ON Semiconductor

Is Now

onsemi

To learn more about onsemi ${ }^{T M}$, please visit our website at www.onsemi.com

[^0]

A Type 2 with NCP4352/28

Christophe Basso - Technical Fellow
IEEE Senior Member

Application Schematic

For this type 2 compensator (1 pole at the origin, 1 zero and 1 pole), a single capacitor C_{1} is necessary. The second capacitor $C_{\text {pole }}$ creates the needed pole for rolling off the gain at high frequencies.

$$
G(s)=\frac{V_{F B}(s)}{V_{\text {out }}(s)}
$$

Transfer Function

$$
\begin{gathered}
G(s)=-G_{0} \frac{1+\frac{\omega_{z}}{s}}{1+\frac{\omega_{p o}}{s}} \frac{1}{1+\frac{s}{\omega_{p}}} \quad G_{0}=\frac{\mathrm{CTR} \cdot R_{\text {pulupp }}\left(R_{U}+R_{L} R_{U} g_{m}\right)}{\left(R_{L}+R_{U}+R_{L} R_{U} g_{m}\right) R_{L E D}+R_{L} R_{U}} \\
\omega_{p}=\frac{1}{C_{\text {pole }} R_{\text {pullup }}} \\
\omega_{p o}=\frac{1}{C_{1}\left[\frac{\left.R_{U}\left(R_{L E D}+R_{L}+R_{L} R_{L E D} g_{m}\right)+R_{L} R_{L E D}\right]}{R_{U}+R_{L}}\right]} \\
|G(f)|
\end{gathered}
$$

$$
\omega_{z}=\frac{1}{C_{1}\left(\frac{R_{U}+R_{L} R_{U} g_{m}}{R_{L} g_{m}}\right)}
$$

1. Calculate $R_{\text {LED }}$ to get G_{0}
2. Determine the value of C_{1} for the zero
3. Determine the value of $\mathrm{C}_{\text {pole }}$ for the pole

The final value for $\mathrm{C}_{\text {pole }}$ must account for the optocoupler parasitic capacitance

Determining Components Values

$$
\begin{aligned}
& R_{U}=\frac{V_{\text {out }}-V_{\text {ref }}}{i_{\text {bias }}} \quad R_{L}=\frac{V_{\text {ref }}}{i_{\text {bias }}} \longleftarrow \text { Bias current } \\
& \text { in the bridge }
\end{aligned} \quad \begin{aligned}
& C_{1}=\frac{R_{L} g_{m}}{2 \pi f_{z}\left(R_{U}+R_{L} R_{U} g_{m}\right)} \\
& R_{L E D}=\frac{R_{U}\left(\mathrm{CTR} \cdot R_{\text {pullup }}-G_{0} R_{L}+\mathrm{CTR} \cdot R_{L} R_{\text {pullup }} g_{m}\right)}{G_{0}\left(R_{L}+R_{U}+R_{L} R_{U} g_{m}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \underset{\text { specs }}{\text { From IC }} \longrightarrow \begin{array}{l}
\mathrm{g}_{\mathrm{m}}:=2 \mathrm{~S}
\end{array} \mathrm{R}_{\text {pullup }}:=20 \mathrm{k} \Omega \quad \text { CTR }:=1 \\
& \text { Type } 2 \text { calculations: }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{V}_{\text {out }}:=12 \mathrm{~V} \quad \mathrm{i}_{\text {bias }}:=250 \mu \mathrm{~A} \quad \mathrm{~V}_{\text {ref }}:=2.5 \mathrm{~V} \\
& \mathrm{R}_{\mathrm{L}}:=\frac{\mathrm{V}_{\text {ref }}}{\mathrm{i}_{\text {bias }}}=10 \cdot \mathrm{k} \Omega \quad \mathrm{R}_{\mathrm{U}}:=\frac{\mathrm{V}_{\text {out }}-\mathrm{V}_{\text {ref }}}{\mathrm{i}_{\text {bias }}}=38 . \mathrm{k} \Omega
\end{aligned}
$$

Data extracted from the plant control-to-output dynamic response: G_{fc} is the gain/attenuation at f_{c} pfc is the phase at f_{c}

Make sure the $\mathrm{R}_{\text {LED }}$ value is adequately selected to allow the proper optocoupler bias.

SPICE Simulation

parameters
Vout $=12 \mathrm{~V}$
$\mathrm{lb}=100 \mathrm{u}$
Vref=2.5
Rupper=(Vout-Vref)/lb
Rlower=2.5/lb
Rpullup=20k
$C T R=1$
$\mathrm{fc}=1 \mathrm{k}$
pm=70
pfc $=-70$
Gfc=-20
boost=pm-(pfc)-90
gm=2
$\mathrm{G}=10^{\wedge}(-\mathrm{Gfc} / 20)$
$\mathrm{pi}=3.14159$
$K=\tan \left((\text { boost } / 2+45)^{*}\right.$ pi/180)
Fzero=fc/k
Fpole=k*fc
Cpole=1/(2*pi*Fpole*Rpullup)
C1=Rlower*gm/(2*pi*fzero*(Rupper+Rlower*Rupper*gm))
a=Rupper*(CTR*Rpullup-G*Rlower+CTR*RIower*Rpullup*gm)
$b=G^{*}$ (Rupper+Rlower+Rlower*Rupper*gm)
RLED=a/b

Small-Signal Response of the Compensator

Mathcad ${ }^{\circledR}$ Response

[^0]:

 Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.

