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 Abstract 
 
In this paper we describe an open framework for 
programming a dual-core system whose architecture is 
designed for ultra low-power audio processing applications. 
We show how the system’s architecture leads to a model of 
computation, i.e. a formalism that describes the execution, 
scheduling and interaction between components in a system. 
We also show how applications can automatically be created 
from a set of components that are specifically architected for 
the dual-core system in terms of resource usage and 
performance using a set of complexity metrics associated 
with the model of computation.  
 
 1. Introduction 
 
There are many applications for ultra low-power audio signal 
processing. They include encoding, decoding and general 
quality enhancement of the audio signal in mobile phones, 
speakerphones, wireless headsets and a variety of medical 
devices. Fixed-function products are widely used in these 
applications, but fully programmable audio processing 
systems are used increasingly often due to the need for 
flexibility. As these systems need to match fixed function 
products in terms of performance and cost, this flexibility is 
often associated with complex programming as their 
architecture is optimized for specific applications. 
 
The audio processing system presented in this paper is an 
example of a dual-core system-on-a-chip (SoC) whose 
architecture is designed for ultra low-power audio signal 
processing applications. The signal processing system 
features dual digital signal processing units and one 
configurable DMA controller for sample management, plus a 
number of audio-specific mixed-signal components, such as 
analog-to-digital converters, digital-to-analog converters, 
filters, and pre-amplifiers.  
 
Applications deployed on the audio processing system share 
many common signal processing blocks, such as FIR and IIR 
filters, time/frequency domain transformations and vector 
multiplication. Systems deployed on the audio processing 
system also share different algorithms (assembled from 

blocks), such as noise reduction, dynamic range compression, 
feedback suppression and echo cancellation. As companies 
develop these signal processing blocks and algorithms, we 
observe an increasing desire to expand the lifetime of these 
blocks and algorithms and therefore to re-use them in other 
applications. This creates the need for a framework that 
facilitates modularity and the development of applications 
from existing components (blocks and algorithms). This 
framework should also provide the basis for future tools that 
will be able to generate code from a high-level description. 
 
Given the uniqueness of the audio processing system’s 
architecture [1] and its parallel processing units, a formalism 
that describes the execution, scheduling and interaction 
between components had to be developed. The framework 
described in this paper was designed specifically for the 
audio processing system, as many of the existing concepts 
and tools, such as TI’s eXpressDSP (see [2]), the Simulink 
Real-Time Workshop (from The MathWorks) ([3]) and 
Ptolemy (see [4]), do not directly address the parallelism 
issue. For example, they lack the complexity measures that 
allow the fine-tuning of software applications developed for 
the audio processing system. The framework not only 
specifies how programmers should develop components, but 
it also specifies a model of computation adapted to the 
parallel nature of the audio processing system. In addition, it 
provides a set of complexity measures that allow application 
developers to properly address trade-offs and thereby build 
complete applications that take maximum advantage of the 
resources available on the audio processing system. 
 
This paper begins with a description of the architecture of the 
dual-core audio processing system. It continues in section 3 
with a description of the issues that need to be addressed by 
the programming framework. In section 4 we present a 
programming model that forms the basis for this framework. 
In section 5, we present a tool that brings together system 
code, a number of algorithms and complexity measures in 
order to demonstrate the mechanics behind application 
development and automatic code generation. Finally, in 
section 6 we present a set of conclusions and describe 
possible future work that could lead to high-level 
programming tool specific to the audio processing system. 
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 2. System architecture 
 
The audio processing system, shown in Figure 1, is a DSP-
based system optimized for low-power audio applications 
such as wireless headsets. The digital part of the audio 
processing system ([1]) consists of three major components:  
a weighted overlap-add (WOLA) filterbank coprocessor, a 
16-bit fixed-point DSP core, and an input-output processor 
(IOP) that manages incoming and outgoing audio samples in 
a set of FIFOs. These three components run in parallel and 
communicate through shared memory.  The parallel operation 
of these components allows for the implementation of 
complex signal processing algorithms with low system clock 
rates, low resource usage and low power consumption.  The 
system is particularly efficient for subband processing in the 
frequency domain: the configurable WOLA coprocessor 
efficiently splits the fullband input signals into subbands, 
leaving the core free to perform the other algorithm 
calculations. The audio processing system also includes 
standard digital interfaces such as PCM, UART and I2S for 
communicating with other devices. The analog part of the 
audio processing system features two digital-to-analog 
converters and two analog-to-digital converters.  
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Figure 1 – Audio Processing System 
 
 
The signal flows through the audio processing system as 
follows. After input samples are digitized by the analog front-
end, the IOP stores them in the input FIFO. The IOP 
generates an interrupt on the core every R samples. The rate 
at which these interrupts occur is also known as the IOP tick 
rate. At every IOP tick, algorithms running on the core can 
perform operations such as IIR or FIR filtering on the time-
domain samples stored in the input FIFO. When this is done, 
the WOLA coprocessor is launched. It processes the time-
domain signal through an analyis filterbank and transforms 
the samples into the frequency-domain. When the analysis 

operation is complete, algorithms running on the core can 
perform operations on the frequency-domain data. The 
WOLA coprocessor is then launched again to apply 
frequency-domain gains and transform the data back into the 
time domain using a synthesis filterbank. Samples are stored 
in the output FIFO by the WOLA coprocessor. They are read 
by the IOP at every tick and sent to the digital outputs or 
converted to analog by the analog output stage.  
 
 3. Programming patterns 
 
Although the system’s architecture is designed for audio 
signal processing, the real benefits of this architecture can 
only be experienced when applications take full advantage of 
the system’s features. These include efficient use of the 
system’s parallelism, use of hardware support for efficient 
DSP calculations (e.g., the WOLA and built-in math 
functions), and frequency-domain processing approaches that 
utilize multi-rate techniques to reduce computation.  
 
An analysis of a large number of blocks, algorithms and 
applications has provided important information regarding 
the development methodology and program structure 
typically employed on the dual-core system. The drive for 
efficiency means that no operating system is available to 
perform context switching. Also, developers write as much 
code as possible in parallel to minimize the clock frequency 
used (which saves power). To accomplish this, developers 
typically use an event-based approach where algorithms and 
background tasks are broken down into blocks, possibly in 
parallel, which execute in a deterministic number of cycles. 
The individual blocks of several different algorithms are 
usually integrated into one application in such a way that the 
algorithms that compose the application are sometimes not 
easily separable. Thus, a large portion of the development 
effort is spent optimizing signal processing blocks and 
algorithms to operate in this environment.   
 
Given the cost of this optimization effort and the associated 
testing, re-useability is very important. In addition to being 
able to integrate individual components (blocks and 
algorithms) in different applications, different versions of a 
component that perform the same type of function but are 
optimized either for low power or for best performance can 
be made simultaneously available. The level of re-use also 
changes: sometimes source code is shared amongst 
integrators, and sometimes only object code can be shared 
because companies want to protect intellectual property. So it 
is important to be able to define re-useable components, to 
have information about the characteristics of these 
components available, and ultimately to be able to use these 
characteristics when a complete system is being built. 
 
When the system components are chosen, a wide range of 
design and implementation trade-offs are then made on the 
complete system to obtain the lowest possible power 
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consumption and best possible functionality and performance. 
The number of configuration parameters in the system is 
relatively high. Parameters such as sampling frequency, 
number of frequency bands, band-to-channel mappings, filter 
lengths, and so on can affect the system in many different 
ways.  
 
In summary, the following requirements for automatic 
application generation must be taken into consideration: (1) 
code shall be optimized for the specific dual-core architecture 
(taking into account parallelism), (2) modules will execute in 
a pre-determine number of cycles and have to be launched at 
precise moments, (3) different methods of performing the 
same function must be supported, (4) re-use at source or 
object code levels must be provided and (5), a large number 
of configuration parameters must be supported. 
 
Our first step towards achieving automatic application 
generation was to define a software development standard 
that specifies all aspects of modular, re-useable software, 
including coding standards, interfacing standards, system-
level behaviour, publication of component characteristics and 
a suitable model of computation. After this standard was 
defined and a number of algorithms were ported to comply 
with the standard, a tool for automatic application generation 
and characterization was developed. The software 
development standard and the tool are described in the 
following two sections. 
 

4. Development standard 
 
The result of the analysis of programming patterns is a 
software development standard (“Standard”) for the audio 
processing system. This document specifies the structures and 
interfaces that are to be used when designing algorithms and 
establishes guidelines for the integration of these algorithms 
into applications.   Three levels of interfaces are covered by 
the standard:  the application or system level, the algorithm 
level and the signal processing block level.  
 
In a typical algorithm, the WOLA filterbank coprocessor 
performs three functions every time a block of samples has 
been acquired:  Analysis, Gain Application and Synthesis, all 
under the control of the DSP core which also performs its 
own tasks concurrently.  These tasks can be grouped 
according to where they occur in relation to the WOLA 
filterbank’s functions.  These groupings are identified in 
Figure 2. 
 
Accordingly, the Standard specifies that all code written for 
the audio processing system, excluding initialization code and 
interrupt service routines (ISRs), must be included in one of 
the following seven routines: 
 

• pre-analysis – called after an IOP interrupt 
• while-analysis – called after Analysis is launched 

• post-analysis – called after an interrupt from the 
WOLA coprocessor indicates that Analysis has 
completed 

• while-gain – called after Gain Application is 
launched 

• post-gain – called after an interrupt from the WOLA 
coprocessor indicates that Gain Application has 
completed 

• while-synthesis – called after Synthesis is launched 
• post-synthesis - called after an interrupt from the 

WOLA coprocessor indicates that Synthesis has 
completed 

 
This model of computation, related to Ptolemy’s discrete 
events and process networks models of computation [4], 
promotes greater load balancing, parallelism and code 
readability when used in our context. It can also establish the 
relationship between a code block and the data it needs. 
  

 
Figure 2 - Structure of a Typical Algorithm That Uses the 

WOLA. 
 
