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ABSTRACT 
Automatic program switching is a future trend for digital 
hearing aids. To realize this function, a solution for sound 
environment classification is required. This paper presents 
an HMM-based sound environment classifier that is imple-
mented on a low-power DSP system designed for hearing 
aid applications. Our experimental results show that it is 
capable of distinguishing four sound sources (i.e. speech, 
music, car noise, and babble) with more than 95% accuracy 
rate and consumes only 0.225 mW of power. 

1. INTRODUCTION 

Digital hearing aids perform more complex signal process-
ing and offer greater flexibility than analog hearing aids. 
Digital hearing aids allow clinicians to adjust a variety of 
parameter settings to meet the individual needs. Since hear-
ing aid wearers are exposed to various listening environ-
ments, the signal processing and the parameter settings of 
hearing aids should adapt to listening environments. In 
multi-program hearing aids, the parameter settings in each 
program are optimized for a specific listening environment. 
The users can manually select the program depending on the 
current listening environment. As a more user-friendly and 
inconspicuous alternative, hearing aids with more intelligent 
capabilities should sense the current listening environment 
and automatically switch programs. This requires an algo-
rithm to classify the sound environment by analyzing the 
audio signal. In this paper, we will present a DSP solution 
for the sound environment classification. 

A classification algorithm generally consists of a feature 
extraction scheme and a classification scheme. The feature 
extraction scheme computes the most discriminative infor-
mation from the input signal. Amplitude modulation is a typi-
cal feature used in sound environment classification [1, 2, 3, 
4]. Due to the strong modulation in speech signals, amplitude 
modulation is particularly effective for clean speech detec-
tion. However, it is not useful in distinguishing noise and 
music signals [2]. Other features such as amplitude onset [3, 
4] and harmonicity [4] are also used to measure the physical 
attributes of the sound sources. More recently, spectrum-
based features, such as mel-frequency cepstral coefficients 
(MFCC), have been used for sound environment classifica-
tion [5, 6]. This approach is motivated by their successful 
usage in speech recognition. With just a few coefficients, 

MFCC-based features are able to represent the perceptually 
relevant part of the spectrum and its temporal variation. 
Based on these features, the second step in a classification 
algorithm, the classification scheme, performs the actual 
classification on the feature space. In sound environment 
classification, heuristic classification approaches were used 
in the early works [1]. Recently, statistical classification ap-
proaches were introduced in this field, including Hidden 
Markov Model (HMM) [4], discrete HMM [5], and Gaussian 
Mixture Model (GMM) [6]. Statistical approaches are much 
more powerful than the heuristic approaches. However, the 
computational demand of statistical approaches has always 
been considered prohibitive for hearing aid applications.  

In this work, we present a sound environment classifier 
aimed at tracking the changes in the sound environment. It is 
implemented on an ultra-low power and miniature DSP sys-
tem. We use MFCC-based features and HMM classification 
to take full advantage of the signal processing functions pro-
vided by the DSP system. The efficiency and capability of 
this solution will demonstrate the feasibility of accommodat-
ing an HMM-based sound environment classifier in a real-
time digital hearing aid application. 

The rest of the paper is organized as follows. Section 2 
gives an overview of the Ezairo 5900 DSP system upon 
which the algorithm is implemented. Section 3 describes the 
HMM-based sound environment classification algorithm and 
the implementation details. Section 4 discusses the system 
evaluation results. Finally, Section 5 summarizes the conclu-
sions of the current work and proposes future works.  

2. EZAIRO 5900 DSP SYSTEM 

The environment classification algorithm is implemented on 
our new DSP based digital hearing aid system-on-chip. The 
DSP system uses an asymmetric, dual-core architecture. The 
chip is fabricated in 130 nm semiconductor technology for 
ultra-low power consumption and small physical die size.  

Figure 1 gives a top-level overview of the DSP system. 
The entire system is centered around two processing cores: a 
general-purpose fixed-point digital signal processor called 
CFX and a configurable signal processing accelerator called 
HEAR. The CFX DSP is a dual-MAC, 24-bit core. It con-
tains four 56-bit accumulators, four 24-bit data registers, 
twelve address registers, and other program control registers. 
Supported by a flexible  parallel  instruction set,  the DSP can  
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Figure 1  –  Ezairo 5900 DSP system block diagram 

execute up to four computation operations and two data 
transfers in one cycle. 

The second processing core, the HEAR accelerator, pro-
vides a variety of signal processing functions including 
FIR/IIR filtering, filterbank operations, FFT, statistical opera-
tions and vector operations. These functions are highly opti-
mized yet configurable. The developer can specify the con-
figuration parameters and address parameters to fit each ap-
plication’s specific needs and minimize the function execu-
tion overhead. With these fundamental building blocks, it 
greatly reduces the development time of a new algorithm. A 
sequence of functions can be organized into a function chain 
or multiple function chains. The developer schedules the 
launch time of each function chain. While the accelerator is 
executing a function chain, the DSP can perform other tasks.  

The two cores communicate by sending interrupt signals 
and shared memory. The accelerator is specialized in com-
mon arithmetic or signal processing functions, whereas the 
DSP is designed for controlling the program and the periph-
eral interfaces. The DSP may also be used for other custom-
ized processing that cannot be handled on the accelerator. 
Optimum system efficiency can be achieved by carefully 
balancing the computation load of the two cores.  

Other than the processing cores, peripheral components 
and interfaces, the system also contains an input/output con-
troller (IOC), a FIFO controller, analog audio inputs and ana-
log audio outputs. The IOC manages the input/output data 
flow in the background without loading the cores. The FIFO 
controller provides hardware-based, configurable FIFO buff-
ers to store the input, output and intermediate processing 
samples. They can also be used as software controlled circu-
lar buffers. The audio input and output circuits allow four 
input channels and one output channel, and are optimized to 
achieve high-fidelity audio performance. 

3. THE HMM-BASED SOUND ENVIRONMENT 
CLASSIFICATION FRAMEWORK 

To take advantage of the dual-core system, the sound envi-
ronment classification algorithm is implemented in a parallel 
processing framework.  

Figure 2 illustrates the processing flow of this frame-
work. MFCC feature extraction is comprised of a series of 
signal processing blocks (white boxes in the figure) executed 
on the two processing  cores.  The  regular  signal  processing  

 
Figure 2 – Algorithm processing flow (not to scale) 

and vector operations are  executed  on  the  accelerator.  The 
customized function blocks are implemented on the DSP. 
HMM classification is performed using the Viterbi algo-
rithm [7] which is executed on the DSP (grey box in the 
figure). The audio acquisition, feature extraction and the 
classification are pipelined to maximize the parallelism [8]. 
In other words, Viterbi classification is performed on the 
features of the previous frame when the accelerator is com-
puting the features of the current frame. In the meantime, the 
IOC is collecting the audio samples for the next frame. The 
pipeline processing introduces one frame (8 ms) delay in the 
classification response. Assuming the sound environment 
does not change rapidly, this amount of delay is acceptable 
for this particular application. 

 
3.1 MFCC feature extraction 
The input signal is sampled at a 16 kHz sampling rate. Fol-
lowing the analog-to-digital (A/D) conversion, the input sig-
nal is divided into successive frames. This operation is man-
aged by the IOC and the FIFO controller in the background.  
Each frame is 8 ms long with 4 ms overlapping. When a 
frame is ready, the DSP core launches the first function chain 
for MFCC feature extraction. 

The first function chain begins with 128-point Hamming 
windowing followed by 128-point Fast Fourier Transform 
(FFT). Since the real input has a conjugate symmetric FFT, 
only the first 64-band FFT outputs are generated. Next, the 
magnitude of each FFT point is computed using a complex 
vector magnitude function.  

