
1

A framework for automatic generation of audio processing applications
 on a dual-core system

Etienne Cornu, Tina Soltani and Julie Johnson

etienne_cornu@amis.com, tina_soltani@amis.com, julie_johnson@amis.com
AMI Semiconductor Canada Company, 611 Kumpf Drive, Waterloo, Ontario, N2V 1K8, Canada

 Abstract

In this paper we describe an open framework for
programming a dual-core system whose architecture is
designed for ultra low-power audio processing applications.
We show how the system’s architecture leads to a model of
computation, i.e. a formalism that describes the execution,
scheduling and interaction between components in a system.
We also show how applications can automatically be created
from a set of components that are specifically architected for
the dual-core system in terms of resource usage and
performance using a set of complexity metrics associated
with the model of computation.

 1. Introduction

There are many applications for ultra low-power audio signal
processing. They include encoding, decoding and general
quality enhancement of the audio signal in mobile phones,
speakerphones, wireless headsets and a variety of medical
devices. Fixed-function products are widely used in these
applications, but fully programmable audio processing
systems are used increasingly often due to the need for
flexibility. As these systems need to match fixed function
products in terms of performance and cost, this flexibility is
often associated with complex programming as their
architecture is optimized for specific applications.

The audio processing system presented in this paper is an
example of a dual-core system-on-a-chip (SoC) whose
architecture is designed for ultra low-power audio signal
processing applications. The signal processing system
features dual digital signal processing units and one
configurable DMA controller for sample management, plus a
number of audio-specific mixed-signal components, such as
analog-to-digital converters, digital-to-analog converters,
filters, and pre-amplifiers.

Applications deployed on the audio processing system share
many common signal processing blocks, such as FIR and IIR
filters, time/frequency domain transformations and vector
multiplication. Systems deployed on the audio processing
system also share different algorithms (assembled from

blocks), such as noise reduction, dynamic range compression,
feedback suppression and echo cancellation. As companies
develop these signal processing blocks and algorithms, we
observe an increasing desire to expand the lifetime of these
blocks and algorithms and therefore to re-use them in other
applications. This creates the need for a framework that
facilitates modularity and the development of applications
from existing components (blocks and algorithms). This
framework should also provide the basis for future tools that
will be able to generate code from a high-level description.

Given the uniqueness of the audio processing system’s
architecture [1] and its parallel processing units, a formalism
that describes the execution, scheduling and interaction
between components had to be developed. The framework
described in this paper was designed specifically for the
audio processing system, as many of the existing concepts
and tools, such as TI’s eXpressDSP (see [2]), the Simulink
Real-Time Workshop (from The MathWorks) ([3]) and
Ptolemy (see [4]), do not directly address the parallelism
issue. For example, they lack the complexity measures that
allow the fine-tuning of software applications developed for
the audio processing system. The framework not only
specifies how programmers should develop components, but
it also specifies a model of computation adapted to the
parallel nature of the audio processing system. In addition, it
provides a set of complexity measures that allow application
developers to properly address trade-offs and thereby build
complete applications that take maximum advantage of the
resources available on the audio processing system.

This paper begins with a description of the architecture of the
dual-core audio processing system. It continues in section 3
with a description of the issues that need to be addressed by
the programming framework. In section 4 we present a
programming model that forms the basis for this framework.
In section 5, we present a tool that brings together system
code, a number of algorithms and complexity measures in
order to demonstrate the mechanics behind application
development and automatic code generation. Finally, in
section 6 we present a set of conclusions and describe
possible future work that could lead to high-level
programming tool specific to the audio processing system.

bejohnst
Text Box
Copyright 2005 GSPx. Published in the proceedings of the Pervasive Signal Processing Conference and Expo, scheduled for Oct. 24-27, 2005 in SantaClara, California. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from Global Technology Conferences, GSPx.

2

 2. System architecture

The audio processing system, shown in Figure 1, is a DSP-
based system optimized for low-power audio applications
such as wireless headsets. The digital part of the audio
processing system ([1]) consists of three major components:
a weighted overlap-add (WOLA) filterbank coprocessor, a
16-bit fixed-point DSP core, and an input-output processor
(IOP) that manages incoming and outgoing audio samples in
a set of FIFOs. These three components run in parallel and
communicate through shared memory. The parallel operation
of these components allows for the implementation of
complex signal processing algorithms with low system clock
rates, low resource usage and low power consumption. The
system is particularly efficient for subband processing in the
frequency domain: the configurable WOLA coprocessor
efficiently splits the fullband input signals into subbands,
leaving the core free to perform the other algorithm
calculations. The audio processing system also includes
standard digital interfaces such as PCM, UART and I2S for
communicating with other devices. The analog part of the
audio processing system features two digital-to-analog
converters and two analog-to-digital converters.

Program
Memory
12K x 16

Data
Memory
8K x 16

Window
Microcode

WOLA
Filterbank

Co-processor
Data

Memory

Input/Output
Processor

In/Out
FIFO

Data ALU
16 x 16 -> 40 MAC

Address
Generation

Program Control
Unit

Timers

General
Purpose

I/O

UART

Sampled
Audio

Signal

Microcontroller or
External Devices

DSP Core

Figure 1 – Audio Processing System

The signal flows through the audio processing system as
follows. After input samples are digitized by the analog front-
end, the IOP stores them in the input FIFO. The IOP
generates an interrupt on the core every R samples. The rate
at which these interrupts occur is also known as the IOP tick
rate. At every IOP tick, algorithms running on the core can
perform operations such as IIR or FIR filtering on the time-
domain samples stored in the input FIFO. When this is done,
the WOLA coprocessor is launched. It processes the time-
domain signal through an analyis filterbank and transforms
the samples into the frequency-domain. When the analysis

operation is complete, algorithms running on the core can
perform operations on the frequency-domain data. The
WOLA coprocessor is then launched again to apply
frequency-domain gains and transform the data back into the
time domain using a synthesis filterbank. Samples are stored
in the output FIFO by the WOLA coprocessor. They are read
by the IOP at every tick and sent to the digital outputs or
converted to analog by the analog output stage.

 3. Programming patterns

Although the system’s architecture is designed for audio
signal processing, the real benefits of this architecture can
only be experienced when applications take full advantage of
the system’s features. These include efficient use of the
system’s parallelism, use of hardware support for efficient
DSP calculations (e.g., the WOLA and built-in math
functions), and frequency-domain processing approaches that
utilize multi-rate techniques to reduce computation.

An analysis of a large number of blocks, algorithms and
applications has provided important information regarding
the development methodology and program structure
typically employed on the dual-core system. The drive for
efficiency means that no operating system is available to
perform context switching. Also, developers write as much
code as possible in parallel to minimize the clock frequency
used (which saves power). To accomplish this, developers
typically use an event-based approach where algorithms and
background tasks are broken down into blocks, possibly in
parallel, which execute in a deterministic number of cycles.
The individual blocks of several different algorithms are
usually integrated into one application in such a way that the
algorithms that compose the application are sometimes not
easily separable. Thus, a large portion of the development
effort is spent optimizing signal processing blocks and
algorithms to operate in this environment.

Given the cost of this optimization effort and the associated
testing, re-useability is very important. In addition to being
able to integrate individual components (blocks and
algorithms) in different applications, different versions of a
component that perform the same type of function but are
optimized either for low power or for best performance can
be made simultaneously available. The level of re-use also
changes: sometimes source code is shared amongst
integrators, and sometimes only object code can be shared
because companies want to protect intellectual property. So it
is important to be able to define re-useable components, to
have information about the characteristics of these
components available, and ultimately to be able to use these
characteristics when a complete system is being built.

When the system components are chosen, a wide range of
design and implementation trade-offs are then made on the
complete system to obtain the lowest possible power

3

consumption and best possible functionality and performance.
The number of configuration parameters in the system is
relatively high. Parameters such as sampling frequency,
number of frequency bands, band-to-channel mappings, filter
lengths, and so on can affect the system in many different
ways.

In summary, the following requirements for automatic
application generation must be taken into consideration: (1)
code shall be optimized for the specific dual-core architecture
(taking into account parallelism), (2) modules will execute in
a pre-determine number of cycles and have to be launched at
precise moments, (3) different methods of performing the
same function must be supported, (4) re-use at source or
object code levels must be provided and (5), a large number
of configuration parameters must be supported.

Our first step towards achieving automatic application
generation was to define a software development standard
that specifies all aspects of modular, re-useable software,
including coding standards, interfacing standards, system-
level behaviour, publication of component characteristics and
a suitable model of computation. After this standard was
defined and a number of algorithms were ported to comply
with the standard, a tool for automatic application generation
and characterization was developed. The software
development standard and the tool are described in the
following two sections.

4. Development standard

The result of the analysis of programming patterns is a
software development standard (“Standard”) for the audio
processing system. This document specifies the structures and
interfaces that are to be used when designing algorithms and
establishes guidelines for the integration of these algorithms
into applications. Three levels of interfaces are covered by
the standard: the application or system level, the algorithm
level and the signal processing block level.

In a typical algorithm, the WOLA filterbank coprocessor
performs three functions every time a block of samples has
been acquired: Analysis, Gain Application and Synthesis, all
under the control of the DSP core which also performs its
own tasks concurrently. These tasks can be grouped
according to where they occur in relation to the WOLA
filterbank’s functions. These groupings are identified in
Figure 2.

Accordingly, the Standard specifies that all code written for
the audio processing system, excluding initialization code and
interrupt service routines (ISRs), must be included in one of
the following seven routines:

• pre-analysis – called after an IOP interrupt
• while-analysis – called after Analysis is launched

• post-analysis – called after an interrupt from the
WOLA coprocessor indicates that Analysis has
completed

• while-gain – called after Gain Application is
launched

• post-gain – called after an interrupt from the WOLA
coprocessor indicates that Gain Application has
completed

• while-synthesis – called after Synthesis is launched
• post-synthesis - called after an interrupt from the

WOLA coprocessor indicates that Synthesis has
completed

This model of computation, related to Ptolemy’s discrete
events and process networks models of computation [4],
promotes greater load balancing, parallelism and code
readability when used in our context. It can also establish the
relationship between a code block and the data it needs.

Figure 2 - Structure of a Typical Algorithm That Uses the

WOLA.

In the Standard, algorithms are broken down into individual
modules that will fit into these seven routines. Consider a
typical algorithm operating on the Analysis results in order to
calculate the gains to be applied during the coprocessor’s
gain application function; as such, a significant portion of the
algorithm must be executed between Analysis and Gain.
However, optimal parallelism is achieved if the majority of
this algorithm is run in while-analysis, while-gains and while-
synthesis. A typical method is to spread the gain calculation
so that it is performed in while-gains and while-synthesis for
the current sample block and in while-analysis for the next
sample block. The resulting gains are then ready to be applied
to the next sample block. This method can be applied when it
does not noticeably impact the performance of the algorithm.
Thus, the structure provided by the Standard has helped to
clarify when the elements of the algorithm should be
executed for maximum efficiency.

As well as signal processing operations, there are often
system-level background processes that are not directly
related to the signal path, such as power supply monitoring.
The structure provided by the Standard allows the application
integrator to see the critical path and thus schedule these
background processes around it in such a way as to maximize

Analysis Gain Synthesis

While-
Analysis Post-AnalysisPre-Analysis While-Gain Post-Gain While-

Synthesis
Post-

Synthesis

WOLA
Filterbank
Coprocessor

RCore

TimeIOP Tick IOP Tick

Call Call CallInterrupt Interrupt Interrupt

4

parallelism. The system integrator may therefore choose to
perform background tasks in any of the functions while-
analysis, while-gains and while-synthesis.

In addition to the topics described above, the development
standard also addresses the following areas:

• Module interfaces
• Algorithm interfaces
• Memory usage and allocation
• Documentation requirements for modules and

algorithms, including timing information
• General coding standards (including file structure,

naming conventions, etc.).
The inclusion of each of these topics in the Standard results
in code that is much easier to integrate. Although following
the standard introduces a certain amount of overhead with
respect to memory and cycle requirements, the benefits of
following the Standard generally exceed such costs incurred.
Depending on the system clock setting, the overhead in clock
cycles can be as high as 20 percent. However, the overhead
can be reduced by implementing shortcuts in the system code.
For example, if no algorithm makes use of the post-gain
function, the Synthesis operation can be launched directly
when the Gain Application completes.

