	100 V/0.2 A	SOD80	ON Semiconductor	LL4148
CVDD1	1	MLCC X7R capacitor (±10%)	50 V/10 μF	3216	TDK	
CVDD2	1	MLCC X7R capacitor (±10%)	100 nF	2012	TDK	
CBIAS	1	MLCC X7R capacitor (±10%)	1 nF	2012	TDK	
CFB	1	MLCC X7R capacitor (±10%)	10 nF	2012	TDK	
CFB1	0	N.C				
CDIM	1	MLCC X7R capacitor (±10%)	10 nF	2012	TDK	
J1, J2, J3	3	Jumper Wire	Short	Axial	ANY	
JP1	1	Jumper Wire (For Inductor Current measurement)	Short	Axial	ANY	
CON1, CON2	2	IN/OUT Connector	4Pin	Pitch 3.5 mm	CUI Devices	TBL002A-350-04GY- 2GY
PCB	1	FR-4, 1.6T, 91 mm (L) × 33 mm (W)	Single Layer PCB			

BUCK INDUCTOR DESIGN SPECIFICATION

Figure 6. Buck Inductor (L_{BUCK}) Winding Structure

Table 3. BUCK INDUCTOR WINDING SPECIFICATIONS

No.	Winding	Pin (S → F)	Wire	Turns	Winding Layer		
1	N ₁	1→ 5	Litz $0.1\phi imes 12$	90 Ts	3-layer		
2	Insulation: Polyester Tape t = 0.025 mm, 3-Layer						

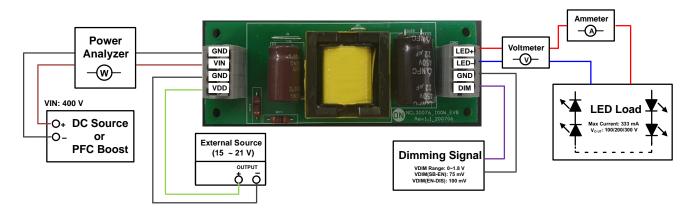

SYSTEM TEST PROCEDURE

Table 4. NCL35076LED1GEVB TEST CONDITION AND EQUIPMENT LIST

Ambient Temperature	T _A = 25°C
Test Equipment	DC Power Source (VIN): PCR500L by Kikusui
	Power Analyzer: PZ4000000 by Yokogawa
	Output Load: 100 V/200 V/300 V LED load
	Multi Meter: 8808A by FLUK, 34401A by Agilent
	Oscilloscope: 104Xi by LeCroy
	Thermometer: Thermal CAM T620 by FLIR SYSTEMS

The NCL30076 100–W Reference Board connection is shown the below figure.

Supply the Dimming signal and External V_{DD} source after applying $V_{\text{IN}}.$

SYSTEM PERFORMANCE

Figure 8. shows dimming curve linearity and Constant Current (CC) tolerance of 100 pcs system boards. The test condition is variable output voltage (100, 200, 300 V) in 400VDC input and dimming range is 100% to 0%. The dimming ratio is calculated by (VDIM–0.2)/1.6 *100 [%].

As a result, total CC tolerance in the wide output condition is $\pm 1.5\%$ at 100% load and $\pm 20\%$ at 1% load. In the single output condition, CC tolerance is $\pm 1.5\%$ at 100% load and $\pm 10\%$ at 1% load.

