Process Technology

C3/D3: 0.35 µm **Process Technology**

ON Semiconductor®

www.onsemi.com

Overview

The C3/D3 process family from ON Semiconductor is an ideal 0.35 µm low cost solution to mixed-signal designs requiring a moderate amount of digital logic (up to 250 k gates). Optimized for 3.3 V operation with added devices for 5 V capability, high-performance, low-power, and mixed-signal digital libraries, and mixed-signal features such as poly-poly capacitors, Schottky diodes, and high resistivity poly. C3/D3 provides the flexibility to implement a variety of mixed-signal applications.

Features

- 3 to 5 Metal Layers
- Poly to Poly Capacitors
- Schottky Diodes
- High-resistance Poly
- Salicide Process with Optional Blocking
- 5 V Devices (Thick Gate Oxide)
- 5 V Tolerant I/O in Normal Process

PROCESS CHARACTERISTICS

Operating Voltage	3.3 V, 5 V	
Substrate Material	P-Type, EPI	
Drawn Transistor Length	0.35 μm	
Gate Oxide Thickness	7.0 nm / 11.0 nm	
Contact/Via Size	0.4 μm / 0.5 μm	
Top Metal Thickness	675 nm	
Contacted Metal Pitch		
Metal 1	1.1 μm	
Metal 2-5	1.2 μm	
Metal Composition	AI/TiN	

SAMPLE PROCESS OPTIONS

	Mask Layers
1 Poly, 3 Metal	16
1 Poly, 5 Metal	20
2 Poly, 3 Metal. Hi-R Poly	20
2 Poly, 5 Metal. Hi-R Poly	24

DEVICE CHARACTERISTICS

All Values Typical at 25°C

TRANSISTORS

N-Channel	Typical Value	Units
V _t	0.5	V
I _{dsat}	510	μ A /μm
P-Channel	Typical Value	Units
V _t	-0.554	V
l _{dsat}	-259	μ A /μm

THICK GATE TRANSISTORS

N-Channel	Typical Value	Units
V _t	0.76	V
l _{dsat}	470	μ A /μm
P-Channel	Typical Value	Units
V_{t}	-0.95	V
I _{dsat}	-240	μ Α /μm

RESISTORS

	Typical Value	Units
Poly	10	Ω/square
Hi-R Poly	1000	Ω/square
N-Diffusion	10	Ω/square
P-Diffusion	10	Ω/square
N-Well	1250	Ω/square

CAPACITORS

	Typical Value	Units
Poly-Poly	0.9	fF/μm²

DIODES

Schottky Diode	Typical Value	Units
Area	5.1	μm²
Id (Vf = 0.1 V)	0.05	μΑ
Id (Vf = 0.3 V)	2	μΑ
Id (Vf = 0.6 V)	175	μΑ

LIBRARIES

Standard Cell		
Ultra High Density Core Cell	pn sum: 2.0	
	Area of 2-input nand (na21): 38.88 μm	
	Gate density (na21 @ 100% utilization): 25.72 k gates/mm ²	
	Scan Flop density (scan flops @ 100% utilization): 3.215 k ff/mm ²	
	Average power (@ 3.3 V): 0.604852 μW/MHz/gate	
Mixed-Signal	pn sum: 4.5	
Core Cell – Separate	Area of 2-input nand (na21): 74.88 μm	
substrate for reduced noise	Gate density (na21 @ 100% utilization): 13.35 k gates/mm ²	
	Scan Flop density (scan flops @ 100% utilization): 1.842 k ff/mm ²	
	Average power (@ 3.3 V): 0.6074 μW/MHz/gate	
5 V Capable Core Cell – Thick gate logic design	pn sum: 5.0	
	Area of 2-input nand (na21): 108 μm ²	
	Gate density (na21 @ 100% utilization): 9.259 k gates/mm ²	
	Scan Flop density (scan flops @ 100% utilization): 1.187 k ff/mm ²	
	Average power (@ 5.0 V): 3.0553 μW/MHz/gate	
Core Cell Level Shifters	Bidirectional: 2 cells, pad high to core low, or pad low to core high	
	Unidirectional: 1 cell optimized for speed, pad high to core low	
Standard I/O		
Fat Pad I/O Library (for	135 μm max in-line pad pitch	
core limited designs)	459.15 μm pad height	
Tall Pad I/O Library (for	86 μm max in-line pad pitch	
pad limited designs)	730 μm pad height	

5 V Capable I/O Library –	140.40 μm max in-line pad pitch
Thick gate logic design	274.05 μm pad height

MEMORY OPTIONS

RAM		
Asynchronous Single Port SRAM*	35 μm ² /bit (64 k bit memory)	
Asynchronous Dual Port SRAM*	64 μm ² /bit (64 k bit memory)	
ROM		
Asynchronous Diffusion ROM*	5.4 μm ² /bit (64 k bit memory)	
Non-Volatile Memory		
EEPROM	Differential Bit Cell (Redundancy for High Reliability)	
	2 ms Write	
	Array: up to 1 k Bits (32x32), Vector: up to 32 bits (1x32)	
	Internal Charge Pump provided	

^{*}Compiled

CAD TOOL COMPATIBILITY

Digital Design	Synopsys Design Compiler
	Cadence Verilog
Analog Design	Cadence DFII (4.4.6)
	Spectre
Place and Route	Synopsys Apollo, Astro
	Cadence Silicon Ensemble
Physical Verification	Mentor Calibre

ON Semiconductor and ill are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns me rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any product herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications uniformation provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hol

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative