www.onsemi.com

ON Semiconductor[®]

Power Electronics System Thermal Design

Roger Stout, P.E.

Research Scientist

<roger.stout@onsemi.com>

RPS • APEC 2011

Corporate Research & Development Packaging Technology

Course outline

- Part I: (90 minutes)
 - Introduction (30 minutes)
 - Characterization Techniques (60 minutes)

>> 30 minute BREAK <<

- Part II: (45 minutes)
 - Linear Superposition Theory (7 minutes)
 - The Reciprocity Theorem (6 minutes)
 - A Detailed Example and its Implications (6 minutes)
 - Controlling the Matrix (6 minutes)
 - Building a System Model (20 minutes)

• Part III: (35 minutes)

- Thermal Runaway Theory (15 minutes)
- Thermal Runaway Practice #1 (7 minutes)
- Thermal Runaway Practice #2 (13 minutes)
- Quick demos (10 minutes, time permitting)

Can this device handle 2 W?

"Junction" temperature?

Historically, for discrete devices, the *junction* was literally the essential "pn" junction of the device. This is still true for basic rectifiers, bipolar transistors, and many other devices.

More generally, however, by "junction" these days we mean simply the hottest place in the device (which *will* be somewhere on the silicon).

As we move to complex devices where different parts of the silicon do different jobs at different times, the *exact* location gets to be somewhat tricky to identify. But we're still interested in the hottest spot.

3

APEC 2011

ON Semiconductor

Thermal-electrical analogy

- temperature <=> voltage
 - power <=> current
- Δtemp/power <=> resistance
- energy/degree <=> capacitance

What's wrong with theta-JA?

Board (Note 1)		
	1.0 in Pad Board (Note 2)	
48	43	°C/W
183	120	°C/W
	48 183	48 43 183 120

$$\theta_{JA} = \frac{T_J - T_a}{P_d} \qquad \qquad \Psi_{Jtab} = \frac{T_J - T_{tab}}{P_d}$$

$$T_J = \theta_{JA} \cdot P_d + T_a \qquad \qquad T_J = \Psi_{Jtab} \cdot P_d + T_{tab}$$

•

Theta-JA vs. copper area

An example of a device with two different "Max Power" ratings

- Suppose a datasheet says:
 - $-T_{jmax} = 150^{\circ}C$

....

 $- \theta_{JA} = 100^{\circ}C/W$

$$- P_d = 1.25W (T_{amb} = 25^{\circ}C)$$

• But it also says:

$$-\Psi_{JL} = 25^{\circ}C/W$$

$$- P_d = 3.0W (T_L = 75^{\circ}C)$$

Where's the "inconsistency"?

ON Semiconductor®

Where's the inconsistency?

Why is ON's SOT-23 thermal number so much worse than the other guy's?

- ON
 - SOT-23 package
 - 60x60 die
 - Solder D/A
 - Copper leadframe
 - Min-pad board
 - Still air

- some other guy
 - SOT-23 package
 - 20x20 die
 - Epoxy D/A
 - Alloy 42 leadframe
 - 1" x 2oz spreader
 - Big fan

Theta (θ) vs. Psi (Ψ)

- JEDEC <http://www.jedec.org/> terminology
 - $Z_{\theta JX}$, $R_{\theta JA}$ older terms ref JESD23-3, 23-4
 - θ_{JA} ref JESD 51, 51-1
 - θ_{JMA} ref JESD 51-6
 - Ψ_{JT} , Ψ_{TA} ref JESD 51-2
 - Ψ_{JB} , Ψ_{BA} ref JESD 51-6, 51-8
 - $R_{\theta JB}$ ref JESD 51-8
 - Great overview, all terms: JESD 51-12

"Theta" (Greek letter θ)

We know actual heat flowing along path of interest

0

APEC 2011

ΟN

"Psi" (Greek letter Ψ)

We don't know actual heat flowing along path of interest

0

- Heat flows from higher temperature to lower temperature
- The bigger the temperature difference, the more heat that flows
- Three modes of heat transfer
 - Conduction (solids, fluids with no motion)
 - Convection (fluids in motion)
 - Radiation (it just happens)

....

Common fallacy

• Basic idea:

....

- "thermal resistance" is an intrinsic property of a package
- Flaws in idea:
 - there is no isothermal "surface", so you can't define a "case" temperature
 - Plastic body (especially) has big gradients
 - different leads are at different temperatures
 - multiple, parallel thermal paths out of package

Back in the good old days ...

metal can – *might be* a fair approximation of an "isothermal" surface

axial leaded device only two leads, at least the heat path is fairly well defined

Which lead? Where on case?

....

"Archetypal" package

20%

Basic variations on a theme ...

add an external heatsink ...

flip the die over ...

A bare "flip chip"

ON Semiconductor®

Same ref, different values

0

.....

Even when it's constant, it's not!

APEC 2011

Corporate R&D: Packaging Technology

1000

1000

APEC 2011

Corporate R&D: Packaging Technology

Fallacy recap:

"Package resistance" isn't fixed:

- At the package level itself ...
 - multiple heat paths exiting package
- External to the package ...
 - boundary conditions dictate heat flow
 - Heat sinks
 - Neighboring devices/power dissipation
 - Single vs. double-sided boards
 - Local convection vs. board-edge cooling
 - Multiple layers/power/ground planes
- Therefore, different application environments will see different "package resistance"

Characterization Techniques Typical TSP behavior

calibrate forward voltage at controlled, small (say 1mA) sense current

٠

How to measure T_j

true const. current supply

APEC 2011

approximate const. current supply

How to heat

The importance of 4-wire measurements

....

APEC 2011

ON Semiconductor®

Which raises an interesting question:

Is this a fair characterization of a low-Rds-on device?

ON Semiconductor®

....

Bipolar transistor

- TSP is Vce at designated "constant" current
- Heating is through Vce
- Choose a base current that permits adequate heating

Schottky diode

- TSP is forward voltage at "low" current
- Voltages are typically very small (especially as temperature goes up)
- Highly non-linear, though maybe better as TSP current increases; because voltage is low, higher TSP current may be acceptable
- Heating current will be large

MOSFET / TMOS

- Typically, use reverse bias "back body diode" for both TSP and for heating
- May need to tie gate to source (or drain) for reliable TSP characteristic

MOSFET / TMOS method 2

- If you have fast switches and stable supplies
- Forward bias everything and use two different gate voltages

RF MOS

• They exist to amplify high frequencies (i.e. noise)!

IGBT

- Drain-source channel used for both TSP and heating
- Find a gate voltage which "turns on" the drain-source channel enough for heating purposes
- Use same gate voltage, but typically low TSP current for temperature measurement

Thyristor

- Anode--to-cathode voltage path used both for TSP and for heating
- typical TSP current probably lower than "holding" current, so gate must be turned on for TSP readings; try tying it to the anode (even so, we used 20mA to test SCR2146)
- Hopefully, with anode tied to gate, enough power can be dissipated to heat device without exceeding gate voltage limit

Logic and analog

- Find any TSP you can
 - ESD diodes on inputs or outputs
 - Body diodes somewhere
- Heat wherever you can
 - High voltage limits on Vcc, Vee, whatever
 - Body diodes or output drivers
 - Live loads on outputs
 - (be very careful how you measure power!)

Heating curve method vs. cooling curve method

ON Semiconductor®

37 Power Electronics System Thermal Design (RPS)

APEC 2011

Corporate R&D: Packaging Technology

Quick review: Basic T_j measurement

Question

• What happens when you switch from "heat" to "measure"?

Answer: stuff changes

• More specifically, the junction starts to cool down

APEC 2011

ON Semiconductor®

Heating curve method #2

٠

APEC 2011

ON Semiconductor[®]

Whoa! ... that last step there ...

- Heating vs. cooling
 - Physics is symmetric, as long as the material and system properties are independent of temperature

ON Semiconductor®

cooling

Heating vs. cooling symmetry

A (perhaps) subtle point ...

- For a theoretically valid cooling curve, you must begin at true thermal equilibrium (not uniform temperature, but steady state)
- So whatever your θ_{JA} , max power is limited to:

$$power = \frac{T_{j\max} - T_{ambient}}{\theta_{JA}}$$

By the way ... Steady-state vs. transient ?

• Since you must have the device at steady state in order to make a full transient cooling-curve measurement, steady-state θ_{JA} is a freebie.

(given that you account for the slight cooling which took place before your first good measurement occurred)

Effect of power on heating curve

Heating vs. cooling tradeoffs

	HEATING	COOLING
starting temperature	ambient	?
heating power	limited by tester	limited to steady-state
temperature of fastest data	closer to ambient	closer to T _{j-max}
error control	all points similar error	error limited to first few points

Still air vs. moving air

- Varying the air speed is mainly varying the heat loss from the test board surface area, not from the package itself
- You just keep re-measuring your board's characteristics

Typical theta-vs.-air speed chart

....

Different boards

- Min-pad board
- 1" heat spreader board
- You're mainly characterizing how copper area affects *every* package and board, not how a *particular* package depends on copper area

Typical thermal test board types

Min-pad board

Minimum metal area to attach device (plus traces to get signals and power in and out)

1-inch-pad board

Device at center of 1"x1" metal area (typically 1-oz Cu); divided into sections based on lead count

54 Power Electronics System Thermal Design (RPS)

APEC 2011

Corporate R&D: Packaging Technology

ON Semiconductor®

Standard coldplate testing

- "infinite" heatsink (that really isn't) for measuring theta-JC on high-power devices
- If both power and coldplate temperature are independently controlled, "two parameter" compact models may be created

Standard coldplate testing

• Detailed design and placement of "case" TC can have *significant* effect on measured value

2-parameter data reduction

A "single coldplate" test

60 Power Electronics System Thermal Design (RPS)

A "single coldplate" test, package down

Linear superposition

• What is it?

...

- The total response of a point within the system, to excitations at all points of the system, is the sum of the individual responses to each excitation taken independently.
- When does it apply?
 - The system must be "linear" in brief, all responses must be proportional to all excitations.
- When would you use it?
 - When you have multiple heat sources (that is, all the time!)

Linear superposition – how do you use it?

APEC 2011

Corporate R&D: Packaging Technology

ON Semiconductor®

visualizing theta and psi

0

theta matrix doesn't have to be square

....

The Reciprocity Theorem

"... the reciprocity theorem is not one with many obvious uses. Nevertheless, it is an elegant theorem and seems to be one that every educated man is expected to know."1^[1]

ON Semiconductor®

¹¹ H. Skilling, <u>Electric Networks</u>, pg. 249, John Wiley and Sons, 1974

Electrical reciprocity

69 Power Electronics System Thermal Design (RPS)

APEC 2011

Corporate R&D: Packaging Technology

ON Semiconductor®

Thermal reciprocity

0

Another thermal reciprocity example

0

When does reciprocity NOT Apply?

• Upwind and downwind in forced-convection dominated applications

Heat in at "A" will raise temperature of "C" more than heat in at "C" will raise temperature of "A"

"B" and "D" may still be roughly reciprocal

••

(square part of) matrix is symmetric

Superposition example

0

Reduce the data

Device 2 heated, 1.2 W

0

Device 3 heated, 1.3 W

$\Psi_{j1\text{A}}$	55
Ψ_{j2A}	60
θ_{j3A}	65
$\Psi_{\rm j4A}$	61
$\Psi_{\rm j5A}$	21
$\Psi_{\rm j6A}$	15
$\Psi_{\rm r1A}$	55
$\Psi_{\rm r3A}$	63
Ψ_{r5A}	14
Ψ_{BA}	62

0

Device 4 heated, 1.1 W

Ψ_{j1A}	60
Ψ_{j2A}	55
Ψ_{j3A}	61
θ_{j4A}	73
$\Psi_{\rm j5A}$	18
Ψ_{j6A}	11
Ψ_{r1A}	59
Ψ_{r3A}	61
Ψ_{r5A}	19
Ψ_{BA}	63

0

Device 5 heated, 0.7 W

0

Device 6 heated, 0.5 W

Ψ_{j1A}	10
Ψ_{j2A}	11
Ψ_{j3A}	15
Ψ_{j4A}	11
Ψ_{j5A}	14
θ_{j6A}	180
Ψ_{r1A}	10
Ψ_{r3A}	15
Ψ_{r5A}	15
Ψ_{BA}	12

ON Semiconductor®

0

Collect the θ/Ψ values

columns are the heat sources

-						
J1	75	65	55	60	22	10
J2	65	71	60	55	25	11
J3	55	60	65	61	21	15
J4	60	55	61	73	18	11
J5	22	25	21	18	125	14
J6	10	11	15	11	14	180
R1	73	65	55	59	22	10
R3	55	60	63	61	21	15
R5	20	24	14	19	95	15
В	65	63	62	63	21	12

rows are the

response locations

Now apply actual power

0

Compute some effective θ/Ψ values

Take T_{j1} , for instance. Remember when it was heated all alone, we calculated its self-heating theta-JA like this:

0

And that's not just a single aberration!