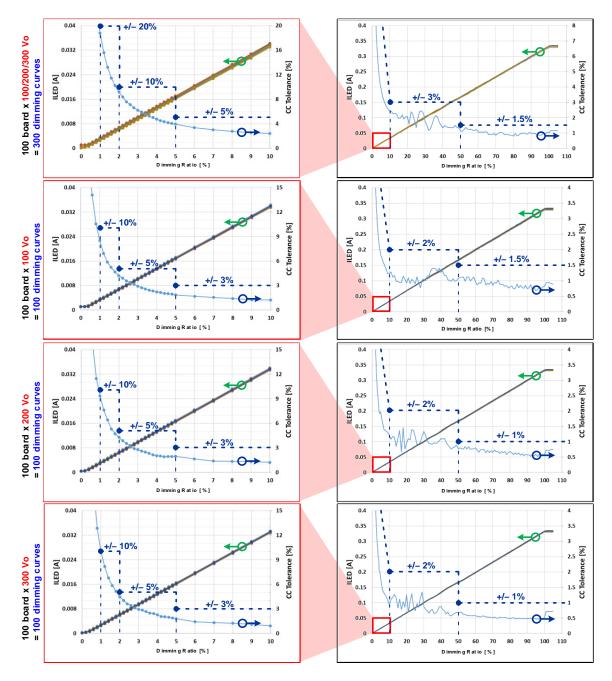


Figure 8. NCL30076LED1GEVB Dimming Curve and CC Tolerance

Start-up

NCL30076 starts up with soft start function to smoothly set the LED current at a steady state level without overshoot. At full load condition, startup time is 60 ms with no overshoot as shown in Figure 9.

- 1. T_{OFF} is reduced from 1300 µs ($T_{OFF.MAX}$) by Internal Soft start counter.
- 2. When internally calculated LED current is close to a reference level, V_{FB} start to find a steady state level.
- 3. V_{FB} is settled to the steady state level. T_{OFF} is set by either ZCD signal in QR or FB signal in DCM.

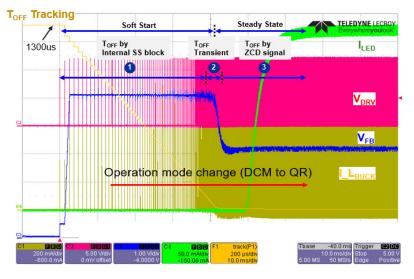


Figure 9. Startup Operation (Condition: 300 V_{OUT}, 333 mA, V_{DIM} 1.9 V)

Steady State

The NCL30076 operates in multi-mode between CrM(QR) and DCM according to the dimming condition.

The multi-mode operation provides high system efficiency with minimized switching loss by QR at heavy load and wide analog dimming by DCM at light load.

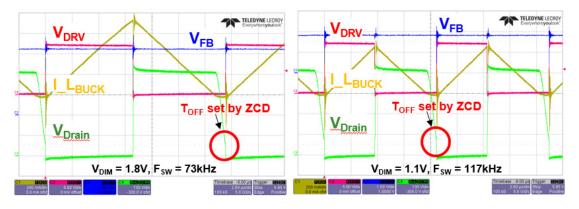


Figure 10. Steady-state QR Operation (V_{OUT}: 200 V)

When NCL30076 entered DCM operation mode at light load condition, T_{OFF} is set by V_{FB} .

When V_{DIM} is lower than 0.2 V, internal reference is set to 0 V and V_{FB} is pulled down 0.5 V clamping voltage.

In this period, the LED current is under open loop control and T_{OFF} is set by $T_{OFF,MAX}$ (1300 µs).

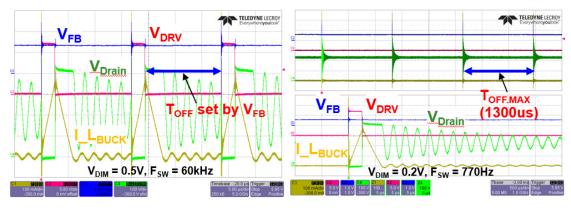


Figure 11. Steady-state DCM Operation (V_{OUT}: 200 V)

Standby Mode

When V_{DIM} is lower than a standby threshold voltage $(V_{DIM(SB-EN)})$ for 10 ms, Standby mode is triggered with

LED turn–off and IC operating current is minimized. When V_{DIM} is higher than a standby disable threshold voltage ($V_{DIM(SB-DIS)}$), Standby mode is immediately terminated.

Table 5. NCL30076 STANDBY MODE SPECIFICATION

Parameter	Symbol	Min	Тур	Max	Unit
Standby Enabling DIM Voltage	V _{DIM(SB-ENA)}	50	75	100	mV
Standby Disabling DIM Voltage	V _{DIM(SB-DIS)}	50	100	150	mV
Standby Delay Time	t _{SB(DELAY)}	9	10	11	ms

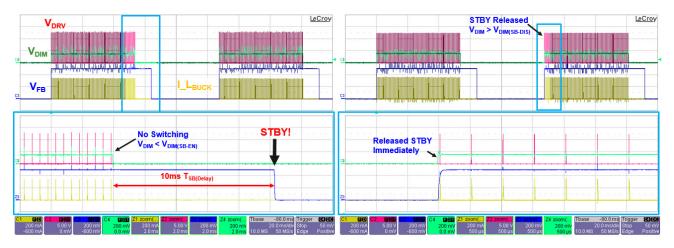


Figure 12. Standby Mode Operation (V_{OUT}: 200 V, V_{DIM}: Rectangular Pulse 0/150 mV)

Protection – Over Current Protection (OCP)

When CSZCD voltage exceeds the over current threshold voltage ($V_{CS(OCP)}$) in the short circuit condition of the freewheeling diode (D_{BUCK}), the controller is immediately

shut down after leading edge blanking time. After auto recovery time 1 second, startup sequence reinitiates. This behavior lasts until the fault condition is removed.

Parameter	Symbol	Min	Тур	Max	Unit
CS Over Current Protection Threshold	V _{CS(OCP)}	0.9	1.0	1.1	V
Auto Restart Time at Protection	t _{AR(PROT)}	0.9	1	1.1	S

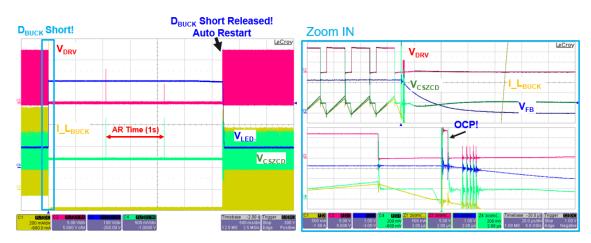
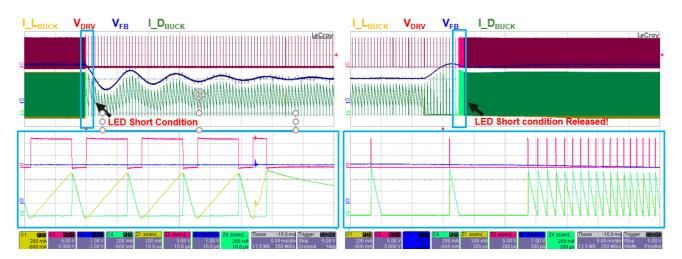


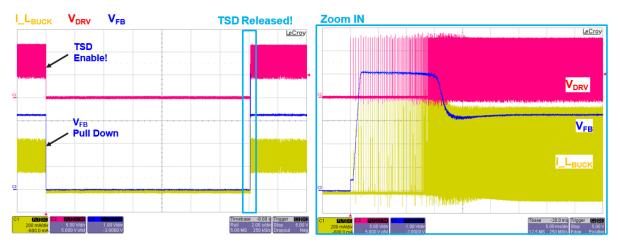
Figure 13. Over Current Protection (OCP) (DBUCK Short and Released at Max Load: 300 V_{OUT}, 333 mA, V_{DIM} 1.9 V)

Protection – LED Short Protection (SLP)

When LED load is short-circuited, the system operates at minimum switching frequency, so the maximum turn-off time control protects the freewheeling diode (D_{BUCK}) from

thermal stress. Figure 14 shows Short LED Protection performance at max load condition (V_{OUT} : 300 V, I_{LED} : 333 mA). When LED load is short–circuited, average diode current (310 mA) is lower than Max I_{LED} (333 mA).



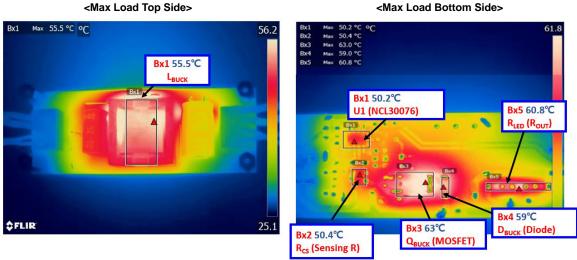

Figure 14. LED Short Protection (SLP) (LED Load Short and Released at Max Load: 300 V_{OUT}, 333 mA, V_{DIM} 1.9 V)

Protection – Thermal Shut Down (TSD)

When IC junction temperature is higher than 150°C Thermal Shut Down (TSD) is triggered and released when the temperature is lower than 120°C.

Table 7. NCL30076 TSD SPECIFICATION

Parameter	Symbol	Min	Тур	Max	Unit
Thermal Shut Down Temperature	T _{SD}	130	150	170	°C
Thermal Shut Down Hysteresis	T _{SD(HYS)}	25	30	35	°C


<TSD (Thermal Shut Down) Operation>

<Auto Restart when TSD is Terminated>

Figure 15. Thermal Shut Down Protection (TSD) (Thermal Stress at Max Load: 300 V_{OUT}, 333 mA, V_{DIM} 1.9 V)

Operating Temperature

The temperature result were measured at Max load (100 W) condition after 30 minutes burn-in. (TA: 25°C)

<Max Load Bottom Side>

Figure 16. Operating System Temperature (Max Load: 300 V_{OUT}, 333 mA)

Efficiency

Figure 17 shows system efficiency data at the output voltage range from 100 V to 300 V from 10% to 100% load

condition. The system efficiency is over 97% from 200~300 V_{OUT} with 100% load condition.

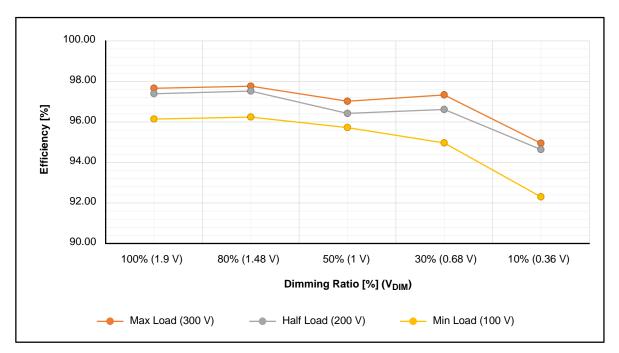


Figure 17. NCL30076LED1GEVB System Efficiency

Table 8. NCL30076LED1GEVB SYSTEM EFFICIENCY DATA

Load	V _{DIM} [V]	Pin [W]	V _{OUT} [V]	I _{OUT} [mA]	P _{OUT} [W]	Eff [%]
Max 300 V	1.90 V (100%)	101.7	301	330.0	99.3	97.7
(6 VLED × 51 pcs)	1.48 V (80%)	79.3	294	263.4	77.5	97.8
	1.00 V (50%)	48.7	284	166.4	47.2	97.0
	0.68 V (30%)	28.2	277	99.1	27.4	97.3
	0.36 V (10%)	9.3	266	33.1	8.8	94.9
Half 200 V	1.90 V (100%)	68.5	202	331.2	66.8	97.4
(6 VLED × 34 pcs)	1.48 V (80%)	53.4	197	264.4	52.1	97.5
	1.00 V (50%)	32.8	190	166.6	31.6	96.4
	0.68 V (30%)	19.1	185	99.8	18.5	96.6
	0.36 V (10%)	6.3	178	33.5	6.0	94.6
Min 100 V	1.90 V (100%)	34.7	101	329.9	33.4	96.1
(6 VLED × 17 pcs)	1.48 V (80%)	27.1	99	263.9	26.1	96.2
	1.00 V (50%)	16.5	95	165.3	15.7	95.7
	0.68 V (30%)	9.9	93	101.1	9.4	95.0
	0.36 V (10%)	3.3	89	33.7	3.0	92.3

PCB LAYOUT GUIDANCE

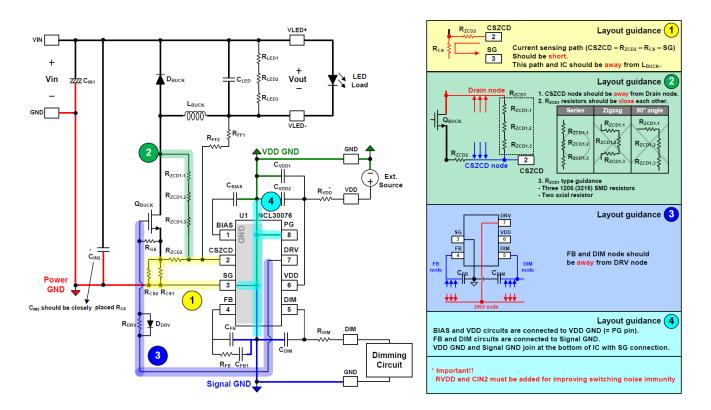


Figure 18. PCB Layout Guidance

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houtchs for my such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative