

SENT "New sensor interface" Allows data-transmission at low cost

Petr Kamenicky, Geert Vandensande, Philippe Quarmeau

ON Semiconductor®

What is SENT?

-Sensor-interface:

- Digital datatransmission at 30 kbits/s

- Low-cost: No receiver, Integrated transmitter

- Uni-directional: only from sensor to ECU

- Point-to-point: no bus

- 3 wires: 5V, GND, SENT

- J2716 SAE-standard

-SENT: Single Edge Nibble Transmission for Automotive applications

- Data transmitted as nibbles (4 bits). Maximum of 6 nibbles per message.

Clock Ticks: 0 12 13 14 ... Nibble Value (4-bit): 0 1 2 ...

- Time measured between falling edges (single edges)

> Status & Comm (0 value) NHb la 1 (15 value) NHb la 2 (5 value) NHb la 3 (10 value)

- Frame-format:

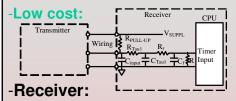
Calibration & Synchronizatio

> -Calibration or synchronization pulse: Fixed length for synchronization of receiver (56 clock ticke)

- clock-ticks). - Status & Communication Nibble defines message format:
- No Serial Protocol
- Short Serial Protocol
 Enhanced Serial Protocol
- Checksum-Nibble: 4 bit CRC

- Pause-Pulse: to fill-up message to a fixed length (less than 1ms).

Goal of SENT?


-Low cost

-Digital precision:

advantage over analog or semi-analog PWM int. -Higher baudrate than LIN.

ON Semiconductor Europe

Challenges: !!!

Only passive components at receiver-side
 Digital input at CPU

-Timing requirements:

- Clock-drift* error < 0,05us

*Clock-drift = variation of nibble length over a message-period at a 3 µs clock tick.

-Automotive requirements:

- Wiring problems:

- Wiring short to supply (→ reverse battery)
- Wiring short to ground (-> output-prot.)

- Automotive transients:

For supply-line and signal-line.

- ESD-immunity:

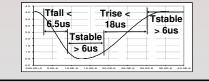
27

15

Nithke4 (Chashao) (Shahao) (Shahao) Nithke6 (O sahao) (O sahao) checksam see Philse or see Shahao or checksam System ESD (8kV contact, 15kV air: C = 330pF, R = $2k\Omega$)

-EMC-requirements:

- Susceptibility: conducted and radiated class A under 200mA BCI; 4W PDI to supply or SENT wire; 200V/m TEM cell
- Emission: conducted and radiated


Contribution of ON Semiconductor:

-Participation to SAE- SENT task-force leaded by GM:

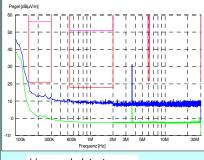
Transmitter-def.: push-pull driver. Proposal for external components:

- Check feasibility of emission requirements at maximum baudrate:

ON Semi's

SENT IP:

-Meeting all automotive requirements.


- In production as part of sensor-ASIC. Emission requirement

- Signal freq. content:
- Min. pulse-width: 36us 20% = 29us
- Corresponding freq. ~ 35 kHz
 Falling edge: from 3.8V to 1.1V <6.5us
- Failing edge. noin 3.6v to 1.1v <0.5d
 Corresponding freq. ~ 66 kHz
- Absorber-lined chamber limits: CISPR 25 <21dBµV 150kHz .. 300kHz

Implementation:

Signal shaping to suppress higher harmonics without impacting:

- Pulse-shape
- Timing requirements
- Signal amplitude
- Measurement results:
- Radiated Emission, Absorber-lined Chamber

blue: peak detector green: average detector

References:

-SAE J2716 - Information Report FEB2008

Acknowledgements:

- *Petr Kamenicky + Brno design team* for development of SENT-IP and integration in Sensor-ASIC.

- *Manu Meyers* from Belgium design team for contribution in the early stage of IP-development.
- Geert Vandensande from Belgium for
- support during the SENT feasibility and contribution in the SAE J2716 task force.
- *Philippe Quarmeau* from France for review
- and presenting this poster at SENSACT 3