Self heating						
θ_{j1A}	288	≺3.8 x-	75			
θ_{j2A}	288	←4.1 x-	71			
θ_{j3A}	274	←4.2 x-	65			
θ_{j4A}	277	- 3.8x	73			
θ_{j5A}	199	<mark>←1.6</mark> x-	125			
θ_{j6A}	309	←1.7 x-	180			

Junction to Reference						
Ψ_{j1-R1}	3.0	←1.5 x [·]	- 2.0			
Ψ_{j3-R3}	2.0	←1.0 x·	- 2.0			
Ψ_{j5-R5}	36.8	←1.2x·	- 30.0			

Junction to Board Ψ_{j1-B} 2.2-0.2x10.0 Ψ_{j2-B} 2.5-0.3x8.0 Ψ_{j3-B} -10.5-3.5x3.0 Ψ_{j4-B} -8.3-0.8x10.0

....

Is the moral clear?

- You simply *cannot* use published theta-JA values for devices in your real system, even if those values are perfectly accurate and correct as reported on the datasheet and you know the exact specifications of the test conditions.
- Not unless your actual application is identical to the manufacturer's test board – and uses just that one device all by itself.

So is it really this bad?

Only sort-of. Let's revisit the math for one device ...

ON

0

How does effective ambient relate to board temperature?

APEC 2011

••••

Controlling the matrix

How to harness this math in $\mathsf{Excel}{\mathbb{R}}$

3x3 theta matrix, 3x1 power vector Excel® math

7x3 theta matrix, 3x1 power vector Excel® math

ON Semiconductor®

••

7x3 theta matrix, 3x2 power vector Excel® math

power "vector" is now a 3x2 array – each column is a different power scenario, yet both are still processed using a single array (MMULT) formula

...

the single MMULT array formula now occupies 7 rows and 2 columns (one column for each independent power scenario result)

N	1icrosoft E	к <mark>cel</mark> - t	heta	matri	іх ехат	ples.xls					>	<
:2	<u>E</u> ile <u>E</u> dil	: <u>V</u> iev	<u>I</u> n	sert	F <u>o</u> rmat	<u>T</u> ools	<u>D</u> ata	<u>Window H</u> elp Ado <u>b</u> e PDF		Type a question for	help 🚽 🗕 🗗 💙	×
8 🗋	🛃 🛄	100%	• •		Arial		•	10 🔹 B 🗴 🗓 📑 🚍 🧱	3 \$	% • 👬 🕺 🕺 🕺	🛛 • 🂁 • <u>A</u> •]	Ŧ
1	122	2 🔿	\geq	Ø	85 V 🖉	٩.] ₩ ₽ R	eply with Changes End Review				
	140	•		$f_{\mathbf{x}}$ (=1	MULT(B	38:D44,F3	38:G40)+	F43}				
	A	B	C	D	E F	G	H			J	К	
36	Non-sym	metri	; thre	e ju	n t ion a	levice,	additi	onal ref temps, and multiple pow	vet ved	ctors		-
37					vect1	vect2		reculting temperatures				
38	1	j1 <mark>100</mark>	75	65	1.1	0.5		309.5		140.0	<u>D</u> 1	
39	1	j2 <mark>75</mark>	95	70	1.2	0		312.5		132.5	Tj2	
40	1	j3 <mark>65 </mark>	70	90	1.3	1		297.5		147.5	ТјВ	
41	case	_1 64	50	45				213.9		102.0	case_1	
42	case	2 50	64	38	ambie	ent		206.2		88.0	case_2	
43	case	_3 42	50	68	25	<u> </u>		219.6		114.0	case_3	
44	board-ce	nt <mark>30</mark>	35	30				139.0		70.0	pard-cent	•
H •	⊢ ► ► ► _fr	om clas:	5 /	theta	matrix ex	amples	λ exan	nple formulas / I I				
Dr_aw = 😓 AutoShapes = 🔨 🔪 🖸 🔿 🔠 🐗 🞲 😰 📓 🎂 = 🚄 = 📥 🚎 🧱 💷 🗊 💂												
Rea	dy									NUN	1	//.

Temperature direct contributions and totals

Normalized responses at each location due to each source

ON Semiconductor®

Some useful formulas

conduction resistance..... $R = \frac{L}{k \cdot A}$ $R = \frac{1}{h \cdot A}$ convection resistance..... thermal capacitance..... $C = \rho c_p V$ $\tau = \frac{\rho c_p L^2}{1}$ characteristic time..... (dominated by 1-D conduction) $\tau = \frac{\rho c_p L}{\Gamma}$ characteristic time..... - (dominated by 1-D convection) $\Delta T = \frac{Q}{A} \frac{2}{\sqrt{\pi \rho c_p k}} \sqrt{t}$ short-time 1-D transient response......

Terms used in preceding formulas

- L thermal path length
- *A* thermal path cross-sectional area
- k thermal conductivity
- ρ density
- c_p heat capacity
- α thermal diffusivity
- η thermal effusivity
- *h* convection heat-transfer "film coefficient")
- ΔT junction temperature rise
- Q heating power
- *t* time since heat was first applied

97

 $l \rho c_n k$

When do these effects enter?

APEC 2011

Corporate R&D: Packaging Technology

ON Semiconductor®

Cylindrical and spherical conduction (through radial thickness) resistance formulas

Predicting the temperature of high power components

• The device and system are equally important to get right

Predicting the temperature of low power components

• The system is probably more important than the device

101

Using the previous board example ...

theta array

0

Observe the relative contributions

For junction 1 (a high power component) we have:

the device itself ...

••

APEC 2011

ON Semiconductor®

- Non-linear power vs. junction temperature device characteristic
- System thermal resistance isn't low enough to shed small perturbations

••

ON Semiconductor®

A linear thermal cooling system

$$T_J = Q \cdot \theta_{Jx} + T_x$$

••

junction temperature as function of power, theta, and ground

$$Q = \frac{T_J - T_x}{\theta_{Jx}}$$

... solving for power

$$\frac{dQ}{dT} = \frac{1}{\theta_{Jx}}$$

sensitivity (slope) of power with respect to temperature

ON Semiconductor®

Effect of device line slope on system stability

....

Operating points of thermal system when device line has negative second derivative

Operating points of thermal system when device line has *positive* second derivative

Generic power law device and generic linear cooling system

....

Let's see how it works

Unfortunate coincidence of terms!

device power

•

112

 $Q = V \cdot I$

a mathematical "power law"

 $y = a^x$

an "exponential" power law (base is e)

 $y = e^{x}$

Definition of power law device

rule of thumb for leakage; 2x increase for every 10°C

$$I = I_0 2^{\frac{T}{10}}$$
$$I = I_0 e^{(ln2)\frac{T}{10}} = I_0 e^{\frac{T}{\frac{10}{ln2}}}$$

$$I = I_o e^{\frac{T}{\lambda}}$$

....

for constant voltage, power does the same

$$\mathbf{Q} = \mathbf{V}_{\mathsf{R}} \mathbf{I}_{\mathsf{o}} \mathbf{e}^{\frac{\mathsf{T}}{\lambda}} = \mathbf{Q}_{\mathsf{o}} \mathbf{e}^{\frac{\mathsf{T}}{\lambda}}$$

1st and 2nd derivatives

both always positive

The mathematical essence

٠

Transforming the nominal system

...

Everything transformed

"Perfect runaway" results in original terms

runaway temperature based on original slope

$$\mathbf{T}_{\mathrm{R1}} = \lambda \ln \left(\frac{\lambda}{\theta_{\mathrm{Jx1}} \mathbf{Q}_{\mathrm{o}}} \right)$$

max ambient that goes with it

$$T_{x1} = \lambda \ln \left(\frac{\lambda}{\theta_{Jx1}Q_{o}}\right) - \lambda$$

runaway temperature based on original ambient

$$\mathsf{T}_{\mathsf{R2}} = \mathsf{T}_{\mathsf{x}} + \lambda$$

system resistance that goes with it

$$\theta_{Jx2} = \frac{\lambda}{Q_o} e^{-\left(\frac{T_x}{\lambda} + 1\right)}$$

APEC 2011

118

The "operating" points

119 Power Electronics System Thermal Design (RPS)

٠

APEC 2011

Corporate R&D: Packaging Technology

ON Semiconductor®

Newton's method for the intersections

For k/e ranging between 1.01 and 1000, convergence is to a dozen significant digits in fewer than 10 iterations.

this initial guess converges to lower, stable point

this initial guess converges to upper, unstable point

$$z_o = lnk = 1 + ln\left(rac{k}{e}
ight)$$

And the intersection points come from

find the non-dimensional intersections first, then

$$\mathsf{T}_{\mathsf{stable}} = \mathsf{T}_{\mathsf{x}} + \lambda \cdot \mathsf{z}_{\mathsf{stable}}$$

$$T_{unstable} = T_x + \lambda \cdot z_{unstable}$$

A paradox

Paradox lost

raise the power by 0.1 W and see what happens

....

Illustrating the paradox

124 Power Electronics System Thermal Design (RPS)

APEC 2011

ON Semiconductor®

Real datasheet example

[†] MBRS140T3

....

APEC 2011

ON Semiconductor®

Runaway analysis in nominal system

computed results

HTRB example

- Bidirectional Thyristor in reliability stress test (<u>High Temperature</u> <u>Reverse Bias</u>)
- Goal is life tests at elevated temperature (say 125°C)
- Problem is, they don't last very long, and if junction temperature is anything like the chamber temperature, they appear to fail way too early good!

HTRB test circuit

*Special acknowledgements to Dave Billings and Geoff Garcia for their contributions to this project

HTRB DUT tab temperature vs. test time

HTRB DUT power vs. test time

HTRB example

THERMAL CHARACTERISTICS

Characteristic		Symbol	Value	Unit
Thermal Resistance,	Junction-to-Case Junction-to-Ambient	${\sf R}_{ heta {\sf JC}} \ {\sf R}_{ heta {\sf JA}}$	2.1 60	°C/W
Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 10 seconds		ΤL	260	°C

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted; Electricals apply in both directions)

Characteristic			Min	Тур	Мах	Unit
OFF CHARACTERISTICS						
Peak Repetitive Blocking Current (V _D = Rated V _{DRM} , V _{RRM} ; Gate Open)	$T_J = 25^{\circ}C$ $T_J = 125^{\circ}C$	I _{DRM} / I _{RRM}	-	-	0.005 2.0	mA

• At 85°C,

0.1W, so

Quick calculations from datasheet

$$P_{d} = I \cdot (640 - 40000 \cdot I)$$

$$T_{J} = T_{a} + P_{d} \cdot \theta_{JA}$$
or
$$T_{J} = T_{HS} + P_{d} \cdot \theta_{J-HS}$$

$$f = T_{HS} + P_{d} \cdot \theta_{J-HS}$$

 $T_{\rm J}$ will still be well within 1°C of heatsink temperature, $T_{\rm HS}$)

• HOWEVER, at 125°C, if I_{DRM} is 2mA, then P_d will be in excess of 1W. Depending on theta-JA, T_J could be 30-60°C above chamber set point (though still within a couple of degrees of heatsink temperature, if known).

HTRB test circuit

Calculations based on actual measurements

MT1 +640 V ¢МТ2 $40 \mathrm{k}\Omega$ V_{sense} l kΩ

Modified HTRB test circuit

- At room temp, I_{DRM} (via V_{sense}) is 0.2uA, thus P_d is about zero (≈0.1mW), and T_J should thus equal chamber set point.
- At 85°C, I_{DRM} is about 0.1-0.2mA, thus P_d is on the order of 0.1W, so depending on theta-JA, T_J could be several degrees hotter than chamber set point (note, however, that T_J will still be well within 1°C of heatsink temperature, T_{HS})
- At 125°C, I_{DRM} is 2-3mA; P_d could be as high as 1.5W
- Max current observed was nearly 8mA (for P_d of 2.5W), and estimated T_J of 170°C just prior to device failure.

Actual "blocking current" data (time implicit)

Power Electronics System Thermal Design (RPS) 133

APEC 2011

Corporate R&D: Packaging Technology

ON Semiconductor®

Actual "blocking P_d" data (time implicit)

ON Semiconductor®

Power vs. temperature (linear scales)

Proof-of-concept modified HTRB fixture

After observing a number of device failures at unacceptably short times and under what would have been expected to be junction temperatures well below the maximum rated temperature, the hypothesis of "thermal runaway" in the chamber became the favored explanation of the failures. If true, then lowering the theta-JA of the devices should provide some margin for avoiding the problem. Consequently, crude heatsinks were constructed from some handy copper test panels and attached to each of nine additional test specimens.

I vs. temperature on better heatsinks

Corporate R&D:

Packaging Technology

P_d vs. temperature on better heatsinks

Thus, to obtain a net theta-JA of 4°C/W, one needs a net 2°C/W resistance from tab to ambient. A finite element model was constructed of a four-finned heatsink that would easily fit in the available space for each of 10 devices in a row of the current HTRB chambers. Figure 9 depicts this heatsink.

Figure 9 – A possible 1.9°C/W heatsink

Using a film coefficient of 40 W/m²/°C, this heatsink would have a convection resistance of 1.9°C/W.

What if multiple devices on heatsink?

- Each device heats its neighbors to varying degrees, depending on distance
- This adds background heat, that is, it raises the "effective ambient" of each device

ON Semiconductor

Graphically, background heat does this

ON Semiconductor®

141 Power Electronics System Thermal Design (RPS)

Math and Electrical References

- M. Abramowitz, I. Stegun (eds), <u>Handbook of</u> <u>Mathematical Functions</u>, Dover Publications, Inc., 9th Printing, Dec. 1972
- 2. S.D. Senturia, B.D. Wedlock, <u>Electronic Circuits</u> and <u>Applications</u>, John Wiley & Sons, 1975
- M.F. Gardner & J.L. Barnes, <u>Transients in Linear</u> <u>Systems (Studied by the Laplace Transformation)</u>, Vol. I, John Wiley and Sons, 1942
- R.S. Muller, T.I. Kamins, <u>Device Electronics for</u> <u>Integrated Circuits</u>, 2nd Ed., John Wiley & Sons, 1986
- 5. Ben Nobel, <u>Applied Linear Algebra</u>, Prentice Hall, 1969
- 6. H.H. Skilling, <u>Electric Networks</u>, John Wiley and Sons, 1974
- 7. L. Weinberg, <u>Network Analysis and Synthesis</u>, McGraw Hill Book Company, Inc., 1962
- 8. H. Wayland, <u>Complex Variables Applied in Science</u> <u>and Engineering</u>, Van Nostrand Reinhold Company

Thermal Textbooks & References

- 9. H.S. Carslaw & J.C. Jaeger, <u>Conduction of Heat In</u> <u>Solids</u>, Oxford Press, 1959
- 10. E.R.G. Eckert & R.M. Drake Jr., <u>Heat and Mass</u> <u>Transfer</u>, McGraw Hill, 1959
- 11. J.P. Holman, <u>Heat Transfer</u>, 3rd Ed., McGraw Hill, 1972
- 12. J. VanSant, <u>Conduction Heat Transfer Solutions</u>, Lawrence Livermore National Laboratory, Livermore, CA, 1980

Thermal-Related Applications Notes available at http://www.onsemi.com/pub/Collateral/ANxxxx-D.PDF

- 569: "Transient Thermal Resistance General Data and its Use," May 2003
- 1083: "Basic Thermal Management of Power Semiconductors," October 2003
- 1570: "Basic Semiconductor Thermal Management," January 2004
- 8044: "Single-Channel 1206A ChipFET™ Power MOSFET Recommended Pad Pattern and Thermal Performance," December 2005
- 8072: "Thermal Analysis and Reliability of WIRE BONDED ECL," April 2006
- 8080: "TSOP vs. SC70 Leadless Package Thermal Performance," January 2004
- 8199: "Thermal Stability of MOSFETs," August 2005
- 8214: "General Thermal Transient RC Networks," April 2006
- 8215: "Semiconductor Package Thermal Characterization," April 2006
- 8216: "Minimizing Scatter in Experimental Data Sets," April 2006
- 8217: "What's Wrong with %Error in Junction Temperature," April 2006
- 8218: "How to Extend a Thermal-RC-Network Model," April 2006
- 8219: "How to Generate Square Wave, Constant Duty Cycle, Thermal Transient Response Curves," April 2006
- 8220: "How To Use Thermal Data Found in Data Sheets," April 2006
- 8221: "Thermal RC Ladder Networks," April 2006
- 8222: "Predicting the Effect of Circuit Boards on Semiconductor Package Thermal Performance," April 2006
- 8223: "Predicting Thermal Runaway," April 2006

