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by Christophe Basso

f mesh-node analysis lends itself well to solving
transfer functions of electrical circuits, obtaining a
meaningful symbolic formula at once is often
impossible and requires extra efforts to get it.
Applying classical analysis techniques to obtain a
so-called low-entropy expression—implying the factored
form in which you distinguish gains, poles, and zeros—
can often lead to algebraic paralysis, as R.D. Middle-
brook commented in his foundational papers [1], [2]. This
is where the fast analytic circuits techniques (FACTs)
can help you build on what you learned during your
years at university and extend the reach to drastically
simplify analyses. By using FACTs, you not only gain in
execution speed, but the final result appears in a well-
ordered polynomial form, often without the need of fur-
ther factoring efforts [3], [4].
This article begins with an introduction of FACTs, later
applied to determine the control-to-output transfer function

of aswitching converter. The subject is vast, and we will only
scratch the surface here; hopefully, encouraging you to dig
further into the subject. We have selected the voltage-mode,
coupled-inductors, single-ended primary inductor converter
(SEPIC) operated in the discontinuous conduction mode
(DCM). The pulsewidth modulation (PWM) switch [5] will
be used to form the small-signal model.

A Quick Introduction to Fast Analytical Techniques
The basic principle behind FACTs lies in the determination
of the circuit time constants, ¢ = RC or t = /R, when the
network under study is observed in two different condi-
tions: 1) when the excitation signal is reduced to zero and
2) when the response is nulled. By using this technique, you
will appreciate how quickly and intuitively one can deter-
mine a particular transfer function. The analysis techniques
based on this method reach back several decades, as docu-
mented in [6] and [7].

Switching-Converter
Dynamic Analysis
with Fast Analytical
Techniques

Overview and applications
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Bring the Excitation Signal—the Stimulus—Back in Place
Null the Output: V,; (s) =0V or Vo, =0V

Identify in the transformed network, one or several impedances combinations that could
block the stimulus propagation: a transformed open circuit or a transformed short circuit.

Z; (s)
Signal Al To Response Signal To Response
_AQS/@_ Vot () =0V ok Vau(9=0V
‘ Zy(s)
Z1 (Sz) Bdiad l
sC; Zy(s) =0
If inspection is 1
not possible, go -
s for an NDI. s
N, (s) = 1+@ N, (S)=1+@
2
1 1
@D, = ——— W, = ——
“ R1 C1 22 rcc2

FIG 1 This simple flowchart will guide you in determining zeros in the simplest way.
When inspection does not work, you will need to go for a null double injection (NDI).

Count Energy-Storing Elements with Independent State Variables
Assume There Are Two Energy-Storing Elements, L, and C,

The Denominator Follows the Form D(s) = 1 + bys + b,s®

Ho |:> Open the Capacitor, Short the Inductor, Determine the dc Gain Hy if It Exists

Reduce the Excitation to Zero and Determine Time Constants for b; and b,

= Determine the Resistance R; Driving L; While C, Is Open Circuited: 7, = L{/R;
e Determine the Resistance R; Driving C, While Ly Is Short Circuited: 7, = R;C;,
Sum the Time Constants: by = 7y + 7,

|

Determine the Resistance Ry Driving L; While C, Is Short Circuited: zf: Li/Ry
by ':> Determine the Resistance R, Driving C, While L; Is Open Circuited: 1'12 =GR,
Choose the Simplest Combination: b, = 7,73 or by = 7,77

g

D (s) =1+ s(7y + ) + % (1)

FIG 2 This flowchart explains the methodology used to determine the network time
constants.

A transfer function is a mathematical relationship link-
ing an excitation signal, the stimulus, to a response signal
resulting from that excitation. If we consider a linear time-
invariant system without delay and exhibiting a quasi-static
gain Ho—for instance, the linearized ideal power stage of a
switching converter—its transfer function, H, linking the
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control signal Ve (the stimulus) to
its output Vou (the response) can be
expressed in the following form:

Vou () N(s)

H(s)= o5y = Hopis M

The leading term, Ho, is the gain or
attenuation exhibited by the system
evaluated at s =0. This term would
carry the transfer function unit (or
dimension), if any. If both the response
and excitation are expressed in volts,
Verr and Vou in our case, H is unit-
less. The numerator, N(s), hosts the
zeros of the transfer function. Math-
ematically, zeros are the roots for
which the function magnitude is zero.
With FACTs, we use a mathemati-
cal abstraction to let us easily unveil
these zeros. Rather than solely consid-
ering the vertical axis in the s-plane
as we normally do in a harmonic anal-
ysis, (s =jw), we will cover the entire
plane, allowing for negative roots. As
such, if present in the circuit, a zero
will manifest itself by the nulling of
the output response when the input
signal is tuned to the zero angular
frequency, s.. When this happens,
some impedance in the transformed
circuit blocks the signal propagation,
and the response is nulled despite the
presence of an excitation source: a
series impedance in the signal path
becomes infinite or a branch shunts
the stimulus to the ground when
the transformed circuit is excited
at s =s.. Note that this convenient
mathematical abstraction offers tre-
mendous help in finding the zeros by
inspection, often without writing a
line of algebra in passive networks.
Figure 1 offers a simple flowchart that
details the procedure. More details on
this approach can be found in [8].

The denominator, D(s), is formed
by associating together the circuit
natural time constants. These time
constants are obtained by setting the
stimulus signal to zero and determining

the resistance seen from the considered capacitor or inductor
terminals when temporarily removed from the circuit. By “see-
ing” this resistance, you imagine placing an ohmmeter across
the pads of the removed energy-storing element (C or L) and
read the resistance it displays. This is actually quite a simple
exercise, as detailed by the flowchart in Figure 2.



Look at Figure 3, which describes
a first-order passive circuit involv-
ing an injection source—the stimu-
lus—biasing the left side of the net-
work. The input signal Vi, propagates
through meshes and nodes to form
the response Vour observed across the
resistor R3. We are interested in deriv-
ing the transfer function G linking
Vour to Vin.

To determine the time constant
of this example circuit, we will set
the excitation to zero (a 0-V source is
replaced by a short circuit, while a 0-A current source would
be replaced by an open circuit) and remove the capacitor.
Then, we connect mentally an ohmmeter to determine
the resistance offered by the capacitor terminals. Figure 4
guides you in these steps.

If you run the exercise in Figure 4, you see r¢ in series
with the parallel combination of R3 with the series-parallel
arrangement of R4 and Ri— R:. The time constant of this
circuit is simply the product of R and C;

71=[rc+(Rs+ RilI R2) I R3]C1. 2)

We can show that the pole of a first-order system is the
inverse of its time constant. Therefore,

1 _ 1
@r =7, [rc+(Rs+R1IIRs) I Rs]Cy” ®
The Response
R Ry Vojt(s)
+ ©
Vinls) SRy RS
)
The G
Excitation T
-

FIG 3 Determining the time constant of a circuit requires you to
set the excitation to zero and look at the resistance offered by the
energy-storing elements temporarily removed from the circuit.

By using this technique,
you will appreciate
how quickly and

intuitively one can
determine a particular
transfer function.

H1 H4
Vi (9=0V &
The Excitation R, R? Rs
Is Set to Zero
7
=

Now, what is the quasi-static gain of
this circuit for s = 0? In dc conditions,
a capacitor becomes an open circuit,
while an inductor becomes a short cir-
cuit. Apply this concept to the Fig-
ure 3 circuit, and redraw it as shown
in Figure 5. In your head, you cut the
connection before Rj, and you see a
resistive divider involving R; and R:.