Once the magnitude is obtained, the first function chain 
is completed.  An interrupt is sent to the DSP to start mel 
frequency binning.  The purpose is to map the 64-band linear  



 
Figure 3 – Structure of the HMM model 

FFT spectrum to an 18-band nonuniformly spaced, mel-scale 
spectrum. After mel frequency binning, the DSP launches the 
second function chain on the accelerator.  

The second function chain begins with a vector loga-
rithm function to calculate the logarithm of the mel-spectrum 
bin energy. This function gives a table-lookup based ap-
proximation of the base-2 logarithm. Next is an inverse dis-
crete cosine transform (IDCT). Depending on the desired 
number of MFCC coefficients, only the first few orders of 
IDCT outputs are calculated (the zero-order coefficient is 
excluded). Therefore it is more efficient to implement IDCT 
as a matrix multiplication operation. 

After the second function chain, the DSP performs cep-
stral liftering followed by time derivative. Cepstral liftering 
rescales the MFCC coefficients to approximately the same 
magnitude in order to improve the precision of the fixed-
point implementation. The liftered MFCC coefficients are 
stored in a circular buffer, from which the first-order delta 
coefficients are derived. 

 
3.2 HMM classification 
The classifier uses HMMs to model the environment sound 
sources. As illustrated in Figure 3, each model consists of 
five states including three emitting states, one entry state and 
one exit state. Each emitting state is associated with a single 
mixture, multivariate Gaussian probability distribution, 
which is specified by a mean vector and a diagonal covari-
ance matrix. A transition matrix defines the transition prob-
ability between the states. A negative insertion penalty is 
applied at the transition across the models. The Gaussian 
probability distributions and the transition matrix are esti-
mated during an offline training process carried out using 
the HTK toolbox [9]. The value of the insertion penalty is 
determined by empirical analysis of simulation results. 

The Viterbi classification is performed in real-time on 
the DSP. The objective is to compute the log-likelihood of 
the states frame-by-frame and determine the most likely se-
quence of models and states that produce the observed fea-
ture vectors [7]. Note that the log-likelihood is a monotoni-
cally decreasing value over time. As such, in a fixed-point 
implementation, it will eventually underflow. To prevent this 
in practice, we simply normalize the log-likelihood in each 
frame by subtracting its maximal value across all the models. 
So the maximal log-likelihood is always 0 at any time. 

In Gaussian probability computation, the variables have 
very different dynamic ranges, which is another challenge for 
the fixed-point implementation. To achieve the best numeri-
cal precision, we used a C simulation to estimate the dynamic 
range of each variable and identify an optimal fixed-point 
representation for each variable.  

4. SYSTEM EVALUATION 

Our  experiments  use a sound database for training and test.  
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Figure 4 –  Cycle usage for different feature vector size 

Table 1 –  Breakdown of cycles spent on the individual functions 
(configured with MFCC_D_4 feature vector) 

Functions executed on the DSP Cycle count 
Viterbi classification 1177 
Mel frequency binning 409 
Cepstral liftering & time derivative 46 
Total 1632 
Functions executed on the accelerator Cycle count 
Hamming window 133 
FFT 521 
Magnitude 888 
Logarithm 151 
IDCT 104 
Total 1797 

 
The database includes 26.5 minutes of training data and 9.2 
minutes of test data. All signals are sampled at 16 kHz. The 
sounds were chosen to represent the four sound sources: 
speech, music, car noise and babble. The material has cer-
tain variety to yield a general model for each class.  

As described earlier, MFCC and delta-MFCC coeffi-
cients are used as the features. To determine the optimal fea-
ture vector size, we explore the tradeoffs concerning compu-
tation load, memory usage, and classification accuracy.  

