

ON Semiconductor®

Driving Efficient Power Solutions from Standby to Active Mode (from line to load)

Dhaval Dalal Technical Marketing Director Christophe Basso Applications Manager

APEC-exhibitor-sem-ON February 2004

- Power train overview new complexities
- Challenges (PSMA roadmap, energy standards)
- Solutions for standby power savings
- Solutions for active mode savings
- Conclusions/Questions

ON Semiconductor®

The Power Train – Line to Load

system level solutions

ON

ON Semiconductor®

Challenges – A PSMA Perspective

ON Semiconductor

Regulatory Trends

- Standby power requirements in effect in various parts of the world
 - IEA, Energy-star, Blue Angel, CECP
 - Requirements depend on type of equipment
 - Input power levels are reducing
 - Only 25% of energy consumed in standby
- Active mode efficiency is the next frontier
 - Test methodology defined (CEC)
 - EPA/CEC sponsored contest
 - Some OEMs driving their own standards

ON Semiconductor®

ON Semiconductor®

Lowering *standby* power Skip-cycle or Frequency foldback?

Christophe Basso, application manager ON Semiconductor, Toulouse, France

- A supply is left connected to the line without load, the power drawn from the mains shall be minimum.
- \rightarrow battery chargers, AC/DC wall adapters etc.
- A system goes into sleep-mode while still having some intelligent activity.
- \rightarrow TV sets (LED is on, μ P waiting for remote control), VCRs

EC recommendations:

ON Semiconductor®

	No-load power consumption					
	Phase 1	Phase 2	Phase 3			
Rated Input Power	1.1.2001	1.1.2003	1.1.2005			
\geq 0.3 W and < 15 W	1.0 W	0.75 W	0.30 W			
\geq 15 W and < 50 W	1.0 W	0.75 W	0.50 W			
\geq 50 W and < 75 W	1.0 W	0.75 W	0.75 W			

APEC-exhibitor-sem-ON

February 2004

No-load losses can easily go up to 1W!

APEC-exhibitor-sem-ON February 2004

ON Semiconductor®

www.onsemi.com

Suppose we want to start-up in 250ms with: $CVcc = 22\mu F$, UVLO = 12VIstartup total (IC + capacitor) = 50 μA Universal mains input, 100 – 370VDC A 250ms time sequence imposes a current of: $i = \frac{12 \cdot 22\mu}{250m} = 1mA$

- Standard connection: $R = (100-12)/1m = 88k\Omega^{2}$ $\rightarrow P@370VDC = 1.55W!$
- Half-wave connection: $28k\Omega$ $\rightarrow P@370VDC = 1.22W!$
- High-voltage technology:
- →Isource = 4mA, then startup time equals 66ms →P@370VDC = 13mW! P= 35μ ·VDC

Rstartup

(Vac)

Switching frequency: *THE* actor in the low-standby tragedy...

« Why not further reducing the duty-cycle? »

- Gate-charge losses are almost independent of duty-cycle
- MOSFET drain-node capacitive losses are not eliminated
- Controller internal activity is still important (all blocks active)
- Minimum duty-cycle is also limited to LEB + prop. delay

The *first* approach: hysteretic regulation

Slicing the switching pattern...

- introduced 20 years ago with the MC33063...
- also called...ripple regulator!
- generates a lot of noise
- Excellent natural standby!

Novel approach: mixing *fixed frequency* and *skip cycle*...

NCP120X

NCP120X for noise free operation in standby...

APEC-exhibitor-sem-ON February 2004

A practical solution using NCP1203/1217...

A 84mW@230VAC standby power at no-load was measured!

The controller self-supply: a designer's *nightmare*

• decrease the aux. turn ratio \rightarrow can't self-supply the IC

filter

Fault detection *independent* of Vcc..

Frequency reduction via Quasi-Resonance

"Switching ON at the minimum drain-source voltage..."

It brings:

ON Semiconductor®

- Soft switching ⇒ smaller MOSFET...
- ZVS ⇒ reduced Miller effect on Qg
- Less EMI noise ⇒ RF friendly
- Discontinuous conduction only ⇒ easy to stabilize
- Core reset offers better short-circuit performance
- With good transformers ⇒ no RCD clamp!

What are *Hard* and **Soft** switching SMPS??

Core reset detection ensures **BCM**^{*} operation

Switching period moves w. line and load variations:

$$T_{SW} = Ip \cdot Lp \cdot \left[\frac{1}{Vin_{DC}} + \frac{1}{\left[\frac{Np}{Ns} \cdot (Vout + Vf) \right]} \right]$$

Bulk ripple introduces natural EMI jittering!!

* BCM = Borderline Conduction Mode

Free-running operation **needs** a frequency clamp!

* VFM = Variable Frequency Mode

APEC-exhibitor-sem-ON February 2004

The *Feedback* voltage determines the operating mode

A 30W universal mains demonstration board

Pin @ no-load = 108mW@240VAC!!

NCP1205

APEC-exhibitor-sem-ON February 2004

Drain-source waveforms at different power levels

Frequency reduction via *Toff* expansion

NCP1215

Frequency reduction via *Toff* expansion

Toff expansion brings *extremely* low standby...

NCP1215

Power Factor Correction – observing the FB signal

APEC-exhibitor-sem-ON February 2004

www.onsemi.com

Power Factor Correction – standby improvement

Shut-down your PFC in standby-mode and pass the 100mW barrier...