The Thévenin voltage across R: is
- Ry
Vo= Vo B Ry @

The output resistance Ru is R: paralleled with R2. The
complete transfer function, therefore, involves the resistive
divider made of R4 in series with R and loaded by Rs. The
value of 7¢ is off picture since capacitor C, is removed in this
dc analysis. You can, therefore, write

— Vuut _ Rz R3
Go= Via = R:+Ri Ri+Rs+Ri| Rz ®)

We are almost there, and we are missing the zeros. As we
wrote in the section “A Quick Introduction to Fast Analyti-
cal Techniques,” a zero manifests itself in a circuit by block-
ing the propagation of the excitation signal and creating an
output null (see Figure 1). If we consider a transformed cir-
cuit—in which C, is replaced by 1/sC: (as shown in
Figure 6)—what particular condition would imply a nulled
response when a stimulus biases the network? Having a
nulled response simply means that the current circulating in
Rs3 is zero. This is not a short circuit but rather a virtual
ground if you prefer the analogy.

If we have no current in R3, then the series connection
of ¢ and 1/sC creates a transformed short circuit:

Zi(s:) = 1o+ 5 = 0. 6)
The root s. is the zero location that we want
s1=—7 0
and it leads to
0. =2 ®
Ry R,

2% %% 4% %%
c
[ — R Ry

—
rm——

o

R =250 Q,
for Example

FIG 4 After replacing the 0-V source by a short circuit, you determine the resistance seen from the capacitor terminals.
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We can now assemble all of these results to form the final
transfer function characterizing the Figure 3 circuit

_ R Rs
G(S)= R, +R: RiTRs + R Rz

% 1+S7"cCl
1+s[rc+(Rs+Ri1IR:) I Rs|Cy
1+3
= Go—%=. ©)

This is what is called a low-entropy expression in which
you can immediately distinguish a quasi-static gain, Go; a

A Ay Vout

Vin @+ R2§ Ry §
?

FIG 5 You open the capacitor in dc and calculate the transfer
function of this simple resistive arrangement.

lou(s,) =0

—

FIG 6 In this transformed circuit, when the series connection
of rc and C; becomes a transformed short circuit, the response
disappears, and no current flows in R;.

Voltage
Mode

Small-Signal Model

2
Li¢ G . lu(8)t s=0 L o j
5l
3| VO] ) | 2
ns re n I

FIG 7 The determination of the CCM-operated buck converter out-
put impedance is a good example of how FACTs simplify analyses.

Hload
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pole, @,; and a zero, @.. A high-entropy expression would
be obtained by applying the brute-force approach to the
original circuit when considering an impedance divider,
for instance,

1
R R3||<TC+301)
Bt By B (vo+ < )+ R+ Ry | Re

G(s)= 10)

Not only could you make mistakes in deriving the
expression, but formatting the result in something like in
(9) would require more energy. Also, note that in this partic-
ular example, we did not write a single line of algebra when
writing (9). Should we later identify a mistake, it would be
easy to come back to one of the individual drawings and fix
it separately. The correction in (9) would then be simple.
Try to run the same correction in (10), and you will probably
start from scratch.

FACTs Applied to a Second-Order System

FACTs work equally well for nth-order passive or active cir-
cuits. You determine the order of a circuit by counting the
number of energy-storing elements whose state variables
are independent. If we consider a second-order system, H,
featuring a finite quasi-static gain, Ho, its transfer function
can be expressed the following way:

1+a;s+aszs®
H(s) :Hom. (11
As Hy carries the unit of the transfer function, the
ratio made of N over D is unitless. This implies that
the unit for a; and b; is time, s. You sum up the circuit
time constants determined when the response is nulled
for a1 and when the excitation is zeroed for b:. For the
second-order coefficients, as or bs, the dimension is time
squared, s?, and you combine time constants in a product.
However, in this time constants product, you reuse one of
the time constants already determined for a: or b, while
the second time constant determination requires a differ-
ent notation

T3 or 71, 12

In this definition, you set the energy-storing element
whose label appears in the “exponent” in its high-frequency
state (a capacitor is replaced by a short circuit, while an
inductor would be replaced by an open circuit), and you
determine the resistance seen from the second element
terminals when it is temporarily removed from the circuit
(subscripted reference). You carry this exercise for a nulled
output when as must be obtained and when the excitation
is reduced to zero for bs. Of course, when inspection works,
it is always the fastest and most efficient way to obtain N.
It may be a bit mysterious at first sight but nothing insur-
mountable, as will be demonstrated.

Figure 7 depicts a classical second-order filter involved
in the determination of the output impedance of a



voltage-mode buck converter operated in the continuous
conduction mode (CCM). An impedance is a transfer func-
tion linking an excitation signal I« to a response signal
Vou. Here, Loy is the test generator that we have installed,
while Vou is the resulting voltage produced across its
terminals. To determine the various coefficients from (11),
we can follow the Figure 2 flowchart and start with s = 0:
short the inductor and open the capacitor as shown in the
figure. The circuit is simple, and the resistance, Ro, seen
from the current source is simply the parallel combination
of 1, and Rioaa

Ro =1L | Ricad. (13)

Do we have zeros in this circuit? We examine the trans-
formed circuit shown in Figure 8. Let’s check what compo-
nent combinations would bring the response Vou to zero
when the excitation current Iow is tuned at a zero angular
frequency s.. We can identify two transformed short cir-
cuits involving r.—L and r.—C..

The roots for these two impedances are immediately
determined.

rtsLi=0 - 5o ==, (e8y

1 _ ___1
Tgﬂi‘w 0—s.= 7005 (15)

2

The denominator N(s) is, therefore, expressed by
_ Ly
N(s)=(1+552)(1+570C2). (16)

The first coefficient, bi, of the denominator D(s)
is obtained by looking at the resistance offered by L:’s
terminals while C: is in its dc state (open): you have z;.
Then, you look at the resistance driving C> while L; is set
in its dc state (short circuit): you obtain 7. As illustrated by
Figure 9, the sketch immediately leads to the definition of b,

L
b1=2'1+1'z=m+02[(n | Rioaa) + 7¢]. an

The second-order coefficient b2 is determined by using
the notation introduced in (12). Either L, is set in its high-
frequency state (open circuit) and you look at the resistance
driving C- to obtain 73, or C- is put in its high-frequency
state (short circuit) and you look at the resistance driving
L, for 7. Figure 10 shows the two possible arrangements.
You usually select the one leading to the simplest expres-
sion or the one avoiding a product indeterminacy if any
(0o X 00r oo/ oo, for instance). The following two defini-
tions for b, are identical, and the first one is found to be
the simplest:

L,

1 L
b2 =717 71+ Rioma

Ca (e + Rioaa)

by =TTl = Ca[7L | Rioaa +7¢]

(€)

L
¥+ Rioad | ¢

We now have all of the ingredients to assemble the final
transfer function that is defined as

Zow(s)=
(1 + sfj—;)(l +srcCs)

(71 || Rioad) T .
1 . 7c+ Rioad
s( 71+ Rioad +Co[rn | Ruoaa + TC]) +s* (LICZ 7L+ Ricad )
19)

¢_ Vou(s) = 0?

FIG 8 If impedances Z, or Z, become transformed shorts,
the response V,, is nulled.

e

R=r.+ Rigad R=(r.||Ricad) + rc

FIG 9 What resistance do you see between the selected
component terminals when the second is set in its dc state?

L4 in High- C, in High-
v Frequency State v Frequency State
B R? T R?
R? —» R?—»
L1 02 ;’qload <\':> L1 02 g Rload
n r'e e rc
7d = Cy (I + Ripag) 2 Ly
2 = Lo (e + Migad TfT=—————
n+ Rload Il e}
b2 =T T% b2 = 12112

FIG 10 What resistance do you see between the selected
component terminals when the second is set in its high-
frequency state?
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We have determined this transfer function without writ-
ing a line of algebra, just by splitting the circuit into several
simple sketches, such as those of Figures 8-10, individu-
ally solved. Furthermore, as expected, (19) is already in a
canonical form, and you can easily see the presence of a
quasi-static gain, two zeros and a second-order denomina-
tor that you could further rearrange with a resonant term
wo and a quality factor . There is no way that we could
have obtained this result this quickly considering the paral-
lel combination of Z1, Z», and Rioad.

Deriving transfer functions by inspection is a possibility
offered by FACTs in particular with passive networks. As the
circuit complicates and includes voltage- or current-con-
trolled sources, inspection becomes less obvious, and you
need to resort to classical mesh and node analysis. However,

FACTs offers several advantages: as you split the circuit into
small individual sketches used to determine the coefficients
of the final polynomial form, you can always come back to a
particular drawing and individually correct it in case you have
found a mistake in the final expression. Also, as you deter-
mine the terms associated with the a; and b; of the trans-
fer function, you naturally end up with a polynomial form
without investing further energy to collect and rearrange
the terms. Finally, as shown in [4], SPICE can be of great help
to verify your individual poles and zeros calculations in the
presence of complicated passive and active circuits.

A DCM-Operated SEPIC with Coupled Inductors
The SEPIC is a popular structure used in applications
where the output voltage must be smaller or larger than

Xo
XFMFH
e Vout
EMESE:
25.0 V 100 U 25.0 V 1.? u 15.0 V|
1 2 " 3 T 9 ], S
C, L X1 4] 02
10T PSW = £
X3 =)
PWMVM o= =
L=100u :
v, AT Fs=100 k
1(1)<> © ° =
15.0 V|5 =2
=8
— S
o ()]
(3} o
Ry
1u [15.0V 210 mV |8
A% . + Ve
Ry O 210m
G ac=1
-
= Average Model
(@)
X5
XFMR .
Ratio = 1 =
10 c
L2 C2 lXQ ) + 8 - mg
100 u D, 10 uF T PSW1 <+ X ¢
Pl N 5 | 5
v, A2 A l L
160 -
2 C 4 Vout
1
+ T 10u
v, —>
| Cycle-By-Cycle Simulation
— X4
B PSW1

(b)

FIG 11 Two examples of the SEPIC: (a) the average model and (b) the cycle-by-cycle approach. XFMR and PSW1 are subcircuit names.
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the input without sacrificing the polarity, as with a buck-
boost converter. The SEPIC can be operated with coupled
or uncoupled inductors in CCM or DCM. The benefits of
the coupled inductors are explored in [9] and will not be
discussed here. Our interest lies in determining the con-
trol-to-output transfer function of the coupled-inductor
SEPIC when operated in DCM. Figure 11 represents the
autotoggling, voltage-mode control PWM switch des-
cribed in [10] and connected in a SEPIC configuration.
The load is purposely reduced to force DCM. A transient

: Average
6.0 ~
- »
/
= / Cycle by
/ Cycle

S 8.00

4.00

0 Vou‘t ()]

700 210 350 490 630
(m)

FIG 12 The average model transient response exactly matches
that of the cycle-by-cycle model.

step is applied after the start-up sequence is completed. A
cycle-by-cycle circuit is captured and simulated in similar
operating conditions.

A simulation is run to compare the output responses of
both circuits. As confirmed by Figure 12, the two responses
are extremely close to each other. The left side of the
curve describes the startup sequence, while the right-side
section shows how both models react to the load step.
Having identical responses at this stage is a first indication
that the large-signal model, on average, properly mimics
the SEPIC internals and we can proceed with the small-
signal version.

The large-signal model of the DCM PWM switch is
replaced by its small-signal version derived in [10], which
differs from that described in [5]. Both models lead to iden-
tical analyses; however, V. Vorpérian in [5] considered a
common-common configuration (terminal ¢ is grounded),
while I kept the original common-passive configuration
for the sake of building an autotoggling DCM-CCM model.
The schematic updated with the small-signal model of the
DCM PWM switch appears in Figure 13. The right-side
parameters list computes all the k-coefficients needed for
the analysis.

Determining the Quasistatic Gain
To determine the quasi-static gain, you short all the induc-
tors and open all the capacitors as detailed in Figure 2.

i G
100 u 10u
” Vout
1 3
1 G Ry
T 10 uF ;1 k Parameters
g Fyy =100 k
e - L=100u
; (kY Vd1) + fhol*Va, o) — V=10
V. + 5 Ry
] : : 1u d;=210m
{Vin) O ; P i —————AN— Val - v,
5 § + g Vap = 24.8492
: . 12 : I,=36.899 m
i Vic(U) {kah V(d1) + {ka}* V(a, p)+{ks}*I(Vic)+{ke}* V@, ©) Ky = Vot d1/(Fyy*L)
S ko = d12/(2%Fy, *L)
Ry C  DCM Model kg = Vac" Vap*d1/(Foy*L¥1o)
1u 3 a1 Duty ky = Vo *d12/(2% Fy, *L* 1)
MWy Rl ks = _Vac* Vap*d12/(?*st*l§*L)
R, + Ve K = Vap*d1%/(2% Fg *1,*L)
16 210 m
ac=1

FIG 13 This is the small-signal model of the SEPIC operated in DCM. Node d1 is the duty ratio bias and the injection point.
All small-signal coefficients are automated in the parameters window.
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This is exactly what SPICE does when calculating an
operating bias point. Then, you rearrange all the sources
and components to simplify the circuit and make it look
friendlier for the analysis. When you do this, I recommend
always running a sanity check, confirming that the
dynamic response delivered by the new circuit perfectly
matches that from Figure 13. Any deviation indicates that
you made a mistake or the assumption in the simplifica-
tion was too optimistic: redo the exercise until a perfect
match in magnitude and phase is obtained. The circuit of
Figure 14 is assembled.

A few lines of algebra will lead us to the output voltage
expression

Vou _ 5 Vw—=Vie)D* Vou , ViD?
J Io 2FwLi Ie= Rioat | 2FanLn (20)
V (Vout + Vm)( Vuut + Vm uut)D 2 (Vout + Vm)VmD
out = 2FwIcLy 2FwIcLy
@D

Substitute 7. from (20) in (21), and solve for Vou. You
should obtain

Vi
{Vin} 14.8v| Parameters
Fyw =100k
2 R, X, L=100u
At EXFMR ~ Vin=10
B -
12V |y, dl1=210m
ic
d1 +
210mV [T 14.8 V| [1 ¥
re XY + B |Current iy
de Voltage[ V(a, o) Vd1)2IR*{Fu, )] 1k
210 —

V(a,0)* V(a,c)* Ud1)2/(2*{Fou} I(Vic) (L))

L,
Rload Tsw :

The small-signal quasi-static gain is simply

AVeu(D) _ 4q F _ \/T
Hy= S = DVa ) = Vo @

Time Constants Determination

Rather than solving the whole transfer function at once with
the complete schematic of Figure 13, we will use the FACTs
and individually determine the time constants of the circuit.
This method offers the advantage of confronting the result
that you obtain with a SPICE simulation of the individual
sketch. This is of tremendous help to progress step-by-step
and track errors before realizing the final result is wrong
after hours of work!

To determine the time constant, the excitation is reduced
tozero (check Figure 2). Here, because we want the control-
to-output transfer function, the excitation is d;. Reducing
it to zero helps simplify the circuit as shown in Figure 15.

There are a few equations that we can write to describe
this circuit recognizing that Ic = I'r:

Vou = DVin ZLTL with 7, = (22)

O

=

2 A
Via) (ViaV(e)D

Vou 2FgwlcL

FIG 14 This is the final dc circuit used to determine the quasi-static gain H,.

d1 = 0 ,
XFMR :> c
Cc\H »>
c Vout Iyl h |

df {k1}*V(d1 JH{koY Va, c>
+ Vdc @ 4 s § Rload

210m N B, 0 e

ac = Voltage 2

{ksb"V(d1) + {k}* V(@) + {ks}*I(Vic) + {ks}* V(a, C)
*
0

ksVig) + ksle + ksV (a, ©) =

FIG 15 The reduction of the excitation to zero helps to simplify the circuit. Here, we start with the resistance driving the inductor L,.
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Vr= V(a) - V(c), (24)

Via) = Rioaal 1, (25)
I+ Vioks

Ir=h=ke(Vio=Vie) = V=7, (26)
*2 R
load

Viey=kaViay+ kslc+ ke Viay— ke Vie). @270

You substitute (26) in (27) and then solve for V(.. Substitute
Vie) in (26), and solve for V(,). Then, write

Ve _Vi—Vio _ Rioaa(1—ks)—ks
Ir — Ir B Ko+ Rioaakz(1—Fkq)+1°

(28)

If you rearrange and replace the k coefficients by their
definition from Figure 13, you have the definition for time
constant 7

= L _ L
! Rioaa (1 —ka)—ks Ricaa
ko + Rioaakz (1 —k4)+ 1 M(1+M)+05

(29)

The second time constant implies looking at the resis-
tance seen from C:’s terminals while L is a short cir-
cuit. The new circuit appears in Figure 16. As L; shorts
terminals a and ¢ together, simplification occurs updat-
ing the circuit to that of the right side of the picture.

Again, a few simple equations will lead you to the result
quickly:

VT:(IT""IC)Rload_’IC:My (30)

load

Vi = kyVe+kslo— VT=1’“5—I,§4. 31)

Substitute (30) in (31), then solve for Vr, and rearrange.
You should find

ﬁ — L — Rioad _ Rioaa
Ir ks _ ) —>Z'z——2 Cs. (32)
Fit R 1
load

If you try to determine the third time constant involving
(s, the transformer configuration (perfect coupling) makes
its terminals voltage equal to 0 V: the capacitor plays no role

in the dynamic transfer function. The first coefficient b, is
thus defined by
bi=t1+72= #
M(1+M)+0.5

Roa Rua
+%sz%02. (33)

The Second-Order Coefficient
For the second-order coefficient, we will set capacitor C: in
its high-frequency state (replace it by a short circuit) while
we determine the resistance driving inductor L,. The draw-
ing illustrating this approach is given in Figure 17. Because
the output is shorted by C>, nodes a and ¢ are at the same
0-V potential. The electric circuit is simplified to that of the
right-side sketch.

We can write a first equation describing the Vr voltage.
Observing that 1) Ir and I¢ are identical and 2) Vr ==V,
we have

Ve =—(kslc—keVie)) =—(ksIr+keVr) — Vr(1+ke)=—ksIr.
(34)

Factoring Vi/Ir, the resistance seen from L/’s termi-
nals is

Vr ks
Ir ~—1—Ta (35)

The second-order time constant 77 is defined by

% Ll — Ll Ll

(-+%) —(‘filid“//ﬁ)z _ R‘““"(1+1M)Z.

(36)

If we consider that Vou = MVi, the b2 coefficient is
expressed as

by =7271 =

LiCo(1+ My
LU (37

Assembling the time constants, we have determined
leads to the denominator D (s)

D(s)=1+bis+bes’=1+s(r1+12)+s%ceri. (39)

Ly
an
a I+ Ic
/ I T >
CH > 5 i’
A IC +© . I I I+
" 2 vy T Rioad |+ 7 T § Rioaa
<|> k4 V(a) + kslc

ksViay + sl + ks Veare)

FIG 16 Shorting the inductor truly simplifies the circuit.
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FIG 17 The second-order coefficient sets one of the energy-storing elements in its high-frequency state, C,, while you determine

the resistance seen from inductor terminals.

If we consider alow-@ approximation, this second-order
denominator can be approximated by two cascaded poles
defined as

- 1__1 1 -2
O = T T ST, YT Ri0aaCs 39
b _nitry 1 Riaa (1 V
On=p, T g ST ORT L (t437) @O
and combined as
~ _S _S
D(s)~ 1+ )(1+5-). 1)

Determination of the Zero

As explained at the beginning of this article, when the
excitation is tuned to the zero angular frequency s., the
response of the transformed network is nulled (see Fig-
ure 1). The exercise will now consist of bringing the exci-
tation back and determining the condition in the trans-
formed circuit that creates an output null. Figure 18
shows the updated circuit that we need to study. The
interesting thing with the output null is its propagation to
other nodes. For instance, if V,, =0V, then, because of
the transformer upper connection, node « is also at 0V,
and all expressions involving this node can be simplified

Vout(sz) =0

Rload

k3D(8) + k4 V) + Kslc(s) + ksV(&, o) =

FIG 18 A specific condition in the transformed network
observed at s = s, nulls the response.
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as shown in the figure. If the output is nulled, then cur-
rent [ is also null, implying that I. = Is.
The voltage of node c is defined by

D(s)ks+1.(s)ks
Vie(s) = % (42)

The current I, is therefore equal to the voltage at node ¢
divided by the impedance of L,

D(s)ks+1c(s)ks

1+ks

Ic(s):T D(s)ks

~ L) = L T k) @D
while current I3 is equal to

I5(s)=kiD(s)— ks Viey= k1D(s)—kasLi1.(s). (44)

Now, substitute (43) in (44), and then equate I, and I5:

D(s)ks B D(s)ks
SL1(1+]C6)_IC5 - .S'Ll(l +k5)_k5 : (45)

k1D(S)_k2.SL1

Solve for s, replace the k-coefficients by their values
from Figure 13, rearrange, and you find

Rioaa

Sz = LIM(1+M)’ (46)

This is a positive root and, therefore, a right half-plane
zero. The complete transfer function is obtained by gath-
ering all the pieces and recognizing that poles and zeros
are actually those of a DCM buck-boost converter:

S

1=,
H(s)=H, == ) 7
with
R e (48)
=Tt (19)
Rioat 50)

©=T M+ M)



H1(|2ﬂ'fk)
\

20-Iog<

FIG 19 Both Mathcad and SPICE deliver the same response (curves perfectly superimpose).
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FIG 20 Colorado Power Electronics Center (CoPEC) average models include separate connections for the switch and the diode.
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FIG 21 The DCM PWM switch and the CoPEC DCM model give
identical dynamic responses.

and

Ho=Vi /55— 1)

As afinal check, we can compare the dynamic response
delivered by Mathcad and that of the SPICE simulation from
the Figure 11 large-signal model. As shown in Figure 19, the
curves are perfectly matching.

Another verification consists of simulating the same
SEPIC structure with a different average model whose
construction is detailed in [11]. This is also an autotog-
gling CCM-DCM model, but it is wired in a slightly different
way. Figure 20 shows both the average models in a similar
SEPIC configuration.

Figure 21 confirms that both ac responses in phase and
magnitude are perfectly identical.

Conclusions

FACTs offer a fast and efficient method to derive the
transfer function of linear circuits. With passive net-
works, inspection is possible, and very often, a transfer
function can be obtained without writing a single line of
algebra. As circuits complicate and include active sources,
you have to resort to classical Kirchhoff’s current law
and Kirchhoff’s voltage law analyses. However, as you
determine individual polynomial factors in the numerator
and the denominator, it is easy to track errors and focus
only on the defective term, if any. The help of small
sketches and SPICE to that matter is invaluable with
complicated networks. Finally, the end result comes out
in a meaningful format and offers immediate insight on
where poles and zeros are located. This is of utmost
importance, as you must know where the offenders hide
in the transfer function. As a designer, you must neutral-
ize them so that natural production spreads, or compo-
nent changes do not jeopardize the stability of your
system during its operating life.
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