
To learn more about onsemi™, please visit our website at
www.onsemi.com

ON Semiconductor

Is Now

onsemi and       and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or
subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi
product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without
notice. The information herein is provided “as-is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality,
or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all
liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws,
regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/
or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application
by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized
for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for
implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees,
subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative
Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.

© Semiconductor Components Industries, LLC, 2016

February, 2016 - Rev. 2
1 Publication Order Number:

AND9369/D

AND9369/D

AX MicroLAB Software

Manual

Introduction
The AX MicroLAB is a utility tool that can be used to

easily configure ON Semiconductor microcontrollers.
The main features of the AX MicroLAB are:

• Hardware and Functions Configuration through
Graphic Interface

• Preset for ON Semiconductor DVK−2

• Built−in Code Examples

The AX MicroLAB generates a code for the given settings
that automatically sets the microcontroller registers.

AX MicroLAB

Starting a New Project
To create a new project in the AX MicroLAB run the

program and chose the option “New Project” on the dialog
window. A new panel will be shown where the project
directory and the microcontroller can be chosen. Once both
the path and the desired microcontroller have been set, click
on the “Ok” button. The program will generate an “.xml”
file, source codes and headers inside the chosen path.

Opening an Existing Project
To open an existing project run the program and chose

“Open Existing Project”. Select the directory where the
“.xml” savefile is located. The selected project will be
loaded.

Note that only a project can be open at a time.

The Main Panel
The AX MicroLAB main panel is shown in Figure 1. It is

divided in four areas: pin configuration (red), hardware
configuration (green), function configuration (blue) and
code generation (violet).

In the pin configuration area it is possible to select the
function for each pin. Almost every pin can be used as a
GPIO (General Purpose I/O) pin. If a pin is set as GPI, it is
possible to configure the pull−up resistor function if needed.
If a pin is set as GPO, it is possible to configure whether the
static output should be 1 or 0. It is also possible to configure
each pin with the associated alternate functions. The
complete list of alternate functions for each pin can be found
in the AX8052 Family Programming Manual.

www.onsemi.com

APPLICATION NOTE

http://www.onsemi.com/

AND9369/D

www.onsemi.com
2

Figure 1. AX MicroLAB Main Panel

The hardware configuration area allows to set other
hardware settings such as the System Clock or the Radio
Chip Configuration. It is here possible to enable the Debug
Interface used with the AXSDB. If an ON Semiconductor
DVK−2 Mainboard is used for the project the “DVK−2
Board” option can be activated. This option provides a
standard pin configuration, that can also be modified. If an
LCD is connected at the SPI ports of the microcontroller, the
“LCD” button can be activated. This option allows an easy
configuration of the LCD thanks to the respective functions

in the Libmf library. It is also possible to load some example
preset. Each option in this area can interact with the pin
configuration changing and/or blocking some pin setting.

Once the hardware configuration has been completed it is
possible to click on “Accept Hardware Configuration” to
access the Function configuration area. Here the different
chip functions can be configured. The options in this area
can not modify the pin configuration and it is possible that
some functions can not be enabled for the given hardware
configuration. In this case it is possible to modify the actual

http://onsemi.com

AND9369/D

www.onsemi.com
3

hardware setting by clicking on “Change Hardware
Configuration”.

Finally the “Save and Compute Registers” button will
save the project and generate a code that can be downloaded
onto the microcontroller using the AXCode::Blocks editor
which can be opened by clicking on “Open Project Editor”
(AX8052−IDE Software Package must be installed).

It is recommended to proceed as follows:
1. Chose the hardware settings. Hardware

configuration panels automatically set the needed
pins for the entered configuration. This is an easy
way to configure most of the pins.

2. Set the pins in the desired configuration. Error
messages will appear in case the entered pin
configuration is wrong.

3. Click on the “Accept Hardware Configuration”
button.

4. Proceed with the function configuration. Functions
may be unavailable according to how the hardware
has been configured. To go back to the hardware
configuration click on the “Change Hardware
Configuration” button.

5. Click on the “Save and Compute Registers”
button. This writes the firmware.

6. Click on “Open Project Editor” to start the
AXCode::Blocks IDE.

Hardware Configuration
Please keep the AX8052 Family Programming Manual as

reference for the settings here described.

Oscillators
This panel allows to declare the oscillators that are used

in the project and their respective operating frequencies. The
declared oscillator will be available in other panels as clock
source. Activating an oscillator will automatically set the
corresponding pins in the pin configuration.

It is also possible to access the calibration panel for the
Low Power Oscillator (LPOSC) and for the Fast RC
Oscillator (FRCOSC).

LPOSC Calibration
To enable the LPOSC calibration simply chose a

calibration source from the menu. The optimal prescaler and
the maximal calibration filter constant kfilt are calculated
automatically. It is possible to set the desired kfilt as a
percentage of the maximal kfilt.

For more details on the LPOSC calibration, please consult
the AX8052 Family Programming Manual.

FRCOSC Calibration
To enable the FRCOSC calibration simply chose a

calibration source and a prescaler. The resulting frequency
is displayed. Keep in mind that it is desirable to keep the
resulting frequency between 500 and 1000 Hz. The maximal
calibration filter constant kfilt is calculated automatically. It

is possible to set the desired kfilt as a percentage of the
maximal kfilt.

For more details on the FRCOSC calibration, please
consult the AX8052 Family Programming Manual.

System Clock
Here the system clock source can be chosen amongst the

oscillators activated in the “Oscillators” panel. The source
can be scaled, the resulting frequency is displayed.

Radio Chip Configuration
If the chosen microcontroller is the AX8052F100 it will

be possible to load preset configurations for different
ON Semiconductor radio chips. Other radio chips can be
used and manually configured. If the “None” option is
selected in the “Radio Chip” menu, the pins usually used for
the radio chip can be configured as GPIO.

If other microcontrollers are chosen the corresponding
radio chip will be automatically set with the appropriate
preset configuration.

If the DVK−2 mainboard is used together with add−on
modules then the appropriate radio chip must be selected
here.

External IRQ
The external interrupt request can be enabled here. If an

external interrupt source is activated the selected pin will be
set accordingly. To set the priority of the External interrupt
go to the “IRQ Configuration” panel in the Function
Configuration area.

Power Configuration
When the microcontroller goes in sleep mode the two

XRAM memory block can be retained. In this panel it is
possible to chose which memory block to retain.

Debug Link Enable
By choosing this options the needed pin will be

automatically configured and the generated code will
initialize the Debug Link Interface.

LCD
This option can be activated if an LCD is connected to the

microcontroller through the SPI ports. The generated code
will initialise the LCD with the appropriate Libmf functions.

DVK−2 Board
This button sets a standard hardware configuration for the

ON Semiconductor DVK−2 Mainboard. This template is a
suggested configuration to let the ON Semiconductor
DVK−2 Mainboard work properly. By chosing it, it will still
be possible to modify the pin configuration and the hardware
settings.

Examples
The AX MicroLAB provides some example presets. Each

preset can modify the pin configuration and configure some
of the chip functions. These examples are intended for the

http://onsemi.com

AND9369/D

www.onsemi.com
4

ON Semiconductor DVK−2 Mainboard, although they can
be downloaded on any configurable ON Semiconductor
microcontroller. If you are using an ON Semiconductor
DVK−2 Mainboard, it is preferable to first click on the
“DVK−2 Board” button, then chose the desired example.
Some of the provided examples can run at the same time.

The available presets in AX MicroLAB are:
• Sigma−Delta DAC: a DMA buffer containing a sine

signal is created. The first DMA channel is set to work
with Timer 0 configured as �� converter. The output
signal can be measured with a scope on pin PA0 (pin 23
for the AX8052F100, pin 30 on AX8052F151 and
AX8052F143). This example illustrates the
initialisation and the use of the DMA and the ��
functionality of the timers.

• ADC Temperature/VDDIO: the ADC is configured to
sample the temperature by using the microcontroller
built−in temperature sensor and the VDDIO. The
measured temperature and VDDIO are written on a
DMA buffer. An interrupt call is generated when the
DMA buffer is full. The mean value of the temperatures
and of the VDDIO written in the buffer will be
displayed on the Debug Link window and on the
display in case a DVK−2 Board is used. This example
illustrates the working principle of the ADC together
with DMA interrupts handling.

• Stopwatch: Timer 2 is configured as a reference for a
stopwatch that can be controlled with SW4 and SW5
buttons on the DVK−2 Board. The time will be
displayed on the Debug Link window and on the
display. This example illustrates GPIO interrupts
handling and how to use timers for timing reference.

• Frequency Measure: Input capture is used to determine
the frequency of a signal. Timer 1 is used as the input
capture source while Timer 2 is used to generate a
signal that triggers the input capture. Timer 2 can be
modified to generate different frequencies. This
example allows to measure frequencies between 306 Hz
and 1.25 MHz. This example shows how to use the
input capture function combined with the DMA.

• Standby Mode: this preset demonstrates how to
correctly put the microcontroller in standby mode and
how to wake it up using a GPIO interrupt (SW5 on the
DVK−2 Board).

• Wakeup Timer: this example shows how it is possible
to wake up the microcontroller from sleep mode using a
wakeup timer.

Function Configuration
Please keep the AX8052 Family Programming Manual as

reference for the settings here described.

Timer Configuration
The three timers can be configured in this windows.

Timers are used by other functions such as UART, PWM

(Output Compare), Input Capture and ��.. The Timer
operating mode and period can be set, the resulting timer
frequency is displayed. In the timer configuration the
interrupt mode can be chosen for each timer. In order to
enable the interrupt for each timer it is necessary to activate
the corresponding cell in the “IRQ Configuration” panel.

Analog Comparators
In order to enable this function the correct pin

configuration must be set. The input an the reference for the
two analog comparators can be chosen. The result of the
comparation is given on the respective pins configured ad
“COMPO”.

SPI Configuration
In order to enable this function the correct pin

configuration must be set. The microcontroller can be
configured as Master or Slave device. If the microcontroller
has to be operated as slave peripheral, the three−wires or the
four−wires configuration can be chosen.

UART Configuration
In order to enable this function the correct pin

configuration must be set. Enabling one of the two UART
interface will automatically enable the selected timer. The
selected timer is reserved for the UART interface and other
function can not use it as reference. The two UART
interfaces can use the same timer if it is desired that they
have the same baud rate.

PWM Configuration
In order to enable this function the correct pin

configuration must be set. Once one of the PWM is enabled
the corresponding timer is activated, if it is not already on,
in the Timer Configuration Windows where it can be
configured. This function will not reserve the timers, hence
other functions can use the same timer as the PWM.

Input Capture
This window allows to fully configure both Input Capture

channels. Once one of the Input Capture channel is enabled
the selected timer is activated, if it is not already on, in the
Timer Configuration Windows where it can be configured.
This function will not reserve the timers, hence other
functions can use the same timer as the Input Capture.

Sigma Delta
In this window the �� feature of the microcontroller can

be configured. To each Timer correspond a �� channel. If
one of this channel is activated the corresponding timer will
be enabled and reserved in the Timer Configuration window.
Therefore other function will not be able to use a timer set
to ��.

ADC, Temperature & VDDIO Measure
Here the four ADC channels can be enabled and

configured. Further it is possible to set the conversion
control, the power saving mode and the clock source for the
ADC.

http://onsemi.com

AND9369/D

www.onsemi.com
5

Wakeup Timer
The two wakeup timers of the microcontroller can be

activated and configured.

Watchdog Timer
The watchdog timer can be activated and configured.

IRQ Configuration
Interrupt sources can be activated in this panel and their

respective priority can be set. If an interrupt source is
activated, the generated code will define an Interrupt
Service Routine (ISR) and an interrupt flag. If the GPIO
interrupt source is activated it will be possible to configure
the interrupt on port change for all the pins of the
microcontroller.

DMA Configuration
The two DMA channels can be configured. The DMA

buffer can be initialised using the prototype contained in the
file “easy_dma.h”

Generated Files
When a new project is created the following files are

generated in the project folder:

File Description

Overwritten
on

“Save and
Compute

Registers”

..\save.xml .xml file containing the
project informations

yes

..\AXML.cbp Codeblocks project file no

..\AXML.layout Codeblocks projet layout no

..\irq.h Header file containing the
prototype for the activated
ISR and interrupt flags

yes

..\definitions.h Header file describing spe-
cial functions and presets
activated for the project

yes

..\xy_example.c Source code containing
the code for the corre-
sponding example preset

no

..\xy_example.h Header file for
xy_example.c

no

..\main.c Main code no

..\setRegisters.c Source code containing
functions for the configura-
tion of the microcontroller
with the selected settings.

yes

..\setRegisters.h Header file for
setRegisters.c

no

..\easy_dma.c Definition of the functions
declared in easy_dma.h

no

..\easy_dma.h Prototypes of utility func-
tions and buffer descriptor
for the initialisation of DMA
channels

no

..\utility.c Definition of the functions
declared in utility.h

no

..\utility.h Prototypes of utility func-
tion used in some example

no

Templates
Hardware and functions configurations can be saved as

template for other projects.
In the menu bar click on “Project” and then on “Save as

Template”. The actual project configuration will be saved.
To load a template click on “Project” and the go under

“Load Template”. By choosing one of the available
templates the corresponding configuration will be loaded.

The templates are stored in the “Templates” folder in the
program install directory. To erase a template simply delete
the template file.

Templates can be shared between projects with different
microcontrollers.

Firmware Structure

Main.C
This file represent the skeleton of the firmware. The main

file has the simplified dummy structure shown in Code 1.

http://onsemi.com

AND9369/D

www.onsemi.com
6

Code 1.
Dummy Structure of the Main Function of the Firmware

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

void main(void)

{

 _sdcc_external_startup();

 ax8052_setup();

//Examples Initialization

 EA = 1;

 Ex1_init();

 Ex2_init();

 Ex3_init();

 ...

 Exn_init();

//Main Loop

 for (;;)

 {

 EA = 0;

 if(Ex1_work())

 continue;

 if(Ex2_work())

 continue;

 if(Ex3_work())

 continue;

 ...

 if(Exn_work())

 continue;

 enter_standby();

 EA = 1;

 }

}

Lines 3 and 5 are responsible for the initialisation of the
microcontroller: the function “_sdcc_external_startup”
calls the function “setRegisters” that is defined together with
“ax8052_setup” in the “setRegisters.c” file. These two
functions configure the registers of the microcontroller as
previously defined in the AX_MicroLAB.

Lines 9 to 13 consist of the initialisation of the examples.
Each example provided with the AX_MicroLAB has an
init−function which should be called at this point.

Lines 15 to 29 constitute the main loop. This infinite loop
contains an if−statement for each example. Each example
provided with the AX_MicroLAB has a work−function
which should be called here. If an example work−function
has a task to execute, it does it and gives 1 as return value.
In this case the infinite loop would start again. If any of the
work−function has nothing to do, they will all return 0 as
result. In this case the program execution will reach line 27
where the microcontroller is put in standby mode until it is
waken again, for instance by an interrupt call.

Example Files
Example files have the simplified structure shown in

Code 2.
To each example source code is paired an header file with

the prototypes of the functions and the declaration of the
variables used by the example.

Lines 4 to 6 consist in the variables definitions.
Line 9 to 13 shows a dummy initialization function. This

function can have arguments and does not need a return
value, although a return value can be useful to implement an
initialization check (for instance: return 1 if the example has
been correctly initialized).

http://onsemi.com

AND9369/D

www.onsemi.com
7

Code 2. Dummy Structure of an Example File

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

#include "xy_example.h"

#ifdef XY

uint16_t a;

uint16_t b;

uint16_t c;

#endif

void xy_init(void){

#ifdef XY

 various initialisation instruction...

#endif

}

uint8_t xy_work(void){

#ifdef XY

 if(event)

 {

 various instruction...

 return 1;

 }

#endif

 return 0;

}

Line 15 to 24 constitute the work−function. This function
contains an if−statement. If some event occours (for instance
a flag is activated by an interrupt) then some instructions are
executed and the value 1 is returned. Otherwise the returned
value will be 0.

It is important to note the use of the compiler instructions
“ifdef” and “endif”. The “definitions.h” files contains the
definitions for the activated examples. In the considered
case, if the “definitions.h” file contains the definition

“#define XY” then the compiler will consider the code
between “ifdef” and “endif”. Otherwise this code will not be
compiled and the example would simply be deactivated.

It is preferable to build the firmware using the shown
structure. If the microcontroller has to execute numerous
tasks, each task can be programmed with an init− and a
work−function. This method allows more tasks to run
together in the same firmware.

http://onsemi.com

AND9369/D

www.onsemi.com
8

Easy DMA
Each project generated with the AX_MicroLAB is

provided with an “easy_dma” source code and header. These
two files contain some utility for the initialisation of the two
DMA channels.

In Code 3. we can see the declaration of the structure
“DMA_descriptor”.

Code 3. DMA Buffer Descriptor Structure

struct DMA_descriptor{

 void __xdata *bufaddr;

 uint16_t buflen;

 uint16_t actlen;

 struct DMA_descriptor __xdata *bdaddr;

};

“bufaddr” is a pointer to a buffer saved in the XRAM
memory of the microcontroller. The buffer can be initialized
as an array in the XRAM. In this case the first element of the
buffer descriptor should be the pointer to this array.

“buflen” is the length of the buffer. Again, if the buffer is
initialized as an array in the XRAM, “buflen” is the length
of the array.

“actlen” represents the actual length of the buffer. This
value is written by the DMA once the buffer has been filled.

“bdaddr” is the pointer to the next buffer descriptor. If the
pointer has value 0xffxx the DMA will stop at the end of the
current buffer.

The “easy_dma” files also implement the functions
“start_DMA0” and “start_DMA1”. These functions require
a pointer to a buffer descriptor as argument and can be used
to start the two DMA channels.

ON Semiconductor and the are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.
SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed
at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation
or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets
and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each
customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended,
or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which
the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or
unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable
copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada

Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910

Japan Customer Focus Center
Phone: 81−3−5817−1050

AND9369/D

LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local
Sales Representative

http://onsemi.com
http://www.onsemi.com/site/pdf/Patent-Marking.pdf