In the Standard, algorithms are broken down into individual 
modules that will fit into these seven routines.  Consider a 
typical algorithm operating on the Analysis results in order to 
calculate the gains to be applied during the coprocessor’s 
gain application function; as such, a significant portion of the 
algorithm must be executed between Analysis and Gain. 
However, optimal parallelism is achieved if the majority of 
this algorithm is run in while-analysis, while-gains and while-
synthesis. A typical method is to spread the gain calculation 
so that it is performed in while-gains and while-synthesis for 
the current sample block and in while-analysis for the next 
sample block. The resulting gains are then ready to be applied 
to the next sample block. This method can be applied when it 
does not noticeably impact the performance of the algorithm. 
Thus, the structure provided by the Standard has helped to 
clarify when the elements of the algorithm should be 
executed for maximum efficiency.   
 
As well as signal processing operations, there are often 
system-level background processes that are not directly 
related to the signal path, such as power supply monitoring.  
The structure provided by the Standard allows the application 
integrator to see the critical path and thus schedule these 
background processes around it in such a way as to maximize 
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parallelism. The system integrator may therefore choose to 
perform background tasks in any of the functions while-
analysis, while-gains and while-synthesis.  
 
In addition to the topics described above, the development 
standard also addresses the following areas: 

• Module interfaces 
• Algorithm interfaces 
• Memory usage and allocation 
• Documentation requirements for modules and 

algorithms, including timing information 
• General coding standards (including file structure, 

naming conventions, etc.). 
The inclusion of each of these topics in the Standard results 
in code that is much easier to integrate.  Although following 
the standard introduces a certain amount of overhead with 
respect to memory and cycle requirements, the benefits of 
following the Standard generally exceed such costs incurred. 
Depending on the system clock setting, the overhead in clock 
cycles can be as high as 20 percent. However, the overhead 
can be reduced by implementing shortcuts in the system code. 
For example, if no algorithm makes use of the post-gain 
function, the Synthesis operation can be launched directly 
when the Gain Application completes. 
 

5. Automatic application generation tool 
 
The purpose of the automatic application generation tool was 
to investigate and demonstrate the feasibility of automatically 
generating applications with coding efficiency that would 
rival hand-generated code. Besides code generation, the 
prototype tool also gives an indication of the application’s 
complexity in terms of memory usage, parallelism and core 
cycle usage. As was identified during our analysis of 
programming and system development patterns, this 
information is absolutely necessary to allow users to fine-tune 
application and system parameters. 
 
The operations involved in generating the application and 
complexity measures are described in Figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3 – Code generation data flow. 

In order to be properly referenced by the automatic 
application generation tool, algorithms are implemented in 
accordance with the Standard as explained in Section 4. Each 
algorithm is divided into seven routines, based on the use of 
the data provided by the IOP and the WOLA coprocessor. 
These seven routines can be used by tool in assembly format 
or in object code for IP protection purposes. Complexity 
measures such as the number of clock cycles needed by each 
routine and their memory usage are obtained, and a number 
of configuration parameters are defined. They will be used by 
the tool to characterize and fine-tune the entire application.  
 
A system-level module common to all applications performs 
the scheduling according to the defined model of computation. 
This module manages the interrupt signals generated by the 
three processors and calls the appropriate functions in the 
sequential manner illustrated in Figure 3. Complexity 
measures for this module are also determined. 
 
After algorithms and system-level modules are developed and 
characterized, their configuration parameters and complexity 
measures are entered into the automatic application 
generation tool. The tool allows the user to select desired 
algorithms, their configuration parameters, and system 
settings such as sampling frequency and WOLA filterbank 
configuration. When all configuration parameters and settings 
are specified, a file that includes all of the information 
necessary to compile the source code for the desired 
application is generated. Memory usage for the entire 
application is also calculated by the tool. 
 
As explained earlier, the optimal use of system resources is 
crucial in order to obtain the best possible performance from 
the application. The tool uses its knowledge of the audio 
processing system’s dual-core architecture to determine how 
busy the main processor is expected to be when running the 
final application. This allows the application developer to 
investigate the feasibility of integrating certain algorithms 
based on the number of required clock cycles and the number 
of the available clock cycles.  
 
The actual acoustic performance of the application can be 
immediately determined by compiling the algorithms, system 
code and application configuration file, and executing the 
resulting application object file on a real-time development 
platform. The process of selecting algorithms and 
configuration parameters, identifying resource usage, and 
testing on a real-time platform can then be repeated, as 
necessary. 
 

6. Conclusions and future work 
 
In this paper we have described a standard for the 
development of applications on the dual-core audio 
processing system. We have also described the prototype of 
an automatic application generation tool based on a coding 
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standard. The Standard and the tool will provide significant 
advantages for both algorithm developers and system 
integrators. For example, they will allow algorithms to be 
shared without the need to expose important intellectual 
property in the source code, and they will allow applications 
to be generated and fine-tuned in significantly less time. 
 
Currently, the framework deals mostly with system 
integration at the algorithm level. Possible extensions in the 
future include adapting the framework to handle the 
integration at a lower level of abstraction, leading to re-
usability at that level and, ultimately, to the ability to 
implement applications at a high-level while still retaining the 
efficiency of low-level coding techniques.  
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