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Course outline 
• Part I: (90 minutes) 

– Introduction (30 minutes) 
– Characterization Techniques (60 minutes) 

>> 30 minute BREAK << 
• Part II: (45 minutes) 

– Linear Superposition – Theory (7 minutes) 
– The Reciprocity Theorem (6 minutes) 
– A Detailed Example and its Implications (6 minutes) 
– Controlling the Matrix (6 minutes) 
– Building a System Model (20 minutes) 

• Part III: (35 minutes) 
– Thermal Runaway – Theory (15 minutes) 
– Thermal Runaway – Practice #1 (7 minutes) 
– Thermal Runaway – Practice #2 (13 minutes) 

• Quick demos (10 minutes, time permitting) 
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Can this device handle 2 W? 
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“Junction” temperature? 

Historically, for discrete devices, the junction was literally 
the essential “pn” junction of the device. This is still true for 
basic rectifiers, bipolar transistors, and many other devices. 

 
More generally, however, by “junction” these days we mean 

simply the hottest place in the device (which will be 
somewhere on the silicon). 

 
As we move to complex devices where different parts of the 
silicon do different jobs at different times, the exact location 

gets to be somewhat tricky to identify. But we’re still 
interested in the hottest spot. 
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Thermal-electrical analogy 

      temperature  <=>   voltage 

               power  <=>   current 

    Δtemp/power  <=>   resistance 

  energy/degree  <=>   capacitance 



Corporate R&D: 
Packaging Technology 5  APEC 2011 Power Electronics System Thermal Design (RPS) 
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What’s wrong with theta-JA? 
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Theta-JA vs. copper area 
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An example of a device with two 
different “Max Power” ratings 

• Suppose a datasheet says: 
– Tjmax = 150°C  
– θJA = 100°C/W 
– Pd = 1.25W (Tamb=25°C) 

• But it also says: 
– ΨJL = 25°C/W 
– Pd = 3.0W (TL=75°C) 

Where’s the “inconsistency”? 

15012525
25.1*10025

=+=
+

1507575
3*2575
=+=
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Not 75°C !! 

Where’s the inconsistency? 

What’s TL? 

 25°C/W 
(ΨJL) 

100°C/W 
(θJA) 

TJ =150°C 

TA =25°C 

(try about 119°C) 

…¾ of the way 
from ambient to Tj 
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Why is ON’s SOT-23 thermal number 
so much worse than the other guy’s? 

• ON 
– SOT-23 package 
– 60x60 die 
– Solder D/A 
– Copper leadframe 
– Min-pad board 
– Still air 

• some other guy 
– SOT-23 package 
– 20x20 die 
– Epoxy D/A 
– Alloy 42 leadframe 
– 1” x 2oz spreader 
– Big fan 
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Theta (θ) vs. Psi (Ψ) 

• JEDEC <http://www.jedec.org/> terminology 
–  ZθJX , RθJA  older terms ref JESD23-3, 23-4 
–  θJA ref JESD 51, 51-1 
–  θJMA ref JESD 51-6 
–  ΨJT, ΨTA ref JESD 51-2 
–  ΨJB, ΨBA ref JESD 51-6, 51-8 
–  RθJB ref JESD 51-8 
– Great overview, all terms: JESD 51-12 
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“Theta” (Greek letter θ) 

Ty 

We know actual heat flowing along path of interest 

true “thermal resistance” 

path

yx
xy q

TT −
=θ

Tx 
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“Psi” (Greek letter Ψ) 

Tx 

Ty ?? 

We don’t know actual heat flowing along path of interest 

… all we 
know is total 
heat input 

total

yx
xy q

TT −
=Ψ

a reference number only 
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Fundamental ideas 

• Heat flows from higher temperature to lower 
temperature 

• The bigger the temperature difference, the 
more heat that flows 

• Three modes of heat transfer 
– Conduction (solids, fluids with no motion) 
– Convection (fluids in motion) 
– Radiation (it just happens) 
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Common fallacy 

• Basic idea: 
– “thermal resistance” is an intrinsic property of a package 

• Flaws in idea: 
– there is no isothermal “surface”, so you can’t define a 

“case” temperature 
• Plastic body (especially) has big gradients 

– different leads are at different temperatures 
– multiple, parallel thermal paths out of package 
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Back in the good old days ... 

metal can – might be 
a fair approximation of 

an “isothermal” surface 

axial leaded device - 
only two leads, at least 
the heat path is fairly 

well defined 
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Which lead?  Where on case? 
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silicon 

die attach 

wire/clip 

flag/leadframe 

case 

circuit board 

convection 

60% 
10% 

20% 

10% 

“Archetypal” package 
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Basic variations on a theme … 

 

optional 
heatsink 

mold 
compound/

case 

flag/leadframe 

application board 

silicon 

die attach 

wire/clip 

 

optional 
heatsink 

optional 
“case” 

application board 

silicon 
die 

attach 

optional 
underfill 

pads/
balls 

add an external heatsink … flip the die over … 

40% 

20% 

60% 

20% 20% 40% 
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A bare “flip chip” 

90% 

10% 
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OH  of  GPM  1
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C/W2.1

2

°=
=

°=Ψ −

c

d

tabJ

T
P

air still
C25
W5.1

C/W8.0

°=
=

°=Ψ −

c

d

tabJ

T
P

 

Same ref, different values 
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Even when it’s constant, it’s not! 
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theta-JA 

psi-JT 

psi-JL 

R1 (path down 
to board) 

constant at 20 

R2 (board 
resistance) vary 

from 1 to 1000 

R3 (path through 
case top) 
constant at 80 

R4 (case to air path 
resistance) constant 
at 500, or 20x R2 

TC TL 

Tj 

Tamb 
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Ta 

Tj 
θJA 
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• Therefore, different application environments will 
see different “package resistance” 

“Package resistance” isn’t fixed: 
• At the package level itself … 

– multiple heat paths exiting package 
• External to the package … 

– boundary conditions dictate heat flow 
• Heat sinks 
• Neighboring devices/power dissipation 
• Single vs. double-sided boards 
• Local convection vs. board-edge cooling 
• Multiple layers/power/ground planes 

Fallacy recap: 
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Characterization Techniques 

Characterization Techniques 
Typical TSP behavior 

Vf 

Vf 

T 

125°C 

25°C 

0.7 V 0.5 V 

  

sense 
current 

calibrate forward voltage at controlled, 
small (say 1mA) sense current  
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DUT 

true const. current supply 

(1 mA typical) 

DUT 

10KΩ 

If V f 0.7V, then  
I1mA 

10.7V 

How to measure Tj 

OR 

approximate const. current supply 
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DUT 

10KΩ 
heating   
power   
supply 

10.7V 10.7V 

DUT 

10KΩ 
heating   
power   
supply 

10.7V 

How to heat 

OR 

sample current is off 
while heating current on sample current is always on 
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0.90 W 
0.70 W 
0.64 W 

The importance of 4-wire 
measurements 

Power 
supply 

+(1.00 V) 

-(0 V) 

1 A 

0.18 V 0.82 V 

0.95 V 0.05 V 0.85 V 0.15 V 

Output = 1 W 
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Which raises an interesting question: 

0.3 W 

Power 
supply 

+(1.00 V) 

-(0 V) 

3 A 

0.45 V 0.55 V 

0.98 V 0.02 V 

Output = 3 W 

Is this a fair characterization of a low-Rds-on device? 

1.3 W 1.3 W 
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Bipolar transistor 

• TSP is Vce at designated 
“constant” current 

• Heating is through Vce 
• Choose a base current that 

permits adequate heating 

bias supply 

TSP=Vce 
bias resistor 

TSP supply 

switch 

heating supply 

10KΩ 
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Schottky diode 

• TSP is forward voltage at “low” current 
• Voltages are typically very small (especially as 

temperature goes up) 
• Highly non-linear, though maybe better as TSP 

current increases; because voltage is low, higher 
TSP current may be acceptable 

• Heating current will be large 
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MOSFET / TMOS 

• Typically, use reverse bias 
“back body diode” for both 
TSP and for heating 

• May need to tie gate to 
source (or drain) for 
reliable TSP characteristic 

TSP=Vsd 

TSP supply 

switch 

heating 
supply 

10KΩ 

+ 

- 
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+ 

MOSFET / TMOS method 2 

• If you have fast switches and 
stable supplies 

• Forward bias everything and use 
two different gate voltages 

TSP=Vds 

TSP supply 

close 
switch 
to heat 

heating 
supply 

10KΩ 

- 

+ 

- 

V-gate 
for 

heating 
- 

V-gate 
for 

measure 

+ 

close 
switch 
to heat 

close 
switch to 
measure 
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RF MOS 

• They exist to amplify high frequencies (i.e. noise)! 

TSP supply 

close 
switch 
to heat 

heating 
supply 

10KΩ 

- 

+ 
V-gate 

for 
heating 

- 

+ 

close 
switch 
to heat 

close 
switch to 
measure 

• Feedback resistors 
may keep them in DC 

+ 

- 

TSP = 
body 
diode 

TSP 
supply 
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IGBT 

• Drain-source channel used for 
both TSP and heating 

• Find a gate voltage which “turns 
on” the drain-source channel 
enough for heating purposes 

• Use same gate voltage, but 
typically low TSP current for 
temperature measurement TSP=Vds 

gate 
voltage 

TSP supply 

switch 

heating supply 

10KΩ 
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Thyristor 

• Anode--to-cathode voltage path 
used both for TSP and for heating 

• typical TSP current probably lower 
than “holding” current, so gate 
must be turned on for TSP 
readings; try tying it to the anode 
(even so, we used 20mA to test 
SCR2146) 

• Hopefully, with anode tied to gate, 
enough power can be dissipated to 
heat device without exceeding 
gate voltage limit 

TSP supply 

switch 10KΩ 

heating 
supply 

TSP=Vac 

cathode 

anode 
gate 
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Logic and analog 

• Find any TSP you can 
– ESD diodes on inputs or outputs 
– Body diodes somewhere 

• Heat wherever you can 
– High voltage limits on Vcc, Vee, whatever 
– Body diodes or output drivers 
– Live loads on outputs 

• (be very careful how you measure power!) 
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Heating curve method 
vs. 

cooling curve method 
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DUT 

10KΩ 
heating   
power   
supply 

10.7V 

Quick review: 
Basic Tj measurement 

DUT 

10KΩ 
heating   
power   
supply 

10.7V 

first we heat then we measure 
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Question 

• What happens when you switch 
from “heat” to “measure”? 

Answer: stuff changes 

• More specifically, the junction 
starts to cool down 
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V f 

V f 

T 

125°C 

25°C 

.7V .5V 

calibrate forward voltage 
@ 1mA sense current 
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w
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-o

ff 
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g 
 

high-
current 
heating  

measurements 

convert cooling 
volts to 

temperature 

Basic 
“heating curve” 
transient method vo

lta
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Heating curve method #2 

Time 
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Basic 
“cooling curve” 

transient method 
V f 

V f 

T 

125°C 

25°C 

.7V .5V 

calibrate forward voltage 
@ 1mA sense current  power-off 

cooling 
high-

current 
heating 

vo
lta

ge
 

cu
rr

en
t 

1 ma 

measurements 

heating 
period 

transient cooling 
period (data taken) 

st
ea

dy
 s

ta
te

 re
ac

he
d 

Te
m

pe
ra

tu
re

 

Time 

convert cooling 
volts to 

temperature 

Te
m

pe
ra

tu
re

 

Time (from 
start of cooling) 

subtract cooling curve from 
peak temperature to obtain 
“heating” curve equivalent 
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• Heating vs. cooling 
– Physics is symmetric, as long as the material 

and system properties are independent of 
temperature 

Whoa! 
… that last step there … 

cooling 
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Heating vs. cooling symmetry 

(all the same 
curves, flipped 

vertically) 

flag 

lead 

back of board 

edge of board 

Start of (constant) 
power off 

junction 

Start of constant 
power input 
(“step heating”) 

cooling 
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A (perhaps) subtle point … 

• For a theoretically valid cooling curve, 
you must begin at true thermal 
equilibrium (not uniform temperature, 
but steady state) 

• So whatever your θJA, max power is 
limited to: 

JA

j TT
power

θ
ambientmax −

=

cooling 
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By the way … 
 Steady-state vs. transient ? 

• Since you must have the device at steady state in 
order to make a full transient cooling-curve 
measurement, steady-state θJA is a freebie. 

(given that you account for the slight cooling 
which took place before your first good 
measurement occurred) 

cooling 
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Effect of power on heating curve 

< steady-state max power 

Tj-max 

Tamb 

steady-state max power 

2x steady-state power 6x steady-
state power 

24x steady-
state power 

3x steady-
state power 

time 

ju
nc

tio
n 

te
m

pe
ra

tu
re

 

heating 
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Some initial uncertainty 

heating period transient cooling period  
(data taken) 

st
ea

dy
 s

ta
te

 re
ac

he
d 

Te
m

pe
ra

tu
re

 

Time 

power-off  
cooling 

high-current  
heating 

but once we’re past 
the “uncertain” range, 
all the rest of the 
points are “good” 

a few initial points 
may be uncertain 

cooling 
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Heating vs. cooling tradeoffs 

starting 
temperature 

heating 
power 

temperature of 
fastest data 

error 
control 

HEATING 

ambient 

limited by 
tester 

closer to 
ambient 

all points 
similar error 

COOLING 

? 

limited to 
steady-state 

closer to 
Tj-max 

error limited to 
first few points 
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• Varying the air speed is mainly varying the heat 
loss from the test board surface area, not from 
the package itself 

• You just keep re-measuring your board’s 
characteristics 
 

Still air vs. moving air 
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total system thermal resistance 
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• Min-pad board 

• 1” heat spreader board 

• You’re mainly characterizing how copper area 
affects every package and board, not how a 
particular package depends on copper area 

Different boards 
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Typical thermal test board types 

Min-pad board 
Minimum metal area to attach 
device (plus traces to get 
signals and power in and out) 

1-inch-pad board 
Device at center of 1”x1” 
metal area (typically 1-oz Cu); 
divided into sections based on 
lead count 
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1" pad vs min-pad
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overall linear fit is:
1" value = [0.51*(min-pad value) - 7]
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SMA & Pow ermite
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SOT-23

SOD-123
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SOD-123

SOT-23

SOD-323
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Top Can

D2pak & TO220

Top Can

Dpak

SO-8SOT-223

TSOP-6
SO-8

SMC

Source:
Un-derated thermal data 
from old PPD database

Roger Stout  5/2
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Standard coldplate testing 

• “infinite” heatsink (that really isn’t) for measuring theta-
JC on high-power devices 

• If both power and coldplate temperature are 
independently controlled, “two parameter” compact 
models may be created 
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Standard coldplate testing 

• Detailed design and placement of “case” TC can 
have significant effect on measured value 
 

TC in 0.025” well,  
0.025” from surface 

DUT 

.375” 

.75” 

Vleer pin assy 

2.0” 

TC on Vleer pin measures   
temperature at interface 

Liquid Coolant Flow 



Corporate R&D: 
Packaging Technology 59  APEC 2011 Power Electronics System Thermal Design (RPS) 

2-parameter data reduction 

heat in, Q 

R1 

R2 

T1 

Tj 

T2 

21 QQQ +=

)()( 2
2

1
1

11 TT
R

TT
R

Q jj −+−=

bxmxmy ++= 2211

)( 11
1

1
1 TTx
R

m j −==
0≡b

)( 22
2

2
1 TTx
R

m j −==

where: 

heat up, Q1 

heat down, Q2 

This has the form of a two-variable linear equation: 
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A “single coldplate” test 

Rja 

Rjc 

Ta 

Tj 

Tc 

ambient 

coldplate -20.00
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∆
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Increasing Power, Chuck Held
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No Power, Chuck Temperature
Increased

Tc coldplate 

Tj 
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A “single coldplate” test,  
package down 

-20.00
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jc
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No Power, Chuck Temperature
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Rjb 

Rjc 

Tb 

Tj 

Tc 

ambient 

coldplate 

Rba 

Ta 

Tj Tb 
Ta 

coldplate Tc 
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Linear superposition 

Linear superposition 

• What is it? 
– The total response of a point within the system, 

to excitations at all points of the system, is the 
sum of the individual responses to each 
excitation taken independently. 

• When does it apply? 
– The system must be “linear” – in brief, all 

responses must be proportional to all 
excitations. 

• When would you use it? 
– When you have multiple heat sources (that is, 

all the time!) 
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Linear superposition 
 – how do you use it? 

Tj3 Tj2 

Tj1 Tj4 

Tj5 Tj6 

Tref1 

Tref5 

Tref3 

TB 

Tamb 
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board 
interactions self-heating terms 
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visualizing theta and psi 

(idle heat 
source “x”) 

thermal ground 

measurements 
here are    s 

Ψ

xAΨ
yAΨ

AJ1
θ

BJ1
θ

BAθ

θ
measurements 

here are    s 

(idle heat 
source “y”) 

heat in here 
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one column for 
each heat source 

junction 
temperature 

vector 
power input 

vector 

one row 
for each 

heat 
source 

one row for each temperature 
location of interest 

theta matrix doesn’t have to be square 

(why is this Ψ 
and not θ?) 
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The Reciprocity Theorem 

“… the reciprocity theorem is not one with 
many obvious uses.  Nevertheless, it is an 
elegant theorem and seems to be one that 
every educated man is expected to know.”1[1] 
 
 

[1] H. Skilling, Electric Networks, pg. 249, John Wiley and Sons, 1974 
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Electrical reciprocity 

5 V 
+ 

- 

? V 
+ 

- 
0.3 V 

- 

+ 

2 A 0.3 V 
- 

+ 
I 

V 
- 

+ 
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Thermal reciprocity 

heat input here 

same 
response 

here 
response 

here 



Corporate R&D: 
Packaging Technology 71  APEC 2011 Power Electronics System Thermal Design (RPS) 

Another thermal reciprocity example 

heat input here 

same 
response 

here 

response 
here 

(s) 

(s) 

(r) 

(r) 
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When does reciprocity NOT Apply? 

A 
D 

C 
airflow 

Heat in at “A” will raise temperature 
of “C” more than heat in at “C” will 
raise temperature of “A” 

• Upwind and downwind in forced-convection 
dominated applications 

“B” and “D” may 
still be roughly 
reciprocal 

B 
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(square part of) matrix is symmetric 

75 65 55 60 22 10 

65 71 60 55 25 11 

55 60 65 61 21 15 

60 55 61 73 18 11 

22 25 21 18 125 14 

10 11 15 11 14 180 

73 65 55 59 22 10 

55 60 63 61 21 15 

20 24 14 19 95 15 

65 63 62 63 21 12 

J1 

J2 

J3 

J4 

J5 

J6 

R1 

R3 

R5 

B 

rows are the 
response 
locations 

columns are the heat sources 
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Superposition example 

Tj3=85.5 Tj2=96.5 

Tj1=107.5 Tj4=91.0 

Tj5=49.2 Tj6=36.0 

Tref1=105.3 

Tref5=47.0 

Tref3=85.5 

TB=96.5 

Tamb=25 

Device 1 
heated, 1.1 W 



Corporate R&D: 
Packaging Technology 75  APEC 2011 Power Electronics System Thermal Design (RPS) 

Reduce the data 

θj1A 75 

Ψ j2A 65 

Ψ j3A 55 

Ψ j4A 60 

Ψ j5A 22 

Ψ j6A 10 

Ψ r1A 73 

Ψ r3A 55 

Ψ r5A 20 

Ψ BA 65 

75
11

255107
q
TT

1

amb1j
A1j =

−
=

−
=

.
.θ

65
11

25596
q
TT

1

amb2j
A2j =

−
=

−
=Ψ

.
.

65
11

25596
q
TT

1

ambB
BA =

−
=

−
=Ψ

.
.


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Device 2 heated, 1.2 W 

Tj3=97.0 Tj2=110.2 

Tj1=103.0 Tj4=91.0 

Tj5=55.0 Tj6=38.2 

Tref1=103.0 

Tref5=53.8 

Tref3=97.0 

TB=100.6 

Tamb=25 

Ψj1A 65 

θ j2A 71 

Ψ j3A 60 

Ψ j4A 55 

Ψ j5A 25 

Ψ j6A 11 

Ψ r1A 65 

Ψ r3A 60 

Ψ r5A 24 

Ψ BA 63 
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Device 3 heated, 1.3 W 

Tj3=109.5 Tj2=103.0 

Tj1=96.5 Tj4=104.3 

Tj5=52.3 Tj6=44.5 

Tref1=96.5 

Tref5=43.2 

Tref3=106.9 

TB=105.6 

Tamb=25 
Ψj1A 55 

Ψ j2A 60 

θ j3A 65 

Ψ j4A 61 

Ψ j5A 21 

Ψ j6A 15 

Ψ r1A 55 

Ψ r3A 63 

Ψ r5A 14 

Ψ BA 62 
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Device 4 heated, 1.1 W 

Tj3=92.1 Tj2=85.5 

Tj1=91.0 Tj4=105.3 

Tj5=44.8 Tj6=37.1 

Tref1=89.9 

Tref5=45.9 

Tref3=92.1 

TB=94.3 

Tamb=25 
Ψj1A 60 

Ψ j2A 55 

Ψ j3A 61 

θ j4A 73 

Ψ j5A 18 

Ψ j6A 11 

Ψ r1A 59 

Ψ r3A 61 

Ψ r5A 19 

Ψ BA 63 
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Device 5 heated, 0.7 W 

Tj3=39.7 Tj2=42.5 

Tj1=40.4 Tj4=37.6 

Tj5=112.5 Tj6=34.8 

Tref1=40.4 

Tref5=91.5 

Tref3=39.7 

TB=39.7 

Tamb=25 
Ψj1A 22 

Ψ j2A 25 

Ψ j3A 21 

Ψ j4A 18 

θ j5A 125 

Ψ j6A 14 

Ψ r1A 22 

Ψ r3A 21 

Ψ r5A 95 

Ψ BA 21 
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Device 6 heated, 0.5 W 

Tj3=32.5 Tj2=30.5 

Tj1=30.0 Tj4=30.5 

Tj5=32.0 Tj6=115.0 

Tref1=30.0 

Tref5=32.5 

Tref3=32.5 

TB=31.0 

Tamb=25 
Ψj1A 10 

Ψ j2A 11 

Ψ j3A 15 

Ψ j4A 11 

Ψ j5A 14 

θ j6A 180 

Ψ r1A 10 

Ψ r3A 15 

Ψ r5A 15 

Ψ BA 12 
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Collect the θ/Ψ values 

75 65 55 60 22 10 

65 71 60 55 25 11 

55 60 65 61 21 15 

60 55 61 73 18 11 

22 25 21 18 125 14 

10 11 15 11 14 180 

73 65 55 59 22 10 

55 60 63 61 21 15 

20 24 14 19 95 15 

65 63 62 63 21 12 

J1 

J2 

J3 

J4 

J5 

J6 

R1 

R3 

R5 

B 

rows are the 
response 
locations 

columns are the heat sources 
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Now apply actual power 

Tj3=134.9 Tj2=140.1 

Tj1=140.0 Tj4=135.8 

Tj5=124.7 Tj6=139.1 

Tref1=138.8 

Tref5=106.3 

Tref3=134.1 

TB=139.1 

Tamb=25 

Qj1 .4 

Q j2 .4 

Q j3 .4 

Q j4 .4 

Q j5 .5 

Q j6 .2 

Actual power 
in application 
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Compute some effective θ/Ψ values 

Take Tj1, for instance. Remember when it was 
heated all alone, we calculated its self-heating 
theta-JA like this:  

75
11

255107
q
TT

1

amb1j
A1j =

−
=

−
=

.
.θ

288
40

25140
q
TT

1

amb1j
A1j =

−
=

−
=

.
θ

Now let’s see: ≠
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And that’s not just a single aberration! 

Self heating 

θ j1A 288 vs. 75 

θ j2A 288 vs. 71 

θ j3A 274 vs. 65 

θ j4A 277 vs. 73 

θ j5A 199 vs. 125 

θ j6A 309 vs. 180 

Junction to Board 

Ψj1-B 2.2 vs. 10.0 

Ψj2-B 2.5 vs. 8.0 

Ψj3-B -10.5 vs. 3.0 

Ψj4-B -8.3 vs. 10.0 

Junction to Reference 

Ψj1-R1 3.0 vs. 2.0 

Ψj3-R3 2.0 vs. 2.0 

Ψj5-R5 36.8 vs. 30.0 
3.8x 

4.1x 

4.2x 

3.8x 

1.6x 

1.7x 

1.5x 

1.0x 

1.2x 

0.2x 

0.3x 

-3.5x 

-0.8x 
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Is the moral clear? 

• You simply cannot use published theta-JA values for 
devices in your real system, even if those values are 
perfectly accurate and correct as reported on the 
datasheet and you know the exact specifications of 
the test conditions. 

• Not unless your actual application is identical to the 
manufacturer’s test board – and uses just that one 
device all by itself. 
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So is it really this bad? 
Only sort-of. Let’s revisit the math for one device … 

a

n

2
nn11A1J1j TqqT +Ψ+= ∑θ

  

“effective” 
ambient 
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a1A1J1j TqT += θ

power, q 

Ta 
junction temperature , TJ1 

Ta’ junction temperature , TJ1 

′+=

+Ψ+= ∑

a1A1J

a

n

2
nn11A1J1j

Tq

TqqT

θ

θ

Ta 

shift in effective 
ambient 

Device in a 
system 

still the 
same slope 

1 

θJ1A 

1 

θJ1A 

Isolated 
device 

A graphical view 
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What about that “system” theta we 
saw earlier that was so different? 

junction temperature 

power 

Ta’ 

1 

θJ1A 

Ta 

the “system” 
theta-JA 

the isolated-device 
theta-JA ∑Ψ

n

2
nn1 q

1 

θJ1A
* 

device #1 
power/temperature 
perturbations will 
fall on this line 

NOT this one 
q1 

TJ1 
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when Q1 is 
zero, both of 
these will be 

zero 

a

n

2i
ii11j1aj1 TQQT +⋅Ψ+⋅= ∑

=

)(θ

How does effective ambient relate to board temperature? 

temperature 
rise, board to J1 

“system” slope for 
isolated device 

temperature rise, 
ambient to board 

a1a1B1B1j TQQ ′+⋅+⋅= θθ

aa1BB1j TTT ′+∆+∆=

a1B1aj1B TQ ′+⋅+= )( θθ

if any of these are non-zero, 
will be higher than aT′ aT

when Q1 is 
not zero, both 
of these will 
be non-zero 

effective 
ambient 
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How to harness this math in Excel® 

Controlling the matrix 
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3x3 theta matrix, 3x1 power vector Excel® math 

theta 
matrix 

power 
vector 

Matrix MULTiply 

{=array formula notation} 

array reference 
to theta matrix 

array reference 
to power vector 

obtained by using 
Ctrl-Shift-Enter rather 
than ordinary Enter 

multi-cell placement 
of array formula 
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7x3 theta matrix, 3x1 power vector Excel® math 

array formula now 
occupies 7 cells 

theta matrix is no longer square – 
# of columns still must equal 

# of rows of power vector 

don’t forget to use 
Ctrl-Shift-Enter 
 to invoke array formula notation 
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7x3 theta matrix, 3x2 power vector Excel® math 

the single MMULT array formula now occupies 
7 rows and 2 columns (one column for each 
independent power scenario result) 

power “vector” is now a 3x2 array – 
each column is a different power 
scenario, yet both are still processed 
using a single array (MMULT) formula 
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Temperature direct contributions and totals 
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Normalized responses at each 
location due to each source 

0

20

40

60

80

100

120

140

160

180

200

J1 J2 J3 J4 J5 J6 R1 R3 R5 B
response location

no
rm

al
iz

ed
 re

sp
on

se
 [C

/W
], 

ea
ch

 s
ou

rc
e J1 at 1 W

J2 at 1 W
J3 at 1 W
J4 at 1 W
J5 at 1 W
J6 at 1 W



Corporate R&D: 
Packaging Technology 96  APEC 2011 Power Electronics System Thermal Design (RPS) 

Some useful formulas 

• conduction resistance…………..……… 

• convection resistance…………...……… 

• thermal capacitance……………...…….. 

• characteristic time…………………..…. 
– (dominated by 1-D conduction) 

• characteristic time……………………... 
– (dominated by 1-D convection) 

• short-time 1-D transient response……... 

R = L
k ⋅ A

R = 1
h ⋅ A

C = ρcpV

τ =
ρcpL2

k

τ =
ρcpL

h

∆T = Q
A

2
πρcpk

t
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Terms used in preceding formulas 
•  L - thermal path length 
•  A - thermal path cross-sectional area 
•  k - thermal conductivity 
•  ρ - density 
•  cp - heat capacity 
•  α - thermal diffusivity 
•  η - thermal effusivity 
•  h - convection heat-transfer “film coefficient”) 
•  ∆T - junction temperature rise 
•  Q - heating power 
•  t - time since heat was first applied 

 

η = ρcpk

α =
k

ρcp
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mainly package 

materials/conduction effects 

mainly local 
application board 
conduction effects 

mainly environmental 
convection and radiation effects 

When do these effects enter? 

time 

ju
nc

tio
n 

te
m

pe
ra

tu
re

 

typical heating curve 
for device on FR-4 

board in still-air 

hundreds of seconds 

a second or so 

tens of seconds 
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if 

then and 

R⇒

R2≈

R4≈ 
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Cylindrical and spherical conduction 
(through radial thickness) resistance 

formulas 

Lk
r
r

R

Lk
r
r

R

i

o

i

o

⋅⋅










=

⋅⋅










=

π

π

2

ln

ln

•  L – cylinder length 
•  ri – inner radius 
•  ro – outer radius 

where 

Half-cylinder 
 
 
 
 

Full cylinder 
k
rrR

k
rrR

oi

oi

⋅

−
=

⋅

−
=

π

π

4

11

2

11

Hemisphere 
 
 
 
 
Full sphere 

[included angle] 
[solid angle] 
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• The device and system are equally 
important to get right 

Predicting the temperature 
of high power components 

• The system is probably more 
important than the device 

Predicting the temperature 
of low power components 
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Using the previous board example … 

75 65 55 60 22 10 

65 71 60 55 25 11 

55 60 65 61 21 15 

60 55 61 73 18 11 

22 25 21 18 125 14 

10 11 15 11 14 180 

73 65 55 59 22 10 

55 60 63 61 21 15 

20 24 14 19 95 15 

65 63 62 63 21 12 

J1 

J2 

J3 

J4 

J5 

J6 

R1 

R3 

R5 

B 

Qj1 0.5 

Q j2 0.5 

Q j3 0.5 

Q j4 0.5 

Q j5 0.2 

Q j6 0.02 

power 
vector 

theta array 
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Observe the relative contributions 

=  (75 x 0.5)    +  
       (65 x 0.5) + (55 x 0.5) + (60 x 0.5) + (22 x 0.2) + (10 x 0.02) 
                                                                                           +   25 

For junction 1 (a high power component) we have: 

=       37.5     +   32.5 + 27.5 + 30 + 4.4 + 0.2     +     25 

=   37.5   +        94.6             +    25 

  

  

the device itself … 
the other devices … 
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Relative contributions to ∆TJ6 

=  (10 x 0.5) + (11 x 0.5) + (15 x 0.5) + (11 x 0.5) + (14 x 0.2) 
                                                      +      (180 x 0.02) 
                                                                                        +   25 

=    5.0 + 5.5 + 7.5 + 5.5 + 2.8   +   3.6         +   25 

=   26.3   +                     3.6              +   25 

  

the device itself … 

the other devices … 
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Thermal runaway 

Thermal runaway 
• Non-linear power vs. junction temperature device 

characteristic 
 

• System thermal resistance isn’t low enough to 
shed small perturbations 
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A linear thermal cooling system 

xJxJ TQT +⋅= θ

Jx

xJ TTQ
θ
−

=

JxdT
dQ

θ
1

=

junction temperature as function 
of power, theta, and ground 

… solving for power 

sensitivity (slope) of power with 
respect to temperature 
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power 

junction temperature 

Q 

Tx TJ 

device line 

system line 

tendency 
to cool 

tendency 
to heat 

Effect of device line slope on system stability 
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system cannot 
be successfully 

powered up 

system 
temperature 
cannot be 
maintained 

Operating points of thermal system when 
device line has negative second derivative  
power 

junction temperature 

Q2 

Tx 
TJ2 

power goes up with 
increasing temperature 

device line 

system line 

the stable (that is, 
real) operating point 

an unachievable 
operating point 

tendency 
to cool 

tendency 
to heat 

tendency 
to cool 

Q1 

TJ1 

but rate of increase 
falls with increase 
(negative second 
derivative) 
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even turning 
the device on 
destroys it 

any 
perturbation 
will cause 
runaway 

Operating points of thermal system when 
device line has positive second derivative 

power 

junction temperature 

Q 

Tx TJ 

power goes up with 
increasing temperature, 
but rate of increase rises 
with increase (positive 
second derivative) 

device line 

system line 

the stable 
(that is, real) 
operating 
point 

an unachievable 
operating point 

tendency 
to cool 

tendency 
to heat 

tendency 
to heat 
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Generic power law device and 
generic linear cooling system  

power 

junction temperature Tx 

device 
line unstable 

operating 
point 

system line B 

Ty 

stable 
operating 
point 

runaway point for 
original theta 

runaway point for 
original thermal ground 

system 
line C 

1 

θJx1 θJx1 

1 

1 
θJx2 

system line A 

TR2 TR1 

Q 

TJ 
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Let’s see how it works 

device 
operating 

curve 

25°C/W 
system 

stable 
operating 

point 

unstable operating point 

10°C/W 
system 

NO 
operating 

point! 

40°C/W 
system 

0.0 

0.4 

0.8 

1.2 

1.6 

2.0 

20 40 60 80 100 
Junction Temperature [C] 

D
ev

ic
e 

Po
w

er
 D

is
si

pa
tio

n 
[W

] 
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Unfortunate coincidence of terms! 

xay =

xey =

IVQ ⋅=

a mathematical 
“power law” device power 

an “exponential” 
power law (base is e) 
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Definition of power law device 

10
T

o 2II =

( ) 







== 2
10
T

o
10
T2

o eIeII lnln

λ
T

oeII =








−
=

2
1

21

I
I

TT

ln
λ

λλ
T

o

T

oR eQeIVQ ==

λ
λ

T
o eQ

dT
dQ

= λ

λ

T

2
o

2

2
eQ

dT
Qd

=

rule of thumb for leakage; 
2x increase for every 10°C for constant voltage, power does 

the same 

1st and 2nd derivatives 

both always positive 

defining: 
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The mathematical essence 

Jx

xTTQ
θ
−

=

λ
T

oeQQ =

λ
θ

λ xT

oJx
e

Q
k

−

=

zekz =

System line 

Power law 
device line  

λ
xTTz −

=

Qe
Q
1q

xT

o 












=

−
λ

Non-dimensionalizing 

temperature 

power 

where: 

zeq =
(power law device) 

kzq =

Leads to: 

(system) 

Eliminating q: 
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Perfect runaway transformed 

1zz 0T =−

ez 

at point of tangency, 
slope equals height 

zT 1 z0 

k=ez 

λ
xTTz −

=
zT 1 z0 

k=ez 

zT 1 z0 

k=ez 

zT 1 z0 

k=ez 
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Transforming the nominal system 

ez 

at point of 
tangency, slope 
equals height 

1 

k=e 

“operating” 
points 

k > e 
(2 intersections) 

k < e 
(no intersections) 

nominal 
system line A 
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Everything transformed 

non-dimensional 
power 

device line 

unstable, 
non-operating 
point 

stable 
operating 
point 

system line A 

zR2 

runaway point for 
original theta 

runaway point for 
original thermal ground 

system line B 

system line C 

non-dimensional temperature 
zR1 

k1 

1 zx1 

k2 

1 

)( 1R1 kz ln=1kz 1x1 −= )(ln 1z 2R =

ek2 =

k1 
1 

q=k1z 

q=k1(z-zx1) 

q=k2z 

q=ez 
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“Perfect runaway” results 
in original terms 









=

o1Jx
1R Q

T
θ

λλ ln

λ
θ

λλ −







=

o1Jx
1x Q

T ln






 +−

=
1T

o
2Jx

x

e
Q

λλθ

λ+= x2R TT

runaway temperature 
based on original slope 

max ambient that 
goes with it 

runaway temperature 
based on original ambient 

system resistance 
that goes with it 
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The “operating” points 

ez 

“operating” 
points 

1 

kz 

sz
s ekz =

uz
u ekz =

sz uz

stable 

unstable 
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Newton’s method for the intersections 

i

i

1i

z
11

z
e
k

z
−









=+

ln

)(
)(

i

i
i1i zF

zF
zz

′
−

−=+

zkz =ln

kzzzF ln−=)(

For k/e ranging between 1.01 and 1000, convergence is 
to a dozen significant digits in fewer than 10 iterations. 

zekz =

e
ke

1
k
1zo

⋅
== this initial guess 

converges to lower, 
stable point 







+==

e
k1kzo lnln

this initial guess 
converges to upper, 

unstable point 

z
11zF −=′ )(
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And the intersection points come from 
… 

stablexstable zTT ⋅+= λ

find the non-dimensional intersections first, 
then 

unstablexunstable zTT ⋅+= λ
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A paradox 

junction 

thermal ground 

50°C/W 

lead 

100°C/W 

100°C 

75°C 

25°C 

0.5 W 

thermal runaway, 
based on θJx=150°C/W, 

calculated to be at 125°C 

junction 

thermal ground 

50°C/W 

lead 

0.2°C/W 

100°C 

75°C 

74.9°C 

0.5 W 

thermal runaway, 
based on θJx=50.2°C/W, 
calculated to be at 150°C 

identical 

Case A Case B 
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100 + 5.02 °C 

75 + 0.02 °C 75 + 10 °C 

100 + 15 °C 

Paradox lost 

junction 

50°C/W 

lead 

100°C/W 

(fixed) 25°C 

junction 

50°C/W 

lead 

0.2°C/W 

(fixed) 74.9°C 

Case A Case B 

raise the power by 0.1 W and see what happens 
0.5 + 0.1 W 0.5 + 0.1 W 
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Illustrating the paradox 

100°C 25°C 74.9°C 

common nominal 
operating point 

0.5 W 

Case A 

Case B 
device 
line 
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        [°C] 17.9 17.8 

       [W] 9.4E-5 1.02E-3 

Real datasheet example 

Vr [V] 12 40 

Tmax [°C] 125 125 

Tref [°C] 75 75 

Itmax [A] 8.50E-3 2.80E-2 

Itref [A] 5.20E-4 1.70E-3 

λ
oQ

the device power curve parameters 
@12V @40V 








−
=

ref

ref

I
I

TT

max

max

ln
λ

oR0 IVQ =λλ
refT

tref

T

t0 eIeII
−−

==
max

max

λ
T

0eII =

14.4
2

10
==

)(ln

rule of thumb 
gave us: 

† MBRS140T3 

raw device data† 
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 1.609 

83.5 

101.3 

        [°C] 17.9 17.8 

       [W] 9.4E-5 1.02E-3 

        (compare to unity) 10.6 0.97 

given 
theta 

         max [°C] 117.2 74.4 

         [°C] 135.1 92.2 

given 
ambient 

         max [°C/W] 1055 96.6 

         [°C] 92.9 92.8 

Runaway analysis in nominal system 

Vr [V] 12 40 

Tmax [°C] 125 125 

Tref [°C] 75 75 

Itmax [A] 8.50E-3 2.80E-2 

Itref [A] 5.20E-4 1.70E-3 

λ
oQ

e
k

xT

1RT

2Jxθ

2RT

3120z .=

raw device data† 

computed results 
@12V @40V @40V 

3152z .=

These translate into: 
 a stable operating point at 80.6°C (and 0.09 W), 
  an unstable point at 116.3°C (0.69 W) 

1001Jx =θ 601Jx =θ

75Tx =
1T

oJx

x

e
Qe

k −
−

= λ
θ

λ

† MBRS140T3 
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HTRB example 

• Bidirectional Thyristor in reliability 
stress test (High Temperature 
Reverse Bias) 

• Goal is life tests at elevated 
temperature (say 125°C) 

• Problem is, they don’t last very long, 
and if junction temperature is 
anything like the chamber 
temperature, they appear to fail way 
too early good! 

G 
MT1 

MT2 

40 kΩ 

640 V 

- 

HTRB test circuit 

+ 

*Special acknowledgements to Dave Billings and Geoff Garcia for their contributions to this project 
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HTRB data - sockets without heatsinks
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DUT T1
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DUT T7
DUT T8
DUT T9
DUT T10

HTRB DUT tab temperature vs. test time 
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HTRB data - sockets without heatsinks

0
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1

1.5

2
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0 2000 4000 6000 8000 10000 12000

test time [s]

D
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DUT W1
DUT W2
DUT W3
DUT W4
DUT W5
DUT W6
DUT W7
DUT W8
DUT W9
DUT W10

HTRB DUT power vs. test time 
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HTRB example 
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Quick calculations from datasheet 

JAdaJ PTT θ⋅+=

)( 40000640 IIPd ⋅−⋅=

• At room temp, if IDRM is 5 uA, then Pd is about zero (≈3mW), 
and TJ should thus equal chamber set point. 

• At 85°C, IDRM is about 0.1-0.2mA, thus Pd is on the order of 
0.1W, so depending on theta-JA, TJ could be several 
degrees hotter than chamber set point (note, however, that 
TJ will still be well within 1°C of heatsink temperature, THS) 

• HOWEVER, at 125°C, if IDRM is 2mA, then Pd will be in 
excess of 1W. Depending on theta-JA, TJ could be 30-60°C 
above chamber set point (though still within a couple of 
degrees of heatsink temperature, if known). 

G 
MT1 

MT2 

40 kΩ 

640 V 

- 

HTRB test circuit 

+ 

HSJdHSJ PTT −⋅+= θ
or 
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Calculations based on actual measurements 

JAdaJ PTT θ⋅+=

1000
senseVI =

• At room temp, IDRM (via Vsense) is 0.2uA, thus Pd is about 
zero (≈0.1mW), and TJ should thus equal chamber set 
point. 

• At 85°C, IDRM is about 0.1-0.2mA, thus Pd is on the order of 
0.1W, so depending on theta-JA, TJ could be several 
degrees hotter than chamber set point (note, however, that 
TJ will still be well within 1°C of heatsink temperature, THS) 

• At 125°C, IDRM is 2-3mA; Pd could be as high as 1.5W 

• Max current observed was nearly 8mA (for Pd of 2.5W), 
and estimated TJ of 170°C just prior to device failure. 

G 
MT1 

MT2 

40 kΩ 

640 V 

- 

Modified HTRB 
test circuit 

- 

+ 

1 kΩ Vsense 

+ 

HSJdHSJ PTT −⋅+= θ
or 

)( 41000640 IIPd ⋅−⋅=
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Actual “blocking current” data (time implicit) 
blocking current when theta-JA=35°C/W (DUT's in unmodified HTRB board)
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Actual “blocking Pd” data (time implicit) 
blocking Pd when theta-JA=35°C/W (DUT's in unmodified HTRB board)
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Power vs. temperature (linear scales) 
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Proof-of-concept modified HTRB fixture 
After observing a number of device failures at unacceptably short times 
and under what would have been expected to be junction temperatures 
well below the maximum rated temperature, the hypothesis of “thermal 
runaway” in the chamber became the favored explanation of the 
failures. If true, then lowering the theta-JA of the devices should provide 
some margin for avoiding the problem. Consequently, crude heatsinks 
were constructed from some handy copper test panels and attached to 
each of nine additional test specimens. 
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I vs. temperature on better heatsinks 
blocking current when theta-JA=10°C/W (using external 12°C/W heatsink)
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What if multiple devices on heatsink? 
• Each device heats its neighbors to varying 

degrees, depending on distance 

• This adds background heat, that 
is, it raises the “effective ambient” 
of each device 
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Graphically, background heat does this 
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curve 
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