To compare the computation load with different sizes of 
feature vectors, we measured the cycle usage at 2.56 MHz 
clock frequency and plotted the data in Figure 4. In addition, 
Table 1 shows a break-down of cycle usage on a function-by-
function basis to give some insight into how the cycles are 
used in detail. As we can see from Figure 4, the algorithm 
uses less than 20% of the computational resources at this 
clock frequency. The remaining cycles can be used to exe-
cute other function blocks typically required in a hearing aid 
application. The computation is split between the DSP and 
the accelerator. As shown in Table 1, Viterbi classification 
accounts for most of the computation on the DSP.  Since the 
size of the feature vector determines the dimension of the 
Gaussian distribution, increasing the size of the feature vec-
tor leads to significant increase of the cycle usage on the 
DSP. However, on the accelerator, the two major parts of the 
computation, FFT and magnitude computation, are inde-
pendent of the size of the feature vector, thus the increase of 
the cycle usage on the accelerator is relatively small. From 
Figure 4, we can see the computation load on the two proces-
sors is more balanced with MFCC_D_4 feature vector (4 
MFCC and 4 delta-MFCC coefficients) or MFCC_D_6 fea-
ture vector (6 MFCC and 6 delta-MFCC coefficients). There-
fore the system tends to be more power efficient under these 
two  configurations,  when considering only the environment 
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Figure 5 – Memory usage for different feature vector size 

classification algorithm. 
The DSP system has 12.75 Kwords data memory and 14 

Kwords program memory available on the chip. The classifi-
cation process only requires a small amount of memory. 
Figure 5 illustrates the memory usage of the classification 
process for different feature vector size. Because the HMM 
models are stored in the data memory, we see a notable in-
crease in data memory usage as the size of the feature vector 
increases, whereas the impact on the program memory usage 
is negligible.  

Finally, Figure 6 shows the classification accuracy ob-
tained with different sizes of feature vectors. With the 
MFCC_D_4 feature vector, the accuracy is higher than 95%. 
Upgrading from the MFCC_D_4 to the MFCC_D_6 feature 
vector only provides marginal improvement on accuracy. 
However, with MFCC_D_8, the accuracy is even degraded. 
This is usually because the high-order MFCC coefficients 
contain the information of the fine spectrum structure, which 
is not useful for characterizing the noise signals.  

Based on our analysis, MFCC_D_4 is a possible con-
figuration that minimizes power consumption while keeping 
a high accuracy. To perform the sound environment classifi-
cation with this particular configuration, the entire DSP sys-
tem consumes only 0.225 mW of power. 

5. CONCLUSIONS AND FUTURE WORKS 

This paper presents an HMM-based sound environment 
classification framework for hearing aid applications. The 
algorithm has been successfully implemented on our latest  
Ezairo 5900 DSP system optimized for hearing aid applica-
tions.  

The asymmetric dual-core DSP system is centered 
around a configurable signal processing accelerator and a 
dual-MAC general-purpose DSP. The configurable accelera-
tor provides highly optimized signal processing functions 
that typically involve regular computations and data parallel-
ism. The DSP allows customized, non-regular signal process-
ing and program controls, and also supports instruction-level 
parallelism. In addition to the two cores, other units, such as 
the IOC and the FIFO controller, manage the input/output 
data flow in the background without interrupting the cores. 
With this architecture, we are able to pipeline the audio ac-
quisition, the feature extraction and the classification to 
maximize the parallelism and the power efficiency.  

An experimental analysis was performed to determine 
the optimal combination of feature coefficients in terms of 
trading off accuracy versus computation and memory load. 
The evaluation  results  show  that  higher than 95% accuracy  
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Figure 6  –  Classification accuracy for different feature vectors 

rate can be achieved with a feature vector of 4 MFCC and 4 
delta-MFCC coefficients.  At 2.56 MHz clock frequency, the 
classifier takes less than 20% of the computational cycles 
available. Therefore it leaves enough computational re-
sources for the other function blocks in a typical hearing aid 
application. With the 130 nm semiconductor technology, the 
DSP chip consumes 0.225 mW of power to perform the clas-
sification.  

Note that the classifier in the current implementation is 
intended to identify non-mixed sources. In practice, the lis-
tening environment tends to be a mixture of multiple sound 
sources. Future work will involve the detection of a mixture 
of signals in a noisy background.  
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