Power Factor Correction – auto-shutdown controller

- □ NCP1600 observes the FB signal:
- a) enters skip mode and maintains Vout
- b) shuts itself off until normal mode
- □ implements follow-boost mode
- □ borderline operation with Fsw clamp
- □ works with any PWM controllers!

NCP1600

Power Factor Correction – first fixed frequency DCM!

NCP1601 principle of operation (patented by ON) NCP1601

Power Factor Correction – ease of implementation

NCP1601 a truly simple application schematic!! NCP1601

How to measure *low* standby power?

• using a DC supply (e.g. 325V) and measuring incoming I and V

 \rightarrow the best is to use a good old needle amp-meter which mechanically integrates bursts...

 \rightarrow the difference between DC results and AC results is around 10-15% more for AC.

• use a wattmeter (highest current sens.) toggled in accumulation mode and integrate W-hours.

Summary

- **Skip cycle** offers a simple mean to improve standby:
- cheapest method to slice the switching pattern
- combined with a startup source, it gives good results
- \rightarrow It generates some output ripple
- \rightarrow If the skip occurs at high peak, acoustical noise can be heard
- Free-running Frequency foldback requires a more complex controller:
- implement ZVS operation
- offers soft transition between normal operation and light load
- generates lower ripple level compared to skip
- \rightarrow The controllers gains in complexity
- \rightarrow Discrete valley jumps can make noise
- Quasi-fixed Ton, Toff expansion further simplies the control section:
- ease of implementation, both on silicon and final circuit
- \rightarrow Audio range operation requires peak compression

Improving PFC Efficiency

- CCM for higher power, CRM/DCM for lower power
- Topology improvements drive component changes

ON Semiconductor®

Follower Boost Waveform (MC33260, NCP1600)

MC33260 – Apps Diagram

Vo: 200-400 V => •33% Reduction in Conduction Losses •43% Reduction in Inductor Size

ON Semiconductor®

NCP1650 - CCM PFC Control

Less is more....

ON Semiconductor®

Typical Applications

- power up to 5 kW
- Server Power Converters
- Front end for Distributed Power Systems
- Desktop Power Systems

Features

Benefits

Average Current Mode PWM	Unity Power Factor
Fixed Frequency Operation	Predictable Filtering Requirements
Continuous or discontinuous mode operation	User Flexibility
Shutdown Function	Helps Meet Standby Regulations
Fast Line/Load Transient Compensation	Better Performance to Line or Load Changes
Over Voltage Protection	High Reliability
Accurate Power Limit	Allows use of smaller power components
Current Limit	Avoids excessive heating
Brownout Protection	

Power Limit Specs	Min	Тур	Max	Unit
NCP1650 Power Multiplier Gain (-	11.8	12.8	13.3	1/V
40 to 125 deg C)	100	108.5	112.7	%
UCCxxxx Power Limit (-40 to 85	375	420	485	μW
(based on V ² scheme)	100	112	129.3	%

- NCP1650 cuts the excess power requirement by more than 50% (from 29.3% to 12.7%)
 - These numbers come directly from spec tables
- Other PFC controllers have NO power limiting or offer less accuracy compared to the above

ON Semiconductor

Improving SMPS Efficiency

- Topology Upgrade (Flyback -> Forward -> Bridge)
- Soft-switching extends range (QR, Active clamp etc)
- Component level improvements (FET, sync rec etc)

ON Semiconductor®

Active Clamp Topology

- Off-line Active Clamp Forward Converters
 - Clamp Circuit (Switch and cap) resets the core
 - This topology allows soft-switching
 - Synchronous Rectification available naturally

APEC-exhibitor-sem-ON February 2004

NN

ON Semiconductor

Single Stage Option

- Elimination of a power processing stage
- Requires single switch, single magnetic, single rectifier & single cap
- Low frequency output ripple can be high
- Ideal for mid-high (12-150) voltage output systems

ON Semiconductor®

On-Board Power Conversion

- Need efficient in-rush
 protection
- Isolated dc-dc module size shrink drivers
 - Topology

ON Semiconductor®

- Packaging
- Integration
- Components
- Architecture shift to IBCs
- Evolution of point of load solutions

Hot Swap Controller and FET

ON Semiconductor

ON

Controller

This approach is complex

Power resistor increases cost and losses

- Linear Current Limit
- Thermal Protection
- SOA Operation Guaranteed
- 40 mΩ, 110 Volt FET
- Extremely Simple to Design
- Cost Effective

ON Semiconductor®

NCP1560 Demo Board

High Efficiency Forward Converter Implemented Using NCP1560:

- Vin: 35-75 V (Telecom Input)
- Vout: 3.3 V @ 30 A (100 W)
- Dimensions: 2.5" x 3.0" x 0.4"

APEC-exhibitor-sem-ON February 2004

www.onsemi.com

NCP1030 – Low power regulator

ON Semiconductor

ON

- An isolated bias supply for a telecom system was built using the NCP1030. The supply delivers 2 W at 12 V.
- The supply is ideal for biasing a secondary side controller.
- A discontinuous flyback topology is used.
- Application Note AND8119/D describes the bias supply design.
- Please contact your sales representative for availability of demonstration boards.

ON Semiconductor

Conclusions

 Newer architectures and components optimized for them will help achieve the goals cost effectively

www.onsemi.com