5. Automatic application generation tool

The purpose of the automatic application generation tool was
to investigate and demonstrate the feasibility of automatically
generating applications with coding efficiency that would
rival hand-generated code. Besides code generation, the
prototype tool also gives an indication of the application’s
complexity in terms of memory usage, parallelism and core
cycle usage. As was identified during our analysis of
programming and system development patterns, this
information is absolutely necessary to allow users to fine-tune
application and system parameters.

The operations involved in generating the application and
complexity measures are described in Figure 3.

Figure 3 – Code generation data flow.

In order to be properly referenced by the automatic
application generation tool, algorithms are implemented in
accordance with the Standard as explained in Section 4. Each
algorithm is divided into seven routines, based on the use of
the data provided by the IOP and the WOLA coprocessor.
These seven routines can be used by tool in assembly format
or in object code for IP protection purposes. Complexity
measures such as the number of clock cycles needed by each
routine and their memory usage are obtained, and a number
of configuration parameters are defined. They will be used by
the tool to characterize and fine-tune the entire application.

A system-level module common to all applications performs
the scheduling according to the defined model of computation.
This module manages the interrupt signals generated by the
three processors and calls the appropriate functions in the
sequential manner illustrated in Figure 3. Complexity
measures for this module are also determined.

After algorithms and system-level modules are developed and
characterized, their configuration parameters and complexity
measures are entered into the automatic application
generation tool. The tool allows the user to select desired
algorithms, their configuration parameters, and system
settings such as sampling frequency and WOLA filterbank
configuration. When all configuration parameters and settings
are specified, a file that includes all of the information
necessary to compile the source code for the desired
application is generated. Memory usage for the entire
application is also calculated by the tool.

As explained earlier, the optimal use of system resources is
crucial in order to obtain the best possible performance from
the application. The tool uses its knowledge of the audio
processing system’s dual-core architecture to determine how
busy the main processor is expected to be when running the
final application. This allows the application developer to
investigate the feasibility of integrating certain algorithms
based on the number of required clock cycles and the number
of the available clock cycles.

The actual acoustic performance of the application can be
immediately determined by compiling the algorithms, system
code and application configuration file, and executing the
resulting application object file on a real-time development
platform. The process of selecting algorithms and
configuration parameters, identifying resource usage, and
testing on a real-time platform can then be repeated, as
necessary.

6. Conclusions and future work

In this paper we have described a standard for the
development of applications on the dual-core audio
processing system. We have also described the prototype of
an automatic application generation tool based on a coding

System
Framework

Application
Configuration

File

Configuration
Parameters,
Complexity
Measures

Configuration
Parameters,
Complexity
Measures

Application
Parameters

Code
Generation

Assembly
or Object

Code

Assembly
Code

Assembly
Code

Application

Object File

Algorithm 1

Algorithm 2

Algorithm N

Application
Generation

Tool

Application
Complexity
Measures

5

standard. The Standard and the tool will provide significant
advantages for both algorithm developers and system
integrators. For example, they will allow algorithms to be
shared without the need to expose important intellectual
property in the source code, and they will allow applications
to be generated and fine-tuned in significantly less time.

Currently, the framework deals mostly with system
integration at the algorithm level. Possible extensions in the
future include adapting the framework to handle the
integration at a lower level of abstraction, leading to re-
usability at that level and, ultimately, to the ability to
implement applications at a high-level while still retaining the
efficiency of low-level coding techniques.

References

[1] R. Brennan and T. Schneider, “A Flexible Filterbank

Structure for Extensive Signal Manipulations in Digital
Hearing Aids”, Proc. IEEE Int. Symp. Circuits and
Systems, pp. 569-572, 1998.

[2] Texas Instruments eXpressDSP Algorithm Standard
Rules and Guidelines, SPRU352.

[3] The MathWorks, Inc. , SIMULINK Real-Time
Workshop User’s Guide.

[4] Edward A. Lee, "Overview of the Ptolemy Project,"
Technical Memorandum UCB/ERL M03/25, July 2,
2003, University of California, Berkeley, CA, 94720,
